Prof. Dr. R. Lauterbach

Dr. K. Rothe

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Blatt 4

Aufgabe 13:

Gegeben sei das durch die beiden Kreise $K_1 = \{z \in \mathbb{C} | |z-1| = 1\}$ und $K_2 = \{z \in \mathbb{C} | |z| = 3\}$ berandete beschränkte Gebiet D (vgl. Aufgabe 12).

Man berechne eine auf D harmonische Funktion, die auf K_1 den Wert 1 und auf K_2 den Wert 2 annimmt.

Hinweis: Man transformiere das Problem, wie in Aufgabe 12 angegeben, löse das konform verpflanzte Problem in Polarkoordinaten und transformiere zurück.

Aufgabe 14:

Man berechne

a)
$$\int_{0}^{2} (1 - it)^{2} dt$$
,

b)
$$\int_{-1}^{1} \frac{1}{\sin t + i \cos t} dt,$$

c)
$$\int_{c_{1,2}} \operatorname{Re}(z) dz$$
,

dabei ist c_1 der geradlinige Weg, von $z_0=0$ nach $z_2=1+i$. c_2 verbindet auch z_0 und z_2 , läuft jedoch zunächst auf der x-Achse bis $z_1=\sqrt{2}$ und danach auf dem Ursprungskreis vom Radius $\sqrt{2}$ in mathematisch positivem Sinn nach z_2 .

d)
$$\oint \bar{z}dz$$
 für die Ellipse $c(t) = \cos t + 3i \sin t$, $0 \le t \le 2\pi$.

e)
$$\oint_c \frac{|z^2|}{\bar{z}z^2} dz$$
 für den Einheitskreis $c(t) = e^{it}, \quad 0 \le t \le 2\pi$.

Aufgabe 15:

Man berechne direkt und mit Hilfe einer Stammfunktion

a) $\int_{c} 1 + z^{2} dz$ entlang des geradlinigen Weges von -(1+i) nach 1+i,

b)
$$\int_{c} z \sin z \, dz$$
 für $c(t) = it$ mit $0 \le t \le 1$,

c)
$$\int_{-i}^{i} \frac{\ln z}{z} dz$$
 für $c(\varphi) = e^{i\varphi}$ (positiv orientiert),

d)
$$\int_{-i}^{i} z \ln z \, dz$$
 für $c(\varphi) = e^{i\varphi}$ (positiv orientiert).

Aufgabe 16:

- a) Man berechne die Taylorreihe von $f(z)=\int_0^z\frac{d\xi}{1+\xi^3}$ zum Entwicklungspunkt $z_0=0$ und bestimme den Konvergenzradius.
- b) Man bestimme die Konvergenzradien der Taylor-Reihen folgender Funktionen zu den angegebenen Entwicklungspunkten z_0 , ohne die Reihen selbst zu berechnen:

(i)
$$f(z) = \frac{z^2 - 1}{z^2 - 6z + 10}$$
, $z_0 = i$ und $z_0 = 0$,

(ii)
$$f(z) = \frac{z}{e^z + 1}$$
, $z_0 = \pi(1 + 8i)$,

(iii)
$$f(z) = \frac{1}{\ln(z-1)}$$
, $z_0 = 3$ und $z_0 = \frac{5}{4}$.

Abgabetermin: 30.05.2006 (zu Beginn der Übung)