Beispiele:

1) Für die Kreisgleichung $g(x,y)=x^2+y^2-r^2=0, \quad r>0$ findet man im Punkt $(x^0,y^0)=(0,r)$

$$\frac{\partial g}{\partial x}(0,r) = 0, \quad \frac{\partial g}{\partial y}(0,r) = 2r \neq 0$$

Man kann also in einer Umgebung von (0, r) die Kreisgleichung nach y auflösen:

$$f(x) = \sqrt{r^2 - x^2}$$

Die Ableitung f'(x) kann man durch **implizite Diffentiation** berechnen:

$$g(x,y) = 0 \Rightarrow g_x(x,y) + g_y(x,y)y'(x) = 0$$

Also

$$2x + 2yy' = 0 \quad \Rightarrow \quad y' = f'(x) = -\frac{x}{y}$$

71

Beispiele: (Fortsetzung)

2) Betrachte die Gleichung

$$q(x,y) = e^{y-x} + 3y + x^2 - 1 = 0$$

Es gilt:

$$\frac{\partial g}{\partial y}(x,y) = e^{y-x} + 3 > 0 \qquad \forall x \in \mathbb{R}$$

Die Gleichung ist also für jedes $x \in \mathbb{R}$ nach y =: f(x) auflösbar und f(x) ist eine stetig differenzierbare Funktion.

Implizite Differentiation:

$$e^{y-x}(y'-1) + 3y' + 2x = 0 \implies y' = \frac{e^{y-x} - 2x}{e^{y-x} + 3}$$

Eine **explizite** Auflösung nach y ist in diesem Fall nicht möglich!

Bemerkung: Implizites Differenzieren einer durch

$$g(x,y) = 0, \quad \frac{\partial g}{\partial y} \neq 0$$

implizit definierten Funktion y = f(x), $x, y \in \mathbb{R}$ ergibt:

$$f'(x) = -\frac{g_x}{g_y}$$

$$f''(x) = -\frac{g_{xx}g_y^2 - 2g_{xy}g_xg_y + g_{yy}g_x^2}{g_y^3}$$

Daher ist der Punkt x^0 ein stationärer Punkt von f(x), falls gilt:

$$g(x^0, y^0) = g_x(x^0, y^0) = 0$$
 und $g_y(x^0, y^0) \neq 0$

Weiter ist x^0 ein lokales Maximum (bzw. Minimum), falls

$$rac{g_{xx}(x^0, y^0)}{g_y(x^0, y^0)} > 0$$
 $\left(\text{ bzw. } rac{g_{xx}(x^0, y^0)}{g_y(x^0, y^0)} < 0
ight)$

73

Implizite Darstellung ebener Kurven

Betrachte die Lösungsmenge einer skalaren Gleichungen

$$g(x,y) = 0$$

Gilt

grad
$$g = (g_x, g_y)^T \neq (0, 0)^T$$

So definiert g(x, y) lokal eine Funktion y = f(x) oder $x = \overline{f}(y)$.

Definition:

- 1) Ein Lösungspunkt (x^0, y^0) der Gleichung g(x, y) = 0 mit grad $g(x^0, y^0) \neq (0, 0)^T$ heißt **regulärer** Punkt.
- 1) Ein Lösungspunkt (x^0, y^0) der Gleichung g(x, y) = 0 mit grad $g(x^0, y^0) = (0, 0)^T$ heißt **singulärer** Punkt.

Lemma:

1) Gilt für einen regulären Punkt (x^0, y^0)

$$g_x(\mathbf{x}^0) = 0, \quad g_y(\mathbf{x}^0) \neq 0$$

so besitzt die Lösungskurve eine **horizontale Tangente** in \mathbf{x}^0 .

2) Gilt für einen regulären Punkt (x^0, y^0)

$$g_x(\mathbf{x}^0) \neq 0, \quad g_y(\mathbf{x}^0) = 0$$

so besitzt die Lösungskurve eine vertikale Tangente in \mathbf{x}^0 .

3) Ist \mathbf{x}^0 ein **singulärer Punkt** so wird die Lösungsmenge bei \mathbf{x}^0 durch folgende **quadratische Gleichung** approximiert:

$$g_{xx}(\mathbf{x}^0)(x-x^0)^2 + 2g_{xy}(\mathbf{x}^0)(x-x^0)(y-y^0) + g_{yy}(\mathbf{x}^0)(y-y^0)^2 = 0$$

75

Wegen 3) erhält man für $g_{xx}, g_{xy}, g_{yy} \neq 0^T$:

 $\det \mathbf{H} g(\mathbf{x}^0) > 0$: \mathbf{x}^0 ist ein **isolierter Punkt** der Lösungsmenge

 $\det \mathbf{H} g(\mathbf{x}^0) < 0$: \mathbf{x}^0 ist ein **Doppelpunkt**

 $\det \mathbf{H}g(\mathbf{x}^0) = 0$: \mathbf{x}^0 ist ein **Rückkehrpunkt** oder auch **Spitze**

Interpretation:

- 1) Gilt det $\mathbf{H}g(\mathbf{x}^0) > 0$, so sind beide Eigenwerte von $\mathbf{H}g(\mathbf{x}^0)$ entweder strikt positiv oder strikt negativ, d.h. \mathbf{x}^0 ist ein strenges lokales **Minimum** oder **Maximum** von $g(\mathbf{x})$.
- 2) Gilt $\det \mathbf{H}g(\mathbf{x}^0) < 0$, so haben die beiden Eigenwerte von $\mathbf{H}g(\mathbf{x}^0)$ ein unterschiedliches Vorzeichen, d.h. \mathbf{x}^0 ist ein **Sattelpunkt** von $g(\mathbf{x})$.
- 3) Gilt det $Hg(x^0) = 0$, so ist der stationäre Punkt x^0 von g(x) ausgeartet.

Beispiele: Wir betrachten jeweils den singulären Punkt x^0 :

1) Gegeben sei die implizite Gleichung

$$g(x,y) = y^2(x-1) + x^2(x-2) = 0$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2 - 4x$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x - 4$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(0) = \begin{pmatrix} -4 & 0 \\ 0 & -2 \end{pmatrix}$$

Also ist $x^0 = 0$ ein isolierter Punkt.

77

Beispiele: (Fortsetzung)

2) Gegeben sei die implizite Gleichung

$$g(x,y) = y^{2}(x-1) + x^{2}(x+q^{2}) = 0$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2 + 2xq^2$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x + 2q^2$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(\mathbf{0}) = \begin{pmatrix} 2q^2 & 0\\ 0 & -2 \end{pmatrix}$$

Also ist $\mathbf{x}^0 = \mathbf{0}$ für $q \neq \mathbf{0}$ ein Doppelpunkt.

Beispiele: (Fortsetzung)

3) Gegeben sei die implizite Gleichung

$$g(x,y) = y^2(x-1) + x^3 = 0$$

Berechnung der partiellen Ableitungen bis zur Ordnung 2:

$$g_x = y^2 + 3x^2$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(0) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

Also ist $x^0 = 0$ ein Rückkehrpunkt.

79

Implizite Darstellung von Flächen

Lösungsmenge einer skalaren Gleichung g(x, y, z) = 0 ist für grad $g \neq 0^T$ lokal eine Fläche im \mathbb{R}^3 .

Tangentialebene in \mathbf{x}^0 mit $g(\mathbf{x}^0) = 0$ und grad $g(\mathbf{x}^0) \neq \mathbf{0}^T$:

$$g_x(\mathbf{x}^0)(x-x^0) + g_y(\mathbf{x}^0)(y-y^0) + g_z(\mathbf{x}^0)(z-z_0) = 0$$

d.h. der Gradient steht senkrecht auf der Fläche g(x, y, z) = 0.

Ist zum Beispiel $g_z(\mathbf{x}^0) \neq$, so gibt es lokal bei \mathbf{x}^0 eine Darstellung der Form

$$z = f(x, y)$$

Partielle Ableitungen von f(x, y):

grad
$$f(x,y) = (f_x, f_y) = -\frac{1}{g_z}(g_x, g_y) = \left(-\frac{g_x}{g_z}, \frac{g_y}{g_z}\right)$$

Das Umkehrproblem

Frage: Lässt sich ein vorgegebenes Gleichungssystem

$$y = f(x)$$

mit $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ offen, nach x auflösen, also **invertieren?**

Satz: Sei $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ offen, eine \mathcal{C}^1 -Funktion.

Ist für ein $\mathbf{x}^0 \in D$ die Jacobi-Matrix $\mathbf{J} \mathbf{f}(\mathbf{x}^0)$ regulär, so gibt es Umgebungen U und V von \mathbf{x}^0 und $\mathbf{y}^0 = \mathbf{f}(\mathbf{x}^0)$, so dass \mathbf{f} den Bereich U bijektiv auf V abbildet.

Die Umkehrfunktion $\mathbf{f}^{-1}:V\to U$ ist ebenfalls eine \mathcal{C}^1 -Funktion und es gilt für alle $\mathbf{x}\in U$:

$$J f^{-1}(y) = (J f(x))^{-1}, y = f(x)$$

Bemerkung: Man nennt dann f lokal einen C^1 -Diffeomorphismus.