Analysis II für Studierende der Ingenieurwissenschaften

Blatt 1

Aufgabe 1: Diskutieren Sie die reellwertigen Funktionen (vgl. Abschnitt 10.3 des Lehrbuches)

a)
$$f(x) = x^2 \sin x$$
 b) $f(x) = |x|(x^2 + 1)$ c) $f(x) = \frac{1}{x} + x$

Aufgabe 2: Zeigen Sie, dass die Funktion $\Phi(x) = x + e^{-x}$ auf dem Intervall $[0, \infty)$ die Abschätzung

$$|f(x) - f(y)| < |x - y| \qquad \forall x \neq y$$

erfüllt, aber dort nicht kontrahierend ist.

Aufgabe 3: Gegeben sei die Funktion $f(x) = x - \exp(x^2 - 2)$

- a) Zeigen Sie, dass f im Intervall [0, 1/2] genau eine Nullstelle besitzt.
- b) Berechnen Sie die Nullstelle von f im Intervall [0,1/2] mit Hilfe des Fixpunktverfahrens, wobei die Voraussetzungen des Banachschen Fixpunktsatzes zu überprüfen sind.
- c) Führen Sie für die berechnete Näherung x_6 jeweils eine a-priori und eine a-posteriori Fehlerabschätzung durch.

Aufgabe 4: Untersuchen Sie die folgenden Funktionen auf punktweise und gleichmäßige Konvergenz:

a)
$$f_n: [0,1] \to \mathbb{R}, \quad f_n(x) = nx \exp(-nx)$$

b)
$$g_n : [0,1] \to \mathbb{R}, \quad g_n(x) = \sum_{k=0}^n x(1-x)^k$$

c)
$$h_n: [1, \infty) \to \mathbb{R}, \quad h_n(x) = \frac{(nx)^2}{1 + (nx)^3}$$

Abgabetermin: 15.–18.4 vor der Übung