Differential Equations II

Method of Characteristics for non-linear Equations

Definition: (Characteristic System of Differential Equations) Let the scalar linear homogeneous PDE of $1^{\rm st}$ order

$$\sum_{i=1}^{n} a_i(\mathbf{x})u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n$$

be given. Then the autonomous system of ODEs $\,$

$$\dot{\mathbf{x}}(t) = \mathbf{a}(\mathbf{x}(t))$$

is the characteristic system of differential equations (CSDE) of the PDE. Solution methods, using the CSDE are called Methods of Characteristics.

$$\frac{d}{dt}u(\mathbf{x}(t)) = \sum_{i=1}^{n} a_i(\mathbf{x}(t))u_{x_i}(\mathbf{x}(t)) = 0$$

$$\sum_{i=1}^{n} a_{i}(\mathbf{x}, u) u_{x_{i}} = b(\mathbf{x}, u), \quad \mathbf{x} \in \mathbb{R}^{*}$$

$$\sum_{i=1}^{n} a_i(\mathbf{x}, u)U_{x_i} + b(\mathbf{x}, u)U_u = 0$$

 $\textbf{Definition:} \ (\mathsf{Cauchy Problem})$ For time-dependent equations with time variable $t \in I = [0, \infty[$ and spatial variables $\mathbf{x} \in \mathbb{R}^n$ consider the initial value problem defined on the whole of $\mathbb{R}^n \times I$

$$\begin{split} u_t + \sum_{i=1}^n a_i(\mathbf{x},t,u) u_{x_i} &= b(\mathbf{x},t,u) \quad \text{in } \mathbb{R}^n \times I \\ u &= u_0 \quad \text{on } \mathbb{R}^n \times \{t=0\} \end{split}$$

This problem is called Cauchy-Problem.

Example: (Transport Equation)
The transport equation

$$u_t + \mathbf{a} \cdot \nabla u = u_t + \sum_{i=1}^{n} a_i u_{x_i} = 0$$

 $u(\mathbf{x}, 0) = u_0(\mathbf{x})$

with $(\mathbf{x},t) \in \mathbb{R}^n \times I$ has the CSDE

$$\dot{t}(\tau) = 1, \ \dot{x}_1(\tau) = a_1, \dots, \dot{x}_n(\tau) = a_n.$$

With $t=\tau$ the n equations $\dot{x}_i(t)=a_i$ remain. Thus, the solution is a linear system of the form

Elimination to \mathbf{x}_0 and substitution of initial values yields the solution

 $u(\mathbf{x}, t) = u_0(\mathbf{x} - \mathbf{a}t).$

Definition: (Characteristic System of Differential Equations) Let the scalar linear homogeneous PDE of 1^{st} order

$$\sum_{i=1}^{n} a_i(\mathbf{x}) u_{x_i} = 0, \quad \mathbf{x} \in \mathbb{R}^n$$

be given. Then the autonomous system of ODEs

$$\dot{\mathbf{x}}(t) = \mathbf{a}(\mathbf{x}(t))$$

is the characteristic system of differential equations (CSDE) of the PDE. Solution methods, using the CSDE are called Methods of Characteristics.

Remarks: (Method of Characteristics)

 By means of the characteristic system of differential equations (CSDE) we obtain:

$$\frac{d}{dt}u(\mathbf{x}(t)) = \sum_{i=1}^{n} a_i(\mathbf{x}(t))u_{x_i}(\mathbf{x}(t)) = 0$$

and thus $u(\mathbf{x}(t)) = \text{const.}$. This solution is called first integral.

• This solution methods can be applied to quasi-linear inhomogeneous PDEs

$$\sum_{i=1}^{n} a_i(\mathbf{x}, u) u_{x_i} = b(\mathbf{x}, u), \quad \mathbf{x} \in \mathbb{R}^n$$

by considering the extended problem

$$\sum_{i=1}^{n} a_i(\mathbf{x}, u) U_{x_i} + b(\mathbf{x}, u) U_u = 0$$

for $U = U(\mathbf{x}, u)$.

Definition: (Cauchy Problem)

For time-dependent equations with time variable $t \in I = [0, \infty[$ and spatial variables $\mathbf{x} \in \mathbb{R}^n$ consider the initial value problem defined on the whole of $\mathbb{R}^n \times I$

$$u_t + \sum_{i=1}^n a_i(\mathbf{x}, t, u) u_{x_i} = b(\mathbf{x}, t, u) \text{ in } \mathbb{R}^n \times I$$
$$u = u_0 \text{ on } \mathbb{R}^n \times \{t = 0\}$$

This problem is called Cauchy-Problem.

Example: (Transport Equation)

The transport equation

$$u_t + \mathbf{a} \cdot \nabla u = u_t + \sum_{i=1}^n a_i u_{x_i} = 0$$
$$u(\mathbf{x}, 0) = u_0(\mathbf{x})$$

with $(\mathbf{x},t) \in \mathbb{R}^n \times I$ has the CSDE

$$\dot{t}(\tau) = 1, \ \dot{x}_1(\tau) = a_1, \dots, \dot{x}_n(\tau) = a_n.$$

With $t=\tau$ the n equations $\dot{x}_i(t)=a_i$ remain. Thus, the solution is a linear system of the form

$$\mathbf{x}(t) = \mathbf{x}_0 + \mathbf{a} \cdot t.$$

Elimination to \mathbf{x}_0 and substitution of initial values yields the solution

$$u(\mathbf{x},t) = u_0(\mathbf{x} - \mathbf{a}t).$$

Burgers Equation

$$u_t + txu_x = 0$$
 in $\mathbb{R} \times]0, \infty[$
 $u(x, 0) = \sin(x)$ auf $\mathbb{R} \times \{t = 0\}$

- Characteristic equation: $\dot{x}=tx,\ x(0)=x_0.$
- Solution of characteristic equation: $x(t) = x_0 \exp\left(\frac{t^2}{2}\right)$
- $\bullet \ \ \, {\rm Solution \ of \ IVP:} \ u(x,t)=\sin\left[x\exp\left(-\frac{t^2}{2}\right)\right].$

Example: (non-linear scalar conservation law)
The following Cauchy problem represents a non-linear scalar consespatial dimension.

$$u_t + f(u)_x = 0$$
 in $\mathbb{R} \times]0, \infty[$
 $u = u_0$ auf $\mathbb{R} \times \{t = 0\}$

- f = f(u) given is called flux function.
- This PDE is quasi-linear, since it can be written as

Example: (Burgers' Equation) Burgers' Gleichung is given by the flux function $f(u)=\frac{u^2}{2}$, resp. by the Cauchy problem

- The solution is given by u(t) = x₀ + tu₀(x₀).
- If u_0 is given by

$$u_0(x) = \begin{cases} 1 & : & x \le 0 \\ 1 - x & : & 0 < x < 1 \\ 0 & : & x \ge 1 \end{cases}$$

then x(t) develops a singularity for $t \rightarrow 1$.

- A classical solution of Burgers' equation exists only locally for $0 \leq t < 1.$
- The local solution for $t \in [0,1[$ is:

$$u(x,t) = \begin{cases} 1 : x < 1 \\ \frac{(1-x)}{(1-t)} : 0 \le t \le x \le 1 \\ 0 : x > 1 \end{cases}$$

Conclusion: The scalar conservation law given by the Cauchy problem

$$u_{\varepsilon} + f(u)_x = 0$$
 in $\mathbb{R} \times [0, \infty[$
 $u = u_0$ auf $\mathbb{R} \times \{t = 0\}$

in general does not have a global solution.

Example:

In comparison to the transport equation we increase the complexity slightly, by choosing $\mathbf{a} = t\mathbf{x}$. Consider this equation now in $\mathbb{R} \times I$:

$$u_t + txu_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u(x,0) = \sin(x)$ auf $\mathbb{R} \times \{t=0\}$

- Characteristic equation: $\dot{x} = tx$, $x(0) = x_0$.
- Solution of characteristic equation: $x(t) = x_0 \exp\left(\frac{t^2}{2}\right)$
- Solution of IVP: $u(x,t) = \sin\left[x\exp\left(-\frac{t^2}{2}\right)\right]$.

Example: (non-linear scalar conservation law)

The following Cauchy problem represents a non-linear scalar conservation law in one spatial dimension.

$$u_t + f(u)_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ auf $\mathbb{R} \times \{t = 0\}$

- f = f(u) given is called flux function.
- This PDE is quasi-linear, since it can be written as

$$u_t + a(u)u_x = 0$$

with
$$a(u) = f'(u)$$
.

• a(u) can be called local dispersion velocity.

Example: (Burgers' Equation)

Burgers' Gleichung is given by the flux function $f(u)=\frac{u^2}{2}$, resp. by the Cauchy problem

$$u_t + uu_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ on $\mathbb{R} \times \{t = 0\}$

- The solution is given by $u(t) = x_0 + tu_0(x_0)$.
- If u_0 is given by

$$u_0(x) = \begin{cases} 1 & : & x \le 0 \\ 1 - x & : & 0 < x < 1 \\ 0 & : & x \ge 1 \end{cases}$$

then x(t) develops a singularity for $t \to 1$.

- A classical solution of Burgers' equation exists only locally for $0 \le t < 1$.
- The local solution for $t \in [0, 1]$ is:

$$u(x,t) = \begin{cases} 1 & : & x < 1 \\ \frac{(1-x)}{(1-t)} & : & 0 \le t \le x \le 1 \\ 0 & : & x > 1 \end{cases}$$

Conclusion: The scalar conservation law given by the Cauchy problem

$$u_t + f(u)_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ auf $\mathbb{R} \times \{t = 0\}$

in general does not have a global solution.

Question: what happens for $t \geq 1$, i.e. behind the singularity?

General Scalar Conservation Law

Definition: (compact support)

The support of a function $f:\mathbb{R}^n \to \mathbb{R}$ is the set

$$\operatorname{supp}(f) := \overline{\{x \in \mathbb{R}^n : f(x) \neq 0\}}.$$

If supp(f) is a compact set, then we have a function with compact support.

2

Remarks:

- Many differentiable functions have compact support.
- They are important in theory and numerics of PDEs.

Remark: (test function)

- Let $v: \mathbb{R} \times [0\infty[\to \mathbb{R}]$ differentiable function with compact support.
- Consider a scalar conservation law $u_t + f(u)_x = 0$, multiply with v and integrate (by parts):

$$0 = \int_0^\infty \int_{-\infty}^\infty (u_t + f(u)_x) v \, dx dt$$
$$= -\int_0^\infty \int_{-\infty}^\infty uv_t \, dx dt - \int_{-\infty}^\infty u(x,0) v(x,0) \, dx - \int_0^\infty \int_{-\infty}^\infty f(u) v_x \, dx dt.$$

• Initial conditions $u(x,0) = u_0(x)$ yield

$$\int_0^\infty \int_{-\infty}^\infty (uv_t + f(u)v_x) \ dxdt + \int_{-\infty}^\infty u_0(x)v(x,0) \ dx = 0.$$

Such function v is called test function.

Definition: (weak solution)

A function $u \in L^{\infty}(\mathbb{R} \times [0, \infty[)$ is called integral solution or weak solution of the conservation law $u_t + f(u)_x = 0$, if for all test functions v:

$$\int_0^\infty \int_{-\infty}^\infty (uv_t + f(u)v_x) \ dxdt + \int_{-\infty}^\infty u_0(x)v(x,0) \ dx = 0.$$

Remarks:

- A weak solution needs not be differentiable function!
- It even can have a jump.

Definition: (Riemann problem)

The initial value problem

$$u_t + f(u)_x = 0$$
 in $\mathbb{R} \times]0, \infty[$ $u = u_0$ on $\mathbb{R} \times \{t = 0\}$

with discontinuous initial conditions

$$u_0(x) = \begin{cases} u_l & : \quad x \le 0 \\ u_r & : \quad x > 0 \end{cases}$$

is called Riemann problem for the scalar conservation law. [3]

Definition: (shock wave solution)

A shock wave solution u is a weak solution of the conservation law

$$u_t + f(u)_x = 0$$

if a shock front x=s(t), $s\in C^1$ exists, such that u is a classical solution for each x< s(t) and x>s(t) and u has a jump at x=s(t) with height

$$[u](t) = u(s(t)^+, t) - u(s(t)^-, t) = u_r - u_l.$$

 $\dot{s}(t)$ is called shock speed.

Proposition: (Rankine-Hugoniot condition)

If x = s(t) is a shock front of a shock wave solution of $u_t + f(u)_x = 0$, then for the shock speed $\dot{s}(t)$ the Rankine-Hugoniot condition holds:

$$\dot{s} = rac{[f]}{[u]} = rac{f(u(s(t)^-,t)) - f(u(s(t)^+,t))}{u(s(t)^-,t) - u(s(t)^+,t)} = rac{f(u_l) - f(u_r)}{u_l - u_r}.$$

4

Burgers Equation

The second section of the section