Differential Equations II

Laplace's Equation

Recap

Definition: (PDE of 2nd Order)
A linear partial differential equation of 2nd order in n variables is defined by

 $\sum_{i=1}^{n} a_{ij}u_{x_{i}x_{j}} + \sum_{i=1}^{n} b_{i}u_{x_{i}} + fu = g.$

Here the terms a_{ij} , b_i , f_i and g are functions of $\mathbf{x} = (x_1, \dots, x_n)^\top$. The first term in the equation is called main part of the PDE. Assume w.l.o.g: $a_{ij}(\mathbf{x}) = a_{ji}(\mathbf{x}), \quad i, j = 1, \dots, n.$

Definition: (Diagonal Form) Let the PDE of $2^{\rm nd}$ order $(A=(a_{ij})_{i,j=1...,n}$ constant and symmetric)

 $(\nabla^{\top} A \nabla)u + (\mathbf{b}^{\top} \nabla)u + fu = g.$

Then the corresponding diagonal form of the PDE is given by

 $(\nabla^{\top}D\nabla)\tilde{u} + ((S^{\top}\tilde{\mathbf{b}})^{\top}\nabla)\tilde{u} + \tilde{f}\tilde{u} = \tilde{g}$

with diagonal matrix $D=S^{\top}AS$ and $S^{\top}S=Id$. Here $\tilde{\mathbf{b}}:=\mathbf{b}(S\mathbf{y})$ and $\tilde{f}(\mathbf{y}):=f(S\mathbf{y}),\,\tilde{g}(\mathbf{y}):=g(S\mathbf{y}).$

Definition: (Classification of Partial Differential Equations of 2^{nd} Order) Let the PDE of 2^{nd} order ($A=(a_{ij})_{i,j=1,\dots,n}$ constant and symmetric)

 $(\nabla^{\top} A \nabla)u + (\mathbf{b}^{\top} \nabla)u + fu = g.$

Let $\lambda_1,\dots,\lambda_n$ be the eigenvalues of matrix A.

- 1. If $\lambda_i \neq 0$ for all $i=1,\dots,n$ and if all λ_i have equal sign, the equation is called elliptic.
- 2. If $\lambda_i \neq 0$ for all $i=1,\ldots,n$ and if one eigenvalue has different sign to all other n-1 eigenvalues, the equation is called hyperbolic.
- 3. If $\lambda_k=0$ for at least one $k\in\{1,\dots,n\}$, the equation is called parabolic.

Definition: (Well-Posed Problem)
A correctly posed problem (or well-posed problem) consists of

- · a partial differential equation, defined on a domain, and
- a set of initial and/or boundary conditions,

such that the following properties are fulfilled:

- 1. Existence: There exists at least one solution, that fulfills all above conditions;
- 2. Uniqueness: The solution is unique;
- 3. Stability: The solution depends cont. on the initial/boundary conditions

Definition: (PDE of 2nd Order)

A linear partial differential equation of 2^{nd} order in n variables is defined by

$$\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} b_i u_{x_i} + f u = g.$$

Here the terms a_{ij} , b_i , f, and g are functions of $\mathbf{x} = (x_1, \dots, x_n)^{\top}$. The first term in the equation is called main part of the PDE. Assume w.l.o.g:

$$a_{ij}(\mathbf{x}) = a_{ji}(\mathbf{x}), \quad i, j = 1, \dots, n.$$

Definition: (Diagonal Form)

Let the PDE of 2^{nd} order $(A = (a_{ij})_{i,j=1...,n}$ constant and symmetric)

$$(\nabla^{\top} A \nabla) u + (\mathbf{b}^{\top} \nabla) u + f u = g.$$

Then the corresponding diagonal form of the PDE is given by

$$(\nabla^{\top} D \nabla) \tilde{u} + ((S^{\top} \tilde{\mathbf{b}})^{\top} \nabla) \tilde{u} + \tilde{f} \tilde{u} = \tilde{g}$$

with diagonal matrix $D = S^{\top}AS$ and $S^{\top}S = Id$. Here $\tilde{\mathbf{b}} := \mathbf{b}(S\mathbf{y})$ and $\tilde{f}(\mathbf{y}) := f(S\mathbf{y})$, $\tilde{g}(\mathbf{y}) := g(S\mathbf{y})$.

Definition: (Classification of Partial Differential Equations of 2^{nd} Order) Let the PDE of 2^{nd} order ($A = (a_{ij})_{i,j=1...,n}$ constant and symmetric)

$$(\nabla^{\top} A \nabla) u + (\mathbf{b}^{\top} \nabla) u + f u = g.$$

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of matrix A.

- 1. If $\lambda_i \neq 0$ for all $i=1,\ldots,n$ and if all λ_i have equal sign, the equation is called elliptic.
- 2. If $\lambda_i \neq 0$ for all $i=1,\ldots,n$ and if one eigenvalue has different sign to all other n-1 eigenvalues, the equation is called hyperbolic.
- 3. If $\lambda_k = 0$ for at least one $k \in \{1, \dots, n\}$, the equation is called parabolic.

Definition: (Well-Posed Problem)

A correctly posed problem (or well-posed problem) consists of

- a partial differential equation, defined on a domain, and
- a set of initial and/or boundary conditions,

such that the following properties are fulfilled:

- 1. Existence: There exists at least one solution, that fulfills all above conditions;
- 2. Uniqueness: The solution is unique;
- 3. Stability: The solution depends cont. on the initial/boundary conditions i.e. small perturbations in the data yield small perturbations in the solution.

Introduction

Definition: (Laplace's and Poisson's Equation) Let $u\in C^2(\mathbb{R}^n)$ be a twice cont. differentiable function, $\mathbf{x}\in D\subset \mathbb{R}^n$ open, $u=u(\mathbf{x})$. Then Laplace's equation is given by

Poisson's equation is defined as $-\Delta u = f \label{eq:defined}$

with a given right hand side $f = f(\mathbf{x})$.

Proposition: (Representation of Solution of Poisson's Equation) A solution to Poisson's equation

 $-\Delta u = f \quad \text{in } \mathbb{R}^n$

 $u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}.$

Definition: (Harmonic Function) Let $u\in C^2(\mathbb{R}^n)$ be a twice cont. differentiable function satisfying Laplace's equation

Then u is called harmonic function.

Definition: (Fundamental Solution of Laplace's Equation) The function $\Phi(\mathbf{x})$, $\mathbf{x}\in\mathbb{R}^n$, $\mathbf{x}\neq 0$, given by

$$\Phi(\mathbf{x}) = \left\{ \begin{array}{ll} -\frac{1}{2\pi} \log \|x\| & (n=2) \\ \frac{1}{n(n-2)\alpha(n)} \|x\|^{2-n} & (n \geq 3) \end{array} \right.$$

is called fundamental solution of Laplace's equation.

Definition: (Laplace's and Poisson's Equation)

Let $u \in C^2(\mathbb{R}^n)$ be a twice cont. differentiable function, $\mathbf{x} \in D \subset \mathbb{R}^n$ open, $u = u(\mathbf{x})$. Then Laplace's equation is given by

$$\Delta u = 0$$
.

Poisson's equation is defined as

$$-\Delta u = f$$

with a given right hand side $f = f(\mathbf{x})$.

Definition: (Harmonic Function)

Let $u \in C^2(\mathbb{R}^n)$ be a twice cont. differentiable function satisfying Laplace's equation

$$\Delta u = 0.$$

Then u is called harmonic function.

Definition: (Fundamental Solution of Laplace's Equation) The function $\Phi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq 0$, given by

$$\Phi(\mathbf{x}) = \begin{cases} -\frac{1}{2\pi} \log ||x|| & (n=2) \\ \frac{1}{n(n-2)\alpha(n)} ||x||^{2-n} & (n \ge 3) \end{cases}$$

is called fundamental solution of Laplace's equation.

Remarks:

- The constant $\alpha(n)$ denotes the volume of the unit ball in \mathbb{R}^n .
- The fundamental solution is a harmonic function for all $x \neq 0$.

Example:

For $\mathbf{x} \in \mathbb{R}^3$ it holds:

$$vol(K_1(0)) = \alpha(3) = \frac{4\pi}{3}.$$

Thus, the fundamental solution of Laplace's equation is

$$\Phi(\mathbf{x}) = \frac{1}{4\pi} \frac{1}{\|x\|}.$$

Proposition: (Representation of Solution of Poisson's Equation) A solution to Poisson's equation

$$-\Delta u = f$$
 in \mathbb{R}^n

is given by

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y}.$$

Properties of Harmonic Functions

Proposition: (Mean Value Property of Harmonic Functions) Let $U \subset \mathbb{R}^n$ be an open set. If $u \in C^2(U)$ is harmonic, then for each ball $B(\mathbf{x},r) \subset U$

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u \ dS = \int_{B(\mathbf{x},r)} u \ d\mathbf{y}.$$

Here f denotes the mean over the shpere or the ball, resp.:

$$f \cdots = \frac{1}{\text{vol}(B(\mathbf{x}, r))} \int \cdots$$

The reverse of the proposition holds as well: **Proposition**: For the function $u \in C^2(U)$ let

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u \ dS$$

for each ball $B(\mathbf{x},r)\subset U$. Then u is harmonic.

If a continuous function u ∈ C(U) on an open set U ⊂ Rⁿ satisfies the mean value property for each ball B(x,r) ⊂ U, then u is indefinitely often differentiable (u ∈ C[∞](U)).

• Bounded Solution of Poisson's Equation: Let $f\in C^2_c(\mathbb{R}^n),\ n\geq 3$. Then each bounded solution of Poisson's equation $-\Delta u=f$ in \mathbb{R}^n has the form

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) d\mathbf{y} + C$$

Proposition: (Maximum Principle of Harmonic Functions) Let $u \in C^2(U) \cap C(\overline{U})$ harmonic in U. Then

1. The maximum principle holds:

 $\max_{\mathbf{x} \in \overline{U}} u(\mathbf{x}) = \max_{\mathbf{z} \in \partial U} u(\mathbf{x}).$

then \boldsymbol{u} is constant on U.

Proposition: (Mean Value Property of Harmonic Functions) Let $U \subset \mathbb{R}^n$ be an open set. If $u \in C^2(U)$ is harmonic, then for each ball $B(\mathbf{x}, r) \subset U$

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u \ dS = \int_{B(\mathbf{x},r)} u \ d\mathbf{y}.$$

Here f denotes the mean over the shpere or the ball, resp.:

$$f \cdots = \frac{1}{\operatorname{vol}(B(\mathbf{x}, r))} \int \cdots$$

Interpretation: The mean value property means that the value of a harmonic function at position ${\bf x}$ is equal to

- the mean of the function over a ball with center point x, or
- the mean of the function over a corresponding sphere around x.

The reverse of the proposition holds as well:

Proposition: For the function $u \in C^2(U)$ let

$$u(\mathbf{x}) = \int_{\partial B(\mathbf{x},r)} u \ dS$$

for each ball $B(\mathbf{x}, r) \subset U$. Then u is harmonic.

Proof: (by contradiction)

- Let $\Delta u \neq 0$.
- Then a ball $B(\mathbf{x},r) \subset U$ exists, such that $\Delta u > 0$ inside of $B(\mathbf{x},r)$.
- On the other hand it holds $0 = \phi'(r) = \frac{r}{n} f_{B(\mathbf{x},r)} \Delta u(\mathbf{y}) d\mathbf{y} > 0$.
- This is a contradiction, i.e. u is harmonic.

Proposition: (Maximum Principle of Harmonic Functions) Let $u \in C^2(U) \cap C(\overline{U})$ harmonic in U. Then

1. The maximum principle holds:

$$\max_{x \in \overline{U}} u(\mathbf{x}) = \max_{x \in \partial U} u(\mathbf{x}).$$

2. The strong maximum principle holds: is U connected and if a point $x_0 \in U$ exists with

$$u(x_0) = \max_{x \in \overline{U}} u(\mathbf{x}),$$

then u is constant on U.

Idea of proof: Appropriate application of mean value property...

Proposition: (Unique Solvability of Boundary Value Problem) Let $g \in C(\partial U)$ and $f \in C(U)$. Then there is at most one solution $u \in C^2(U) \cap C(\overline{U})$ of the boundary value problem

$$\begin{array}{rcl} -\Delta u & = & f & \text{in } U \\ u & = & g & \text{on } \partial U. \end{array}$$

Proof:

- Assumption: Let u_1 and u_2 be two solutions.
- Then: $w := \pm (u_1 u_2)$ solves the boundary value problem

$$-\Delta w = 0 \quad \text{in } U$$
$$w = 0 \quad \text{on } \partial U.$$

- Maximum principle: It holds: $\pm (u_1 u_2) = w \equiv 0$ on U.
- Thus: $u_1 = u_2$.

Propoerties:

- If a continuous function $u \in C(U)$ on an open set $U \subset \mathbb{R}^n$ satisfies the mean value property for each ball $B(\mathbf{x},r) \subset U$, then u is indefinitely often differentiable $(u \in C^{\infty}(U))$.
- Proposition of Liouville: Let the function $u: \mathbb{R}^n \to \mathbb{R}$ be harmonic and bounded. Then it holds that u is constant on the entire \mathbb{R}^n .
- Bounded Solution of Poisson's Equation: Let $f \in C_c^2(\mathbb{R}^n)$, $n \geq 3$. Then each bounded solution of Poisson's equation $-\Delta u = f$ in \mathbb{R}^n has the form

$$u(\mathbf{x}) = \int_{\mathbb{R}^n} \Phi(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) \ d\mathbf{y} + C$$

with a constant C.

Boundary Value Problems

Definitions: (Dirichlet and Neumann Problem)

• The boundary value problem

$$\begin{array}{rcl} -\Delta u & = & f & \text{in } U \\ u & = & g & \text{on } \partial U \end{array}$$

is called Dirichlet problem of Poisson's equation (resp. of Laplace's equation, if f=0).

• The boundary value problem

$$-\Delta u = f \text{ in } U$$

 $\frac{\partial u}{\partial \mathbf{p}} = g \text{ on } \partial U$

is called Neumann problem of Poisson's (resp. Laplace's) equation. Here ${\bf n}$ is the outer normal at ∂U .

Proposition: Let $u\in C^2(\overline{U})$, $U\subset \mathbb{R}^n$ open set. Then for all $\mathbf{x}\in U$ the relation holds

$$\begin{split} u(x) &=& \int_{\partial U} (\Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \mathbf{n}} (\mathbf{y}) - u(\mathbf{y}) \frac{\partial \Phi}{\partial \mathbf{n}} (\mathbf{y} - \mathbf{x})) \ dS(\mathbf{y}) \\ &-& \int_{U} \Phi(\mathbf{y} - \mathbf{x}) \Delta u(\mathbf{y}) \ d\mathbf{y}. \end{split}$$

The function Φ denotes the fundamental solution of Laplace's equation.

Definitions: (Dirichlet and Neumann Problem)

• The boundary value problem

$$\begin{array}{rcl} -\Delta u & = & f & \text{in } U \\ u & = & g & \text{on } \partial U \end{array}$$

is called Dirichlet problem of Poisson's equation (resp. of Laplace's equation, if f = 0).

• The boundary value problem

$$\begin{array}{cccc} -\Delta u & = & f & \text{in } U \\ \frac{\partial u}{\partial \mathbf{n}} & = & g & \text{on } \partial U \end{array}$$

is called Neumann problem of Poisson's (resp. Laplace's) equation. Here ${\bf n}$ is the outer normal at ∂U .

Proposition: Let $u \in C^2(\overline{U})$, $U \subset \mathbb{R}^n$ open set. Then for all $\mathbf{x} \in U$ the relation holds

$$u(x) = \int_{\partial U} (\Phi(\mathbf{y} - \mathbf{x}) \frac{\partial u}{\partial \mathbf{n}} (\mathbf{y}) - u(\mathbf{y}) \frac{\partial \Phi}{\partial \mathbf{n}} (\mathbf{y} - \mathbf{x})) \ dS(\mathbf{y})$$
$$- \int_{U} \Phi(\mathbf{y} - \mathbf{x}) \Delta u(\mathbf{y}) \ d\mathbf{y}.$$

The function Φ denotes the fundamental solution of Laplace's equation.

Proof: Use Green's formulas from Analysis III.

Application: For solving Laplace's and Poisson's equation: In principle we are able to solve in each point, but we need boundary values for u and also for $\frac{\partial u}{\partial \mathbf{n}}$.

Green's Functions

Definition: (Green's Function) Let $U \subset \mathbb{R}^n$ be open and $\Phi^x(\mathbf{y})$ the solution of Dirichlet's Problem

$$\begin{array}{rcl} \Delta \Phi^x & = & 0 & \mbox{in } U \\ \Phi^x & = & \Phi(\mathbf{y} - \mathbf{x}) & \mbox{on } \partial U. \end{array}$$

Then Green's function G on U is defined by

$$G(\mathbf{x},\mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^x(\mathbf{y}) \quad \mathbf{x},\mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$$

Proposition: (Solution of Dirichlet Problem of Poisson's Equation) Let $u \in C^2(\overline{U})$ be a solution of the Dirichlet problem of Poisson's equation. Then u can be represented as

$$u(\mathbf{x}) = \int_{\mathbf{a} \cup I} g(\mathbf{y}) \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x}, \mathbf{y}) dS(\mathbf{y}) + \int_{I \cup I} f(\mathbf{y})G(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad (\mathbf{x} \in U).$$

 \boldsymbol{f} and \boldsymbol{g} are the right hand side and boundary condition of the Dirichlet problem.

Remarks: (Properties of Green's Function $G(\mathbf{x}, \mathbf{y})$)

- 1. $G(\mathbf{x}, \mathbf{y})$ is harmonic in \mathbf{y} , except for the point $\mathbf{y} = \mathbf{x}$
- 2. $G(\mathbf{x}, \mathbf{y})$ satisfies homogeneous boundary conditions:

$$G(\mathbf{x}, \mathbf{y}) = 0 \quad \forall \mathbf{y} \in \partial U, \mathbf{x} \in U$$

- 3. $G(\mathbf{x}, \mathbf{y})$ is uniquely defined
- 4. $G(\mathbf{x}, \mathbf{y})$ is symmetric:

$$G(\mathbf{x},\mathbf{y}) = G(\mathbf{y},\mathbf{x})$$

Definition: (Green's Function)

Let $U \subset \mathbb{R}^n$ be open and $\Phi^x(\mathbf{y})$ the solution of Dirichlet's Problem

$$\Delta \Phi^x = 0 \text{ in } U$$

$$\Phi^x = \Phi(\mathbf{y} - \mathbf{x}) \text{ on } \partial U.$$

Then Green's function G on U is defined by

$$G(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{y} - \mathbf{x}) - \Phi^{x}(\mathbf{y}) \quad \mathbf{x}, \mathbf{y} \in U, \mathbf{x} \neq \mathbf{y}.$$

Proposition: (Solution of Dirichlet Problem of Poisson's Equation) Let $u \in C^2(\overline{U})$ be a solution of the Dirichlet problem of Poisson's equation. Then u can be represented as

$$u(\mathbf{x}) = \int_{\partial U} g(\mathbf{y}) \frac{\partial G}{\partial \mathbf{n}}(\mathbf{x}, \mathbf{y}) \ dS(\mathbf{y}) + \int_{U} f(\mathbf{y}) G(\mathbf{x}, \mathbf{y}) \ d\mathbf{y} \quad (\mathbf{x} \in U).$$

f and g are the right hand side and boundary condition of the Dirichlet problem.

3

Remarks: (Properties of Green's Function $G(\mathbf{x}, \mathbf{y})$)

- 1. $G(\mathbf{x}, \mathbf{y})$ is harmonic in \mathbf{y} , except for the point $\mathbf{y} = \mathbf{x}$
- 2. $G(\mathbf{x}, \mathbf{y})$ satisfies homogeneous boundary conditions:

$$G(\mathbf{x}, \mathbf{y}) = 0 \quad \forall \mathbf{y} \in \partial U, \mathbf{x} \in U$$

- 3. $G(\mathbf{x}, \mathbf{y})$ is uniquely defined
- 4. $G(\mathbf{x}, \mathbf{y})$ is symmetric:

$$G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x})$$

