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Definition

Definition: (PDE of 2™ Order)
A linear partial differential equation of 2" order in n variables is defined by

n n
Z @ijUgz, + Zb-uz. +fu=g.
i=1

i,j=1

Here the terms a;j, b;, f, and g are functions of x = (z1,..., z,.)T.
The first term in the equation is called main part of the PDE.
Assume w.l.o.g:

a;j(x) = a;i(x), 4,j=1,...,n

Special Case: If a;; = const. for i,j = 1,...,n, the PDE can be written
in matrix form:

(VTAV)u + (b V)u+ fu=g,

with A = (ajj)i j=1,...,.n Symmetric matrix and b = (by,...,by).
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Special Case: If a;; = const. for ¢,5 = 1,...,n, the PDE can be written
In matrix form:

(V'AV)u+ (b'V)u+ fu =g,

with A = (a,ij)i,jzl,u_,n symmetric matrix and b = (bl, ce e bn)




Diagonal Form

o Let the PDE be given in matrix form:
(VT AV)u+ (b7 V)u+ fu

with A = (ay5)i j=1,.. . Symmetric, constant.

Any real, symmetric matrix A can be disgonslized:

D =84S,

where S can be chosen orthogonal

Ansatz: (Derivation of Nermal Forms)
* Use coordinate transformation:
x=Sy ¢ y=§'x
 Set ily) := u(Sy).
o With u(x) = a(S7x) it follows:

o
o2,

® Due to 3% = s, we obtain

* This yieids ~
Vaulx) = $9,4(87x)

o Famally: ¥, = 57,

o Transpose: ¥ = (SV,)7 = V] 87

Definition: (Diagonal Form)

Summary: If u solves the equation
(VTAV)u+ (b V)u+ fu=g,
then for ii we obtain the PDE

(V'STASV)i+ (b"SV)i+ fi=§

Let the PDE of 2™ order (A = (aj;);,j=1..,n constant and symmetric)

(VTAV)u+ (b"V)u+ fu=g.

Then the corresponding dag

1al form of the PDE is given by

(VTDV)i+((STh) V)i + fi=g

with diagonal matrix D = STAS and ST = Id. Here b := b(Sy) and

F) = F(Sy), ) = g(Sy).




Remarks:
e Let the PDE be given in matrix form:
(VITAV)u+ (b V)u+ fu=g,
with A = (a;;)i j=1,....n Symmetric, constant.

([
Any real, symmetric matrix A can be diagonalized:

D =S"148,

where S can be chosen orthogonal




Ansatz: (Derivation of Normal Forms)

e Use coordinate transformation:

x=8y < y=8Tx

e Set u(y) := u(Sy).

e With u(x) = (S Tx) it follows:
du <~ Ou dy;
ox; J; 0y; Oz;

9y _ o . i
Due to 7> = si; we obtain

This yields

Formally: V, =SV,
Transpose: V] = (SV,)T =V, 5"




Summary: If u solves the equation
(VIAV)u + (b'V)u + fu =g,

then for u we obtain the PDE

~

(V'STASV)a+ (b'SV)i+ fi =g



Definition: (Diagonal Form)
Let the PDE of 2" order (A = (a;;)i j=1...n constant and symmetric)

(VTAV)u+ (b'V)u+ fu=g
Then the corresponding diagonal form of the PDE is given by
(VI DV)a+ ((S"b) V)i + fi = §

with diagonal matrix D = STAS and STS = Id. Here b := b(Sy) and
f(¥) = f(Sy), §(y) == g(Sy). Fq )
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Classification

Definition: (Classification of Partial Differential Equations of 2% Order)
Let the PDE of 2° order (4 = (ay)i=1...n constant and symmetric)

(VTAV)u + (b7 V)u + fu=g.
Let Ay,...., A, be the eigenvalues of matrix A

LA # 0 forall i =
called </l

L. and if all A, have equal sign. the equation is

2 1A #0forall i = 1,...,m and if one eigenvalue has different sign to all
other n — 1 eigenvalues, the equation s called hyperbolic.

3. 1f Au = 0 for at least one k € {1,...,n}. the equation is called parat

Example: Consider the PDE of 2 order with two independent variables: Remark: (Extensicn to Noa-Constant Coefficients)

Fu Py P Pu The classification by types can be extended to cases with non-constant coefficients,
g oz (,,“,,‘I + mlm) +angat m 35 illustrated by the following example: Let
b g+ bz g+ vl = ez, @) See — Sy — Sy + 0y =0
2
Th i ix A is g
The diagonal form s given by an the coafficient matrix A is given by
-1
N S R e A=[” I
Mgty + + +fa -1z
Yot o P P
Then the differential equation is The discriminant D is D = 1~ zy. Thus, the equation is
1. eiptic, i Ay -da > 0;

1. parabolic on the hyperbola zy
2. hyperbolic, # My -da <0 2

in both convex domains 2y > 1, and
3. parabolic, if Ay - Ag = 0. 3. hyperbolc in the connected domain xy < 1 9

Question: Why do we classify the equations?
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Definition: (Classification of Partial Differential Equations of 2"¢ Order)
Let the PDE of 2" order (A4 = (@ij)i j=1....n constant and symmetric)

(VITAV)u + (b'V)u + fu=g.

Let A\{,..., )\, be the eigenvalues of matrix A.

1. If \; #0 for all ¢ = 1,...,n and if all \; have equal sign, the equation is
called elliptic.

2. If \; #0 for all ¢ = 1,...,n and if one eigenvalue has different sign to all
other n — 1 eigenvalues, the equation is called hyperbolic.

3. If Ay =0 for at least one k € {1,...,n}, the equation is called parabolic.
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Example: Consider the PDE of 2" order with two independent variables:

Fu (T ) o .
@i Ox? 412 0x20r1 O0x10T2 22 0z3
0 0
b1(z1, 932)8—;1 + b2($1,$2)a—;2 + f(z1, 22)u = g(71,2). (2)

The diagonal form is given by

MO0, T0 5 0 5 00 g
1 Byf 2 8y§ D1 By p2 By = 9.

Then the differential equation is
1. elliptic, if A1 - Ao > 0;
2. hyperbolic, if A1 - A2 < 0;
3. parabolic, if A1 - Ao = 0.
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Remark: (Extension to Non-Constant Coefficients)
The classification by types can be extended to cases with non-constant coefficients,

as illustrated by the following example: Let
YlUge — Ugy — Uyz + TUyy = 0.

Then the coefficient matrix A is given by

A:[_yl ;1].

The discriminant D is D = 1 — xy. Thus, the equation is
1. parabolic on the hyperbola zy =1,
2. elliptic in both convex domains zy > 1, and E

3. hyperbolic in the connected domain zy < 1.
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Question: Why do we classify the equations?
Answer: Because each type shows a characteristic solution behavior!
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ormal Forms

Definition: (Normal Forms of Partial Differential Equations of 2 Order)
1. The normal form of an elliptic PDE in n variables X = (z1,...,2,)7 is

Aut Y b + fu=g.

~

. The normal form of a hyperbolic PDE in n+1 variables (X, £) = (1,..., 2, )7
is

e = Du+ Y by, + fu=g.
=

w

. The normal form of a parabolic PDE in n+1 variables (x,t) = (z1,...,2n,)7
s -
Au+ byug + Zb.u,_ +fu=g.

Examples:
1. The elliptic Laplace equation
Au=0.
2. The hyperbolic wave equation
uy — Au=0.
3. The parabolic heat equation
uy = Au.
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Definition: (Normal Forms of Partial Differential Equations of 2"¢ Order)

1. The normal form of an elliptic PDE in n variables x = (z1,...,z,)" is

Au + Zbiumi + fu=g.

=1

2. The normal form of a hyperbolic PDE in n+1 variables (x,t) = (z1,...,Zn,t)"

is
Uy — Au + Zbiumi + fu=g.
i=1
3. The normal form of a parabolic PDE in n+1 variables (x,t) = (z1,...,Tn,t)"
is

Au + bous + Z biug, + fu=g.

1=1

17.



Examples:

1. The elliptic Laplace equation
Au

|
—

2. The hyperbolic wave equation

Ut — Au = 0.

3. The parabolic heat equation
Uy = Au.
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Well-Posedness

Definition: (Well-Posed Problem)
Acor § problem (or well-pose ) consists of

* 3 partial differential equation, defined on a domain, and
3 3et of initial and/or boundary conditions,
such that the following properties are fulfilled

1. Exi There exists at least one solution, that fulfils all above conditions:
2. Uniqueness: The solution is unique;
3. Stabiity. The solution depends cont. on the initial/boundary conditions

e

Example: (Well-Posed Wave Equation) Example: (Hadamard)
The intial value problem for the one-dimensional wave equation The initial value problem for the PDE
uee =0 in [0,00[xR ) Upr + Uy =0 in B?
on {t=0} xR @ u=f onRx{y=
= ¥=0,
w=g on{t=0}xR @ fv=0}

uy=g onRx {y=0)
is 3 well-posed hyperbolic problem.

. . . is not a well-posed elliptic problem!
 The uniquely determined solution is given by the representation by d Alembert

uft,z) = ; ([(x —el)+ flrtet)+ : /‘ij;,g(:'dx),

© The solution depends continuously on the data, since

Ju =il £ 1f = Flloo + tllg = Gl

Example: (Laplace Equation)
The boundary value problem for the two-dimensional Laplace equatic

Usz HUyy = 0 in{{z.y) R} :aP 4P <1}
u = g on{lzy) eR*:a? +y* =1}
is a well-posed elliptic problem.
The unique solution is given by Poisson’s integ
1-22 -y 9(z)
z,y) = —5—2 s
v 2 at=1 llx = 2

(1)

3)
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Definition: (Well-Posed Problem)
A correctly posed problem (or well-posed problem) consists of

e a partial differential equation, defined on a domain, and
e a set of initial and/or boundary conditions,
such that the following properties are fulfilled:
1. Existence: There exists at least one solution, that fulfills all above conditions;
2. Uniqgueness: The solution is unique;

3. Stability: The solution depends cont. on the initial/boundary conditions

©
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Example: (Well-Posed Wave Equation)
The initial value problem for the one-dimensional wave equation

Ugg — CUgy = 0 in [0, 00[xR
u=f on{t=0} xR
ug=g9 on{t=0} xR (3)

~~
N =
N N

is a well-posed hyperbolic problem.

e The uniquely determined solution is given by the representation by d'Alembert:
xr+ct

u(t,z) = % (f(x—ct) + f(z+ ct) +%/

x—ct

g(z)dz) .

e The solution depends continuously on the data, since

lu=lloo < [If = Flloo +tlg = Glloo-
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Example: (Hadamard)
The initial value problem for the PDE

Ugg + Uyy = 0 1IN R?
u=f onRx{y=0}
uy =g onRx {y=0}

is not a well-posed elliptic problem!

o~ o~
N =
~ —r
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Reasoning:

e Set f(x) = g(x) = 0, then the unique solution is given by

u(z,y) = 0.

e On the other hand, if f,(z) = 0 and g,(z) = Lsin(nz), for n € N, the

- - E
solution is ’
Un(T,y) = — sin(nz) sinh(ny)
n

e We have
lim f,=f=0 and li_)m gn=9=20

n—oo

1
n2

e But, since lim,,_,, -7 sinh(ny) = co (y # 0), we have

lim wu, # u,
n—oo

thus the solution does not depend continuously on the data!
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Example: (Laplace Equation)
The boundary value problem for the two-dimensional Laplace equation

Upy +Uyy, = 0 in{(z,y) eR?:2* +9* <1}
u = g on{(z,y) eR*: 2% +¢y* =1}

is a well-posed elliptic problem.
The unique solution is given by Poisson’s integral form:

- 12—y 9(z)
(z,y) ]ﬁ

27 2l|=1 ||x — 2|
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