Fachbereich Mathematik

Prof. Dr. H. J. Oberle Dr. K. Rothe

Analysis III

2. Übung

Aufgabe 5:

Gegeben seien die folgenden Geschwindigkeitsfelder $\boldsymbol{u} = (u(x,y),v(x,y))^{\mathrm{T}}$ einiger zweidimensionaler Strömungen (mit $r := \sqrt{x^2 + y^2} > 0$)

a) laminar, translatorisch : u=c, v=0b) laminare Gegenströmung : $u=c\,y,$ v=0

laminare Rohrströmung : $u = c (1 - y^2), v = 0$ mit $|y| \le 1$ c)

 $: \quad u = -\omega \, y, \qquad \quad v = \omega \, x$ drotierend

: $u = -\mu y/r^2$, $v = \mu x/r^2$ isolierter Wirbel e)

: $u = \epsilon x/r^2$, $v = \epsilon y/r^2$ isolierte Quelle f)

Berechnen Sie die Quelldichte div \boldsymbol{u} und die Wirbeldichte rot $\boldsymbol{u} := v_x - u_y$. Skizzieren Sie die Vektorfelder und einige zugehörige Stromlinien (das sind die Lösungen des Differentialgleichungssystems $\dot{x} = u, \ \dot{y} = v$ bzw. der Differentialgleichung y'=v/u).

Aufgabe 6:

a) Ein C¹-Vektorfeld $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ heißt wirbelfrei, falls $\operatorname{rot} f(x) = 0$ für alle $\boldsymbol{x} \in \mathbb{R}^3$, und quellenfrei, falls div $\boldsymbol{f}(\boldsymbol{x}) = 0$, für alle $\boldsymbol{x} \in \mathbb{R}^3$.

Für welche Parameter λ ist das folgende Vektorfeld wirbelfrei?

$$f(x) := (\lambda x y - z^3, (\lambda - 2) x^2, (1 - \lambda) x z^2)^{\mathrm{T}}$$

Gibt es eine λ , so dass f quellenfrei wird?

b) Bestätigen Sie, dass für C²–Funktionen $\mathbf{F}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ und $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ folgende Differentiationsregeln gelten:

$$\operatorname{div}(\operatorname{rot} \boldsymbol{F}) = 0, \quad \operatorname{rot}(\nabla f) = 0.$$

Zeigen Sie an einem Gegenbeispiel, dass im Allg. $nicht \nabla(\text{div} \mathbf{F}) = \mathbf{0}$ gilt.

Aufgabe 7:

- a) Geben Sie den (maximalen) Definitionsbereich der Funktion $\mathbf{F}: \mathbb{R}^3 \supset D \longrightarrow \mathbb{R}^3$ mit $\mathbf{F}(x,y,z) := (x^2-z^2, e^{xy}, \ln[(x+z)^3])^{\mathrm{T}}$ an. Berechnen Sie die Jacobi-Matrix $\mathbf{J}\mathbf{F}(x,y,z)$. Für welche Punkte $\mathbf{x} \in D$ verschwindet die Funktionaldeterminante $\det(\mathbf{J}\mathbf{F}(\mathbf{x}))$?
- b) Berechnen Sie mit Hilfe der Kettenregel die JACOBI-Matrizen der folgenden Funktionen z=f(x,y)
 - (i) $z = 8u^2v 2u + 3v$, u = xy, v = x y;
 - (ii) $z = uvw, u = e^{xy}, v = \sin x, w = x^2y.$

Aufgabe 8:

Gegeben sei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x) := -x^2 - 2y^2 + 2x + z$.

- a) Bestimmen Sie die Niveaufläche N_{x^0} der Funktion f im Punkt $x^0 = (1, 1, 10)^T$. Von welchem Typ ist diese Quadrik?
- b) Berechnen Sie die Richtungsableitung $D_{\boldsymbol{v}}f(\boldsymbol{x}^0)$ für $\boldsymbol{v}=(0,1,0)^{\mathrm{T}}$ und für $\boldsymbol{v}=1/\sqrt{2}\,(0,-1,1)^{\mathrm{T}}$. Für welche \boldsymbol{v} mit $\|\boldsymbol{v}\|=1$ wird $D_{\boldsymbol{v}}f(\boldsymbol{x}^0)$ am Größten bzw. am Kleinsten?

Abgabetermine: 12.11. – 16.11.2001 **vor** der Übung.

Die Übungen am Do. 15.11 in der Zeit 11.00 - 13.00 Uhr fallen aus. Bitte nehmen sie Ersatztermine war.