

Folgerung aus dem Cauchyschen Integralsatz.

Voraussetzungen:

- f analytisch in einem einfach zusammenhängenden Gebiet G;
- Γ , $\Gamma_1 \subset G$ zwei Wege mit gleichem Anfangspunkt z_0 und Endpunkt z_1 ;

Folgerung aus dem Cauchyschen Integralsatz: Es gilt

$$\int_{\Gamma} f(z) dz = \int_{\Gamma_1} f(z) dz$$

wegen

$$\int_{\Gamma-\Gamma_1} f(z) dz = 0.$$

Fazit: Das Integral

$$\int_{\Gamma} f(z) dz =: \int_{z_0}^{z_1} f(z) dz$$

hängt nur von Anfangs- und Endpunkt des Weges Γ ab.

Zur Konstruktion von Stammfunktionen.

Ausgangspunkt: Betrachte für festes $z_0 \in G$ und analytisches f die Funktion

$$F_{z_0}(z) = \int_{z_0}^z f(\zeta) d\zeta$$
 für $z \in G$.

Behauptung: Die Funktion F_{z_0} ist analytisch und es gilt

$$F'_{z_0}(z) = f(z)$$
 für alle $z \in G$.

Beweis: Für den Differenzenquotient von F_{z_0} bei z gilt

$$d(\ell) = \frac{F_{z_0}(z+\ell) - F_{z_0}(z)}{\ell} = \frac{1}{\ell} \left(\int_{z_0}^{z+\ell} f(\zeta) d\zeta - \int_{z_0}^{z} f(\zeta) d\zeta \right)$$
$$= \frac{1}{\ell} \int_{z}^{z+\ell} f(\zeta) d\zeta = \int_{0}^{1} f(z+\ell t) dt$$

und somit

$$f(z) = \lim_{\ell \to 0} d(\ell) = F'_{z_0}(z).$$

Hauptsatz der komplexen Integralrechnung.

Satz (Hauptsatz der komplexen Integralrechnung):

Sei f analytisch in einem einfach zusammenhängenden Gebiet G und sei $z_0 \in G$. Dann ist die Funktion

$$F_{z_0}(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$
 für $z \in G$

analytisch und es gilt $F'_{z_0} = f$ auf G.

Definition: Sei F eine analytische Funktion auf einem Gebiet G mit F' = f.

Dann heißt F Stammfunktion von f auf G.

Fazit: Die obige Funktion

$$F_{z_0}(z) = \int_{z_0}^z f(\zeta) d\zeta$$
 für $z \in G$

ist eine Stammfunktion von f auf G.

Berechnung des Integrals.

Betrachte für $z_0, z_1 \in G$ das Integral

$$\int_{z_0}^{z_1} f(z) dz$$

wobei f analytisch auf dem einfach zusammenhängenden Gebiet G.

Weiterhin sei F eine beliebige Stammfunktion von f auf G.

Dann gilt $F' = F'_{z_0}$ und somit

$$F_{z_0}(z) = F(z) + c$$

für eine Konstante $c\in\mathbb{C}$. Wegen $\mathrm{F}_{z_0}(z_0)=0$ gilt $c=-\mathrm{F}(z_0)$ und somit

$$F_{z_0}(z) = F(z) - F(z_0).$$

Daraus folgt schließlich

$$\int_{z_0}^{z_1} f(z) dz = F_{z_0}(z_1) = F(z_1) - F(z_0).$$

Beispiel: Wir bestimmen für a, b > 0 das Integral

$$\int_{a-ib}^{a+ib} \frac{1}{z^2} dz$$

- unter Verwendung der Stammfunktion f(z) = -1/z;
- durch Integration längs der Stecke z(t) = a + it, $-b \le t \le b$;
- durch Integration längs des Kreisbogens $z(t) = \sqrt{\alpha^2 + b^2}e^{it}$, $-\phi \le t \le \phi$.

Methode 1: Es gilt

$$\int_{a-ib}^{a+ib} \frac{1}{z^2} dz = -\frac{1}{z} \Big|_{a-ib}^{a+ib} = -\frac{1}{a+ib} + \frac{1}{a-ib} = \frac{2ib}{a^2+b^2}.$$

Methode 2: Es gilt

$$\int_{a-ib}^{a+ib} \frac{1}{z^2} dz = i \int_{-b}^{b} \frac{1}{(a+it)^2} dt = -\frac{1}{a+it} \Big|_{-b}^{b} = \frac{2ib}{a^2+b^2}.$$

Methode 3: Übung mit $sin(\phi) = b/\sqrt{a^2 + b^2}$.

6.3 Die Cauchysche Integralformel

Frage: Was ist mit Integralen für Gebiete G, die *nicht* einfach zusammenhängend sind, speziell Gebiete mit "Löchern"?

Beachte: Hier ist der Cauchysche Integralsatz nicht anwendbar!

Beispiel: Für den positiv orientierten Einheitskreisrand Γ gilt

$$\int_{\Gamma} \frac{1}{z} \, \mathrm{d}z = 2\pi \mathrm{i}.$$

Hierbei ist $G = \mathbb{C} \setminus \{0\}$.

Beachte: Falls das von Γ umschlossene Gebiet jedoch komplett in G liegt, so ist der Cauchysche Integralsatz anwendbar, und es gilt

$$\int_{\Gamma} \frac{1}{z} \, \mathrm{d}z = 0.$$

Zweifach zusammenhängende Gebiete.

Ausgangssituation:

- Sei G ein zweifach zusammenhängendes Gebiet, d.h. G besitzt genau ein "Loch" L.
- Weiterhin seien Γ_1 und Γ_2 zwei positiv orientierte geschlossene Wege, die das Loch L einmal umlaufen.

Konstruktion:

• Verbinde nun Γ_1 und Γ_2 durch zwei weitere geschlossene Kurvenstücke Γ' und Γ'' , die in G liegen (siehe Skizze).

Cauchyscher Integralsatz: Für eine analytische Funktion f auf G gilt

$$\int_{\Gamma'} f(z) dz = 0 \qquad \text{und} \qquad \int_{\Gamma''} f(z) dz = 0$$

und weiterhin

$$\int_{\Gamma'} f + \int_{\Gamma''} f = \int_{\Gamma_1} f + \int_{-\Gamma_2} f = \int_{\Gamma_1} f - \int_{\Gamma_2} f = 0.$$

Verallgemeinerung Cauchyscher Intergralsatz.

Aus den vorigen Überlegungen folgt direkt

$$\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$$

und somit gilt der folgende

Satz: (Verallgemeinerung des Cauchyschen Intergralsatzes):

Sei f analytisch in einem zweifach zusammenhängenden Gebiet G mit Loch L.

Dann besitzt das Integral

$$\int_{\Gamma} f(z) dz$$

längs jeder geschlossenen Kurve in G, die das Loch L einmal im positiven Sinne umläuft, denselben Wert.

Beispiel: Für jeden geschlossenen Weg Γ , der den Ursprung einmal im positiven Sinn umläuft, gilt

$$\int_{\Gamma} \frac{1}{z} dz = 2\pi i.$$

Zurück zu einfach zusammenhängenden Gebieten.

Voraussetzungen:

- Sei G nun wieder ein einfach zusammenhängendes Gebiet.
- Γ sei eine einfach geschlossene positiv orientierte Kurve in G.
- $\alpha \in G$ sei ein Punkt, der von Γ umlaufen wird (siehe Skizze).
- f sei eine analytische Funktion auf G.

Beobachtung: Die Funktion

$$g(z) = \frac{f(z)}{z - a}$$

ist analytisch in dem *zweifach* zusammenhängenden Gebiet $G' = G \setminus \{\alpha\}$.

Somit gilt mit der Verallgemeinerung des Cauchyschen Integralsatzes

$$\int_{\Gamma} \frac{f(z)}{z - a} dz = \int_{\Gamma_r} \frac{f(z)}{z - a} dz,$$

wobei $\Gamma_r \subset G'$ der positiv durchlaufene Rand des Kreises um α mit Radius r.

Zur weiteren Konstruktion.

Mit der Parametrisierung

$$\Gamma_{\rm r}: {\rm t} \mapsto z({\rm t}) = {\rm a} + {\rm r} e^{{\rm i} {\rm t}} \qquad {\rm für} \ 0 \le {\rm t} \le 2\pi$$

und mit $dz = ire^{it}dt$ bekommen wir die Darstellung

$$\int_{\Gamma_r} \frac{f(z)}{z - a} dz = i \int_0^{2\pi} \frac{f(a + re^{it})}{re^{it}} re^{it} dt = i \int_0^{2\pi} f(a + re^{it}) dt$$

bzw.

$$\int_{\Gamma} \frac{f(z)}{z - a} dz = i \int_{0}^{2\pi} f(a + re^{it}) dt$$

Mit $r \rightarrow 0$ folgt daraus

$$\int_{\Gamma} \frac{f(z)}{z-a} dz = 2\pi i f(a) \qquad \text{bzw.} \qquad f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-a} dz.$$

Die Cauchysche Integralformel.

Satz: Sei f eine analytische Funktion in einem einfach zusammenhängenden Gebiet G. Weiterhin sei Γ eine einfach geschlossene positiv orientierte Kurve in G. Dann gilt für jeden Punkt $\alpha \in G$, der von Γ umlaufen wird, die Cauchysche Integralformel

$$f(\alpha) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \alpha} dz.$$

Interpretation:

Die Werte einer analytischen Funktion f(z) sind für alle Argumente $z \in G$, die von $\Gamma \subset G$ umlaufen werden, vollständig durch die Werte von f auf Γ bestimmt.

Konsequenz 1:

Falls f im Inneren des von Γ umlaufenen Gebietes abgeändert wird, aber nicht auf Γ geändert wird, so ist die daraus resultierende Funktion \tilde{f} nicht analytisch.

Konsequenz 2: Stimmen zwei analytische Funktionen f und g auf Γ überein, so stimmen f und g auf dem von Γ umschlossenen Gebiet überein, d.h. $f \equiv g$.

6.4 Anwendungen der Cauchyschen Integralformel

Satz (Mittelwerteigenschaft): Der Wert einer analytischen Funktion f im Mittelpunkt einer in ihrem Definitionsbereich enthaltenen Kreisscheibe stimmt mit dem Mittelwert von f auf dem Kreisrand überein.

Beweis: Sei f analytisch auf G, $\alpha \in G$, und sei Γ ein in G enthaltener positiv orientierter Kreisrand um α mit Radius r, der α einmal umläuft. Dann gilt die Cauchysche Integralformel

$$f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - a} dz$$

bzw. (wie bereits mit der Parametrisierung $z(t) = a + re^{it}$ hergeleitet)

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) dt.$$

Die rechte Seite beschreibt den Mittelwert von f auf Γ .

Maximumprinzip.

Satz (Maximumprinzip): Seif eine analytische Funktion auf einem Gebiet G. Falls es einen Punkt $z_0 \in G$ gibt mit

$$|f(z)| \le |f(z_0)|$$
 für alle $z \in G$,

so ist f auf G konstant.

Beweisskizze: Sei $z_0 \in G$ maximal mit $M := |f(z_0)| \ge |f(z)|$ für alle $z \in G$. Dann gilt mit der Mittelwerteigenschaft die Darstellung

$$M = |f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + re^{it}) dt \right|$$

und somit

$$M \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| dt \le \frac{1}{2\pi} \int_0^{2\pi} M dt = M$$

Fortsetzung der Beweisskizze.

Daraus folgt

$$\left|f\left(z_{0}+re^{it}\right)\right|=M$$
 für $0\leq t\leq 2\pi$.

Dies bedeutet, dass |f| auf jedem Kreis um z_0 , der in G liegt, konstant ist.

Da man das gesamte Gebiet G mit Kreisscheiben überdecken kann (Übung), gilt

$$|f| \equiv M$$

auf ganz G.

Unter Verwendung der Cauchy-Riemannschen Differentialgleichungen folgt

$$f \equiv M$$

auf ganz G (Übung).

Folgerungen aus dem Maximumprinzip.

Satz: Sei f eine analytische Funktion auf einem beschränkten Gebiet G. Sei weiterhin f stetig auf \overline{G} und nicht konstant. Dann nimmt die Funktion |f(z)| ihren maximalen Wert nur auf dem Rand von G an.

Beweis: Angenommen, |f| nimmt ihr Maximum im Inneren von G an. Dann ist f nach dem Maximumprinzip konstant. Dies widerspricht der Annahme.

Satz (Fundamentalsatz der Algebra): Jedes Polynom vom Grad $n \ge 1$ besitzt mindestens eine Nullstelle in der komplexen Ebene.

Beweis: Für komplexe Koeffizienten $a_0, \ldots, a_n \in \mathbb{C}$ sei

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$$
 für $z \in \mathbb{C}$

ein beliebiges Polynom vom Grad $n \ge 1$.

Angenommen, p(z) besitzt keine komplexe Nullstelle, d.h. es gilt

$$p(z) \neq 0$$
 für alle $z \in \mathbb{C}$.

Fortsetzung des Beweises.

Dann ist die reziproke Funktion

$$f(z) = \frac{1}{p(z)} = \frac{1}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0}$$

analytisch auf ganz C, und es gilt

$$\lim_{z \to \infty} |f(z)| = \lim_{z \to \infty} \frac{1}{|a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0|}$$

$$= \lim_{z \to \infty} \frac{1}{|a_n z^n|} \cdot \lim_{z \to \infty} \frac{1}{\left|1 + \frac{a_{n-1}}{a_n z} + \dots + \frac{a_1}{a_n z^{n-1}} + \frac{a_0}{a_n z^n}\right|} = 0.$$

Demnach besitzt |f| in einem Punkt $z_0 \in \mathbb{C}$ ein Maximum.

Nach dem Maximumprinzip ist f konstant. Somit ist p konstant.

Dies widerspricht der Annahme an den Grad von p.

Integraldarstellung der Ableitung.

Voraussetzungen:

- Sei f analytisch in G;
- Γ eine einfach geschlossene positiv orientierte Kurve in G.
- ullet das Innere G_{Γ} des von Γ umschlossenen Gebietes gehöre ganz zu $G,\ G_{\Gamma}\subset G.$

Cauchysche Integralformel:

$$f(z) = rac{1}{2\pi i} \int_{\Gamma} rac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta$$
 für alle $z \in G_{\Gamma}$

Differentiation: Nun gilt

$$\frac{\mathrm{d}}{\mathrm{d}z}\frac{1}{\zeta-z} = \frac{1}{(\zeta-z)^2}$$

und somit

$$\mathsf{f}'(z) = rac{1}{2\pi \mathrm{i}} \int_{\Gamma} rac{\mathsf{f}(\zeta)}{(\zeta-z)^2} \,\mathrm{d}\zeta \qquad ext{ für alle } z \in \mathsf{G}_{\Gamma}$$

Integraldarstellung höherer Ableitungen.

Verallgemeinerung: Erneutes (wiederholtes) Differenzieren des Integranden,

$$\frac{d^n}{dz^n} \frac{1}{\zeta - z} = \frac{n!}{(\zeta - z)^{n+1}}$$
 für $n = 1, 2, 3, ...,$

liefert die Darstellung

$$\mathsf{f}^{(n)}(z) = \frac{\mathsf{d}^n}{\mathsf{d}z^n} \mathsf{f}(z) = \frac{n!}{2\pi \mathfrak{i}} \int_{\Gamma} \frac{\mathsf{f}(\zeta)}{(\zeta - z)^{n+1}} \, \mathrm{d}\zeta \qquad \text{für alle } z \in \mathsf{G}_{\Gamma}$$

für die höheren Ableitungen $f^{(n)}$ von f für $n=1,2,3,\ldots$

Cauchysche Integralformel für die Ableitungen.

Satz (Cauchysche Integralformel für die Ableitungen): Sei f in einem Gebiet analytisch. Dann existieren alle Ableitungen von f in G, und diese Ableitungen sind jeweils analytisch in G. Weiterhin gilt für eine einfach geschlossene positiv orientierte Kurve $\Gamma \subset G$, deren Inneres G_{Γ} ganz in G liegt, die Cauchysche Integralformel

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$
 für alle $z \in G_{\Gamma}$

für die Ableitungen $f^{(n)}$ von f für n = 1, 2, 3, ...

Bemerkungen:

- Für n = 0 liefert die obige Darstellung die Cauchysche Integralformel für f.
- Es gilt der Grundsatz: "einmal holomorph, immer holomorph": Eine analytische Funktion f lässt sich beliebig oft in ihrem Definitionsbereich G komplex differenzieren, d.h. ist f ist komplex differenzierbar in einem Gebiet G, so existieren alle Ableitungen $f^{(n)}$ von f in G für n = 1, 2, 3, ...