Recap

The second secon

Advance in the color of the col

Proposition (The time Regions constrain) $Y = x_1(x) + x + 2xx +$

The formal observables $u_t = f(u)_t = 0 \qquad \text{in } \mathbb{R} = [0, \infty[$ $u = u_0 \qquad \text{on } \mathbb{R} = [0, \infty[$ with discretinates within conditions $u_0(x) = \begin{cases} u_t : & z \leq 0 \\ u_t : & z > 0 \end{cases}$

Integral Solution and Entropy Condition

Formula: (Our iso they are Continue to Brayer (Earth Continue) for the Section (Continue to Brayer) (Earth Continue) for the Section (Earth Continue) for the Sectio

Differential Equations II

Integral Solutions and Entropy Condition

Recap

Example: (Burgers' Equation) Burgers' Gleichung is given by the flux function $f(u) = \frac{u^2}{2}$, resp. by the Cauchy membles

The solution
$$a_1 = a_2 = 0$$
 in $B(x)[0, \infty[$

• The solution a_1 give by $a_2[1] = a_2 + a_1[a_2]$

• If a_1 is given by
$$a_2[x] = \begin{cases} 1 & 1 \le x \le a_1 \\ 0 & 1 \le x \le a_2 \end{cases}$$

$$a_3[x] = \begin{cases} 1 & 1 \le x \le a_2 \\ 0 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \\ 0 & 1 \le x \le a_2 \end{cases}$$
then $x(t)$ develop x is injustice to the only broad for $0 \le t \le t$.

• A densitie deviation for $x \in [0, 1]$ is
$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \\ 0 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2 \end{cases}$$

$$a_4[x] = \begin{cases} 1 & 1 \le x \le a_2$$

Proposition: (Rankine-Hugoniot condition) If x=s(t) is a shock front of a shock wave solution of $u_t+f(u)_x=0$, then for the shock speed $\dot{s}(t)$ the Rankine-Hugoniot condition holds:

$$\dot{s} = \frac{[f]}{[u]} = \frac{f(u(s(t)^-,t)) - f(u(s(t)^+,t))}{u(s(t)^-,t) - u(s(t)^+,t)} = \frac{f(u_l) - f(u_r)}{u_l - u_r}.$$

Definition: (weak solution) A function $u\in L^\infty(\mathbb{R}\times[0,\infty[)$ is called integral solution or weak solution of the conservation law $u_t+f(u)_x=0$, if for all test functions v:

$$\int_0^\infty \int_{-\infty}^\infty (uv_t+f(u)v_x)\ dxdt + \int_{-\infty}^\infty u_0(x)v(x,0)\ dx = 0.$$

Definition: (Riemann problem)

$$\begin{array}{lll} u_t + f(u)_x = & 0 & & \text{in } \mathbb{R} \times]0, \infty[\\ & u = & u_0 & & \text{on } \mathbb{R} \times \{t=0\} \end{array}$$

with discontinuous initial conditions

$$u_0(x) = \begin{cases} u_l : x \leq 0 \\ u_r : x > 0 \end{cases}$$

is called Riemann problem for the scalar conservation law.

Definition: (shock wave solution) A shock wave solution u is a weak solution of the conservation law

 $u_t + f(u)_x = 0$

if a shock front x=s(t), $s\in C^1$ exists, such that u is a classical solution for each x< s(t) and x>s(t) and u has a jump at x=s(t) with height

 $[u](t) = u(s(t)^+, t) - u(s(t)^-, t) = u_r - u_t.$

 $\dot{s}(t)$ is called shock speed.

Example: (Burgers' Equation)

Burgers' Gleichung is given by the flux function $f(u)=\frac{u^2}{2}$, resp. by the Cauchy problem

$$u_t + uu_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ on $\mathbb{R} \times \{t = 0\}$

- The solution is given by $u(t) = x_0 + tu_0(x_0)$.
- If u_0 is given by

$$u_0(x) = \begin{cases} 1 & : & x \le 0 \\ 1 - x & : & 0 < x < 1 \\ 0 & : & x \ge 1 \end{cases}$$

then x(t) develops a singularity for $t \to 1$.

- A classical solution of Burgers' equation exists only locally for $0 \le t < 1$.
- The local solution for $t \in [0,1[$ is:

$$u(x,t) = \begin{cases} 1 : x < 1 \\ \frac{(1-x)}{(1-t)} : 0 \le t \le x \le 1 \\ 0 : x > 1 \end{cases}$$

Definition: (weak solution)

A function $u \in L^{\infty}(\mathbb{R} \times [0, \infty[))$ is called integral solution or weak solution of the conservation law $u_t + f(u)_x = 0$, if for all test functions v:

$$\int_0^\infty \int_{-\infty}^\infty (uv_t + f(u)v_x) \ dxdt + \int_{-\infty}^\infty u_0(x)v(x,0) \ dx = 0.$$

Remarks:

- A weak solution needs not be differentiable function!
- It even can have a jump.

Definition: (Riemann problem) The initial value problem

$$u_t + f(u)_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ on $\mathbb{R} \times \{t = 0\}$

with discontinuous initial conditions

$$u_0(x) = \begin{cases} u_l & : & x \le 0 \\ u_r & : & x > 0 \end{cases}$$

is called Riemann problem for the scalar conservation law.

Definition: (shock wave solution)

A shock wave solution u is a weak solution of the conservation law

$$u_t + f(u)_x = 0$$

if a shock front x=s(t), $s\in C^1$ exists, such that u is a classical solution for each x< s(t) and x>s(t) and u has a jump at x=s(t) with height

$$[u](t) = u(s(t)^+, t) - u(s(t)^-, t) = u_r - u_l.$$

 $\dot{s}(t)$ is called shock speed.

Proposition: (Rankine-Hugoniot condition)

If x = s(t) is a shock front of a shock wave solution of $u_t + f(u)_x = 0$, then for the shock speed $\dot{s}(t)$ the Rankine-Hugoniot condition holds:

$$\dot{s} = rac{[f]}{[u]} = rac{f(u(s(t)^-,t)) - f(u(s(t)^+,t))}{u(s(t)^-,t) - u(s(t)^+,t)} = rac{f(u_l) - f(u_r)}{u_l - u_r}.$$

Integral Solution and Entropy Condition

```
Example: (Bankine Hagosiat Condition for Burger: Equation)
Consider Program Equation is -1 = 0.00 in -1.00 and -1.00 in -1.0
```

Example: (Rankine-Hugoniot Condition for Burgers' Equation) Consider Burgers' Equation $u_t + uu_x = 0$ in $\mathbb{R} \times]0, \infty[$ and $u(x, t = 0) = x_0$. Let

$$u_0(x) = \begin{cases} u_l & : & x \le 0 \\ u_r & : & x > 0 \end{cases} \quad \text{with } u_l > u_r.$$

The Rankine-Hugoniot condition can be written:

$$\dot{s} = \frac{[f]}{[u]} = \frac{\frac{u_l^2}{2} - \frac{u_r^2}{2}}{u_l - u_r} = \frac{(u_l + u_r)(u_l - u_r)}{2(u_l - u_r)} = \frac{1}{2}(u_l + u_r).$$

Therefore, the shockwave solution of the Riemann problem is

$$u(x,t) = \begin{cases} u_l : & x \le \frac{1}{2}(u_l + u_r)t \\ u_r : & x > \frac{1}{2}(u_l + u_r)t \end{cases}$$

Example: (Rankine-Hugoniot Condition for Burgers' Equation) Consider Burgers' Equation $u_t + uu_x = 0$ in $\mathbb{R} \times]0, \infty[$ and $u(x, t = 0) = x_0$. Let

$$u_0(x) = \begin{cases} u_l & : & x \le 0 \\ u_r & : & x > 0 \end{cases} \quad \text{with } u_l > u_r.$$

The Rankine-Hugoniot condition can be written:

$$\dot{s} = \frac{[f]}{[u]} = \frac{\frac{u_l^2}{2} - \frac{u_r^2}{2}}{u_l - u_r} = \frac{(u_l + u_r)(u_l - u_r)}{2(u_l - u_r)} = \frac{1}{2}(u_l + u_r).$$

Therefore, the shockwave solution of the Riemann problem is

$$u(x,t) = \begin{cases} u_l : & x \le \frac{1}{2}(u_l + u_r)t \\ u_r : & x > \frac{1}{2}(u_l + u_r)t \end{cases}$$

Rarefaction Wave:

Consider the Riemann problem with Burgers' equation $u_t + uu_x = 0$ in $\mathbb{R} \times]0, \infty[$ and $u(x,t=0) = x_0$. Let

$$u_0(x) = \left\{ \begin{array}{ll} u_l & : & x \leq 0 \\ u_r & : & x > 0 \end{array} \right. \quad \text{with } u_l < u_r.$$

Furthermore, let $f \in \mathcal{C}^2(\mathbb{R})$ and f'' > 0, i.e. the flux function is *strictly convex*. Set $g := (f')^{-1}$.

Remarks:

- By assumption f' > 0, so it holds: $u_l < u_r \implies f'(u_l) < f'(u_r)$.
- There are exactly two types of characteristics:

$$x(t) = x_0 + f'(u_l)t$$
 and $x(t) = x_0 + f'(u_r)t$.

- The family of curves does not fill the whole of $\mathbb{R} \times \mathbb{R}^+!$
- The area of

$$\Omega = \{(x.t) \in \mathbb{R} \times \mathbb{R}^+ : f'(u_l)t < x < f'(u_r)t\}$$

is not covered; here an arbitrary integral solution could hold!

Remarks:

- By assumption f' > 0, so it holds: $u_l < u_r \implies f'(u_l) < f'(u_r)$.
- There are exactly two types of characteristics:

$$x(t) = x_0 + f'(u_l)t$$
 and $x(t) = x_0 + f'(u_r)t$.

- ullet The family of curves does not fill the whole of $\mathbb{R} \times \mathbb{R}^+!$
- The area of

$$\Omega = \{(x.t) \in \mathbb{R} \times \mathbb{R}^+ : f'(u_l)t < x < f'(u_r)t\}$$

Proposition: (Rarefaction Wave)

Let the Riemann problem with Burgers' equation $u_t + uu_x = 0$ in $\mathbb{R} \times]0, \infty[$ and $u(x,t=0) = x_0$ be given. Let

$$u_0(x) = \begin{cases} u_l & : & x \le 0 \\ u_r & : & x > 0 \end{cases} \quad \text{with } u_l < u_r.$$

Then the rarefaction wave is given by

$$u(x,t) = \begin{cases} u_l : & x < f'(u_l)t \\ g(\frac{x}{t}) : & f'(u_l)t \le x \le f'(u_r)t \\ u_r : & x > f'(u_r)t \end{cases}$$

an integral solution of the Riemann problem.

Remark: Specifically, the rarefaction wave is a continuous function.

1

Problem: Integral solutions are not unique!

Example: Consider the Riemann problem of Burgers' equation with initial conditions

$$u_0(x) = \begin{cases} 0 : x \le 0 \\ 1 : x > 0 \end{cases}$$

Both integral solutions hold

$$u_1(x,t) = \begin{cases} 0 : x \leq \frac{t}{2} \\ 1 : x > \frac{t}{2} \end{cases}$$
 (shock wave)

and

$$u_2(x,t) = \begin{cases} 0 : x < 0 \\ \frac{x}{t} : 0 \le x \le t \\ 1 : x > t \end{cases}$$
 (rarefaction wave)

Question: Which is the physically correct solution?

Idea: An additional condition choses the right integral solution.

Question: Which is the physically correct solution?

Idea: An additional condition choses the right integral solution.

Definition: (Entropy Condition)

An integral solution is called entropy solution, if the solution fulfills the entropy condition or Lax-Oleinik condition:

There exists C>0, such that for all $x,z\in\mathbb{R}$, t>0 with z>0 it holds:

$$u(t, x + z) - u(t, x) < \frac{C}{t}z.$$

Remark: Named after Olga A. Oleinik (1925-2001) and Peter D. Lax (*1926)

Proposition: (Uniqueness of the Entropy Solution)
If an integral solution satisfies the entropy condition, then this solution is unique.

Entropy solutions are unique solutions.

Recap

Proposition (Parlimo Regions construct) $\{1+\alpha_1(t) \mid t \mid \text{death form of a death construction of } t_1+\beta_1(t_1-t_2) \text{ than the extension of } t_2+\beta_2(t_1-t_2) \text{ than the extension of } t_3+\beta_2(t_1-t_2) \text{ than the extension of } t_3+\beta_2(t_$

The billion of the problem $u_0 + f[u]_d = 0 \qquad \text{in } \mathbb{R} \times [0, \infty]$ $u = u_0 \qquad \text{on } \mathbb{R} \times [0, \infty]$ with discontinuous initial conditions $u_0[x] = \left\{ \begin{array}{ll} u_0 & : & x \leq 0 \\ u_1 & : & x > 0 \end{array} \right.$

Mathematical (Asia) was winted $A = 2 \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{$

Integral Solution and Entropy Condition

