Differential Equations li

Method of Characteristics for
non-linear Equations




Recap

Definition: (Ci istic System of Di
Let the scalar linear homogeneous PDE of 1% order

Zu,-(x)u,, =0, xeR"
=
be given. Then the autonomous system of ODEs

x(t) = a(x(t))

is the characteristic system of differential equations (CSDE) of the PDE.
Solution methods, using the CSDE are called Methods of Characteristics,

Definition: (Cauchy Problem)
For time-dependent equations with time variable & 1 = [0, 5o[ and spatial variables
X € R™ consider the initial value problem defined on the whole of R™ x I
U+ Y ailx tujuy, = blx.tu) inR"x I
=

u o= up onR®x {t=0}
This problem is called Cauchy-Problem.

Example (Trarsport Equation)
The transport equation
u(x,0) = wlx)
with (x.f) € R™ x I has the CSDE
f(r) =1, &alr) = a,....Fa(r) = @,

With t = 7 1) = a; remain. Thus. the solution i 3 linear system
of the form

(1) = xg b mt.
Elimination to x; and substitution of initial values yields the solution




Definition: (Characteristic System of Differential Equations)
Let the scalar linear homogeneous PDE of 1% order

Z a;(x)uy, =0, xeR"
i=1

be given. Then the autonomous system of ODEs

is the characteristic system of differential equations (CSDE) of the PDE.
Solution methods, using the CSDE are called Methods of Characteristics.




Remarks: (Method of Characteristics)

e By means of the characteristic system of differential equations (CSDE) we
obtain:

%“(X(t” =D ai(x(t))uz, (x(t) = 0

and thus u(x(t)) = const.. This solution is called first integral.

e This solution methods can be applied to quasi-linear inhomogeneous PDEs
Z a;(x,u)u,, = b(x,u), xe€R"
i=1
by considering the extended problem

Zai(x, w)Uy, + b(x,u)U, =0

=1

for U =U(x,u).




Definition: (Cauchy Problem)
For time-dependent equations with time variable t € I = [0, oo[ and spatial variables
x € R™ consider the initial value problem defined on the whole of R™ x [

ut + Z a;(x,t,u)uy,, = b(x,t,u) inR" x [
i=1
u = wug onR"x{t=0}

This problem is called Cauchy-Problem.




Example: (Transport Equation)
The transport equation

us+a-Vu = ut+Zaiumi =0
i=1

u(x,0) = wug(x)
with (x,t) € R™ x I has the CSDE
t(r) =1, 1(17) = a1,...,Zn(T) = an.

With t = 7 the n equations %;(t) = a; remain. Thus, the solution is a linear system

of the form
x(t) =xp+a-t.

Elimination to xg and substitution of initial values yields the solution

u(x,t) = ug(x — at).




Burgers
Equation

Example: (non-linear scalar conservation law)
The folowing Cauchy problem represents a non-linear 5ca
spatial dimension

Example.
In comparisan to the transport equation we increase the compleity sightly, by
choosing a = tx. Consider this equation now in R x I wflwe= 0 inRx]0,00[
wettru = 0 in RxJ0, 00| u= uw aufRx{t=0}
wl0) = sin(z) - auf R0} © f = f(u) given is called flux functior

¢ Claractuitic squation: & =4z, 2(0) = 2. o This PDE is quasi-inear, since it can be written a5

© Solution of characteristic equation: x(t) = zoexp (§
(%) et alu)uy =0

o Solution of VP ur, ) = sin [zexp (-5 )] with a(u) = f'(u).
o alu) can be called local d

Example: (Burgers’ Equation)
8 Gleichung s given by the flux function f(u) = * , resp. by the Cauchy
problem
0 in Rx]0,00] e
on R x {t=0}

o The solution is given by u(t) = 2, + tug(zo).

® If ug is given by
1: x20
w(r)={ 1-x : 0<z<l

0 x=1
then (1) develops a singularity for ¢ — 1
o A classical solution of Burgers' equation exists only focally for 0 < t < 1
o The local solution for ¢ & [0, 1] is:

1 z<t
u(rf) =4 G35 o<tz
0 z>1

Condlusion: The scalar conservation law given by the Cauchy problem
0 inRxjo,oc]

ue + flu)e
W auf Rx (1=0}

in general does not have 3 global solution.

Question: v

s in one.




Example:
In comparison to the transport equation we increase the complexity slightly, by
choosing a = tx. Consider this equation now in R x I:

ut + txug = 0 in Rx]0, oo
u(x,0) = sin(z) auf R x {t =0}

e Characteristic equation: & = tz, z(0) = xo.

: - : 2
e Solution of characteristic equation: z(t) = zexp (%)

e Solution of IVP: u(z,t) = sin [:1: exp (—%)]




Example: (non-linear scalar conservation law)
The folowing Cauchy problem represents a non-linear scalar conservation law in one
spatial dimension.

ut + f(u)g = 0 in Rx]0, o0
u= g auf R x {t =0}

o f = f(u) given is called flux function.

e This PDE is quasi-linear, since it can be written as
us + a(u)ug, =0

with a(u) = f'(u).
e a(u) can be called local dispersion velocity. o
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Example: (Burgers' Equation)
Burgers' Gleichung is given by the flux function f(u) = :

%, resp. by the Cauchy§
problem

U +uu, = 0 in Rx]0, oo
u= g on R x {t =0} )

httpa n
Projecten/BWN/lemmata/bwnS/burgers

Jan M. Burgers (1896-1981)

e The solution is given by u(t) = xg + tug(xo).

e If ug is given by

1 : =<0
u(z)=<¢ 1—z : 0<z<l1
0 : z>1

then x(t) develops a singularity for ¢ — 1.

t=%

t>1

e A classical solution of Burgers' equation exists only locally for 0 < ¢ < 1.

e The local solution for ¢t € [0, 1] is:

1 r<l1
u(z,t) =4 G 0<t<z<1
0 z>1
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Conclusion: The scalar conservation law given by the Cauchy problem

us + f(u)z = 0 in Rx]0, oo
U= U auf R x {t =0}

in general does not have a global solution.

Question: what happens for t > 1, i.e. behind the singularity?

13.



General Scalar
Conservation Law

Definition: (compact support)
The support of a function £ : R" — R is the set

supplf) = (7 € R T £ 0).

I supp() is a compact set. then we have 3

Proposition: (Rankine-Hugoniot condition)
1fx = 5(t) is a shock front of 2 shock wave solution
the shock speed 4() the Rankine-Hugonot condit

(f] _ flulslt). 1)) — flu(s(t)*.0)
[l u(s(t)=.8) — uls{t)*.2)

of uy + f(u), = 0. then for
holds

o

Deinition: (shock wave solutios)
Atk s sehaton & & weak sobition of the comenaton
kSl =0

b o0t 1 = (0] 4 € €7 i, ssch that w s & dssical slution for aach
30d 2 5 o(t) and u has 3 jump 2t x = ) with height

[34e) = wls(1)*. ) = wis()".1)

) s coted

Dcinition: (Riemaen sroslem)
The iital value secblem

WSl = 0 inRx]0,00]
ve u onRx[(=0}
with deczatinuous intial coaditions
=50
wlr) b

st i for the scale consenacion . €)

Remark: (test function)
® Let u: R x [00[+ R differentiable function with compact support.

o Consider a scalar conservation law uq + f{u)s = 0, multiply with o and
integrate (by parts):

[]‘ [:(u, + fu)e)v drdt

- [ /: e d:dl»[:{u(nl)]v(x,ﬂ]dx—[:‘ /: Fupe drds.

o Initial conditions u(z,0) = ua(x) yield

0

I s sty s [ st az =o.

» Such function  is called test functi

Definition: (weak solution)
A function u € L™ (R x [0, <) is called
conservation law ue + f(u): = 0, if for al test functions

of the

so(r)e(r,0) dr =0,

[ ./:"‘"’ + fujes) drdt +

14.



Definition: (compact support)
The support of a function f : R™ — R is the set

supp(f) :={z € R™: f(z) # 0}.

If supp(f) is a compact set, then we have a function with compact support.

2,
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Remark: (test function)
e Let v: R x [0oco[— R differentiable function with compact support.

e Consider a scalar conservation law u; + f(u); = 0, multiply with v and
integrate (by parts):

0 = /0 h /_ o;(ut—l- Fu)e)o dadt

= _/Ooo /_(: uvy dxdt — /—(: u(x,0)v(z,0) dxr — /000 /_C: f(u)vy dadt.

e Initial conditions u(z,0) = ug(x) yield
/ / (uvt + f(u)vz) dzdt +/ uo(x)v(z,0) dz = 0.
0 —00 —00

e Such function v is called test function.
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Definition: (weak solution)
A function u € L (R x [0,00[) is called integral solution or weak solution of the
conservation law u; + f(u), = 0, if for all test functions v:

/0"" /_O;(uvt + f(u)va) drdt + /_ : uo(z)v(z,0) dz = 0.

needs not be

Jump
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Definition: (Riemann problem)
The initial value problem

us + f(u)z = 0 in Rx]0, oo
U= ug on R x {t =0}

with discontinuous initial conditions

w - <0
uo(z) = ur : x>0

Is called Riemann problem for the scalar conservation law. o

20.



Definition: (shock wave solution)
A shock wave solution w is a weak solution of the conservation law

if a shock front z = s(t), s € C! exists, such that u is a classical solution for each
x < s(t) and = > s(t) and u has a jump at x = s(t) with height

[W](t) = u(s() ", ) — u(s(t) ™, ¢)

$(t) is called shock speed.

21.



Proposition: (Rankine-Hugoniot condition) . -
If x = s(t) is a shock front of a shock wave solutlon of us + f( )z = 0, then for
the shock speed $(t) the Rankine-Hugoniot condition holds:

T _ flu(s@®)~, 1) = fluls(t)™, 1))
[u] u(s(t) =, 1) —u(s(t)* ,t)

S =

4
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General Scalar Bu rggrs
Conservation Law Equation

Differential Equations I
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