Definition 6.5 (charakteristisches Polynom)

Bezeichne

$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \cdots + a_0x(t) = g(t)$$

eine lineare Differentialgleichung n—ter Ordnung mit konstanten Koeffizienten. Dann heißt

$$P(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0$$

charakteristisches Polynom der homogenen Differentialgleichung (d.h. der DGL mit $g\equiv 0$) und

$$P(\lambda) = 0$$

heißt die zugehörige charakteristische Gleichung.

DGLen mit konstanten Koeffizienten, homogene Lösung Buch F

Buch Kap. 6.8

So geht's

Fundamentalsysten

$$(\lambda_1,...,\lambda_K)$$
 pearly versel.
 $k_1+k_2+...+k_K=n$

DGLen mit konstanten Koeffizienten, homogene

Lösung Buch Kap. 6.8

So geht's

$$\dot{\chi}(+) + d \dot{\chi}(+) + k \dot{\chi}(+) = 0$$

$$P(x) = \lambda^{2} + d\lambda + k \qquad \text{Nollst: } \lambda_{\eta_{2}} = -\frac{d}{L} + \sqrt{\frac{d^{2}}{L}} - k$$

$$\text{Fall unterscleidung:}$$

$$a) d^{2} > 4k : \lambda_{\eta_{k}} = -\frac{d}{2} + \sqrt{\frac{d^{2}}{L}} - k \qquad \text{CIR}$$

$$\text{Fould. system:} \qquad \left(-\frac{d}{2} + \sqrt{\frac{d^{2}}{L}} - k\right) t \qquad \left(-\frac{d}{2} - \sqrt{\frac{d^{2}}{L}} - k\right) t$$

$$b) d^{2} \leq 4k : \lambda_{\eta_{2}} = -\frac{d}{2} + i \sqrt{k - \frac{d^{2}}{L}}$$

$$\text{Found. syst:} \qquad \left(-\frac{d}{2} + i \sqrt{k - \frac{d^{2}}{L}}\right) t \qquad = -\frac{d}{2} t \qquad \text{cos}(\sqrt{k - \frac{d^{2}}{L}}t) + i \sin(\sqrt{k - \frac{d^{2}}{L}}t)$$

$$= e^{-\frac{d}{2}t} \left(\cos(\sqrt{k - \frac{d^{2}}{L}}t) + i \sin(\sqrt{k - \frac{d^{2}}{L}}t)\right)$$

$$= e^{-\frac{d}{2}t} \left(\cos(\sqrt{k - \frac{d^{2}}{L}}t) - i \sin(\sqrt{k - \frac{d^{2}}{L}}t)\right)$$

DGLen mit konstanten Koeffizienten, homogene

Lösung Buch Kap. 6.8

So geht's

" apoidester Grenzfall"

Einfache Inhomogenitäten, Resonanz

Buch Kap. 6.8

Definition 6.6

In Verallgemeinerung des Resonanzfalles eines Schwingungsproblems wollen wir von Resonanz sprechen, falls die rechte Seite oder ein Summand der rechten Seite der Differentialgleichung

$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \cdots + a_0x(t) = g(t)$$

Fundamentallösung der homogenen Differentialgleichung

$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \cdots + a_0x(t) = 0$$

ist.

Ansätze für partikuläre Lösungen

Buch Kap. 6.8

Ansätze

g(t)	Ansatz für $y_p(t)$
Pagnom	Polynom
$R_m(t)$	T _m (t)
$R_m(t)e^{\alpha t}$	$T_m(t)e^{\alpha t}$
$R_m(t)\sin(\beta t)$ $R_m(t)\cos(\beta t)$	$T_m(t)\sin(\beta t) + Q_m(t)\cos(\beta t)$

Kombination Kombination d. Funktionen d. Ansätze

Beispiele

$$\begin{array}{lll}
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) = \dot{X}(t) = \dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) = \dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) = \dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) = \dot{X}(t) + \dot{X}\dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) = \dot{X}(t) + \dot{X}\dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}\dot{X}(t) + \dot{X}\dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t) \\
\dot{X}(t) + \dot{X}\dot{X}(t) + \dot{X}\dot{X}(t$$

Ansätze für partikuläre Lösungen

Buch Kap. 6.8

Ansätze für partikuläre Lösungen

Buch Kap. 6.8



Buch Kap. 11.6

Definition 11.4

Sei $f:[0,\infty)\to\mathbb{R}$ (oder \mathbb{C}). Ordnet man f aufgrund der Beziehung

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \quad s \in \mathbb{C}$$

die Funktion F zu, so nennt man F die Laplace-**Transformierte** von f. Die Abbildung von f auf F heißt Laplace-Transformation. Neben F(s) verwendet man auch die Schreibweise $\mathcal{L}[f(t)]$.

Buch Kap. 11.6

Definition 11.5

Die Funktion $f:[0,\infty)\to\mathbb{R}$ ist von **exponentieller Ordnung** γ , falls es Konstanten M>0 und $\gamma\in\mathbb{R}$ gibt, so dass für alle t mit $0\leq t<\infty$ gilt

$$|f(t)| \leq M e^{\gamma t}$$
.

Satz 11.11 (Existenz der LAPLACE-Transformierten)

Sei $f:[0,\infty)\to\mathbb{R}$ stückweise stetig (lokal integrierbar reicht eigentlich aus) und von exponentieller Ordnung γ . Dann existiert die LAPLACE-Transformierte F(s) für alle $s\in\mathbb{C}$ mit $\mathrm{Re}\,s>\gamma$.

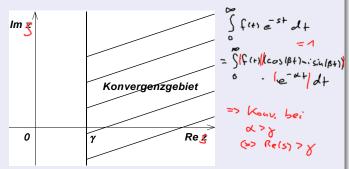


Abbildung 11.3:Konvergenzhalbebene der LAPLACE-Transformation

Beispiele

a)
$$f(t) = e^{at}$$
 $(f = a)$
 $f(s) = \int_{at}^{at} e^{-st} dt = \int_{at}^{a} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{-st} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt = \int_{at}^{at} e^{(a-s)t} dt$
 $f(s) = \int_{at}^{at} e^{(a-s)t} dt$

Differentialgleichungen I

Beaute:

F(s) = 1 5-a gilt auch für Komp! a

Beispiele

$$f(t) = \sin(\omega t) = \frac{1}{2i} \left(e^{i\omega t} - e^{i\omega t} \right)$$

$$f(s) = \int_{0}^{\infty} f(t) e^{-st} dt = \frac{1}{2i} \int_{0}^{\infty} e^{i\omega t} e^{-st} dt - \frac{1}{2i} \int_{0}^{\infty} e^{-i\omega t} e^{-st} dt$$

$$= \frac{1}{2i} \left(\int_{0}^{\infty} \frac{1}{s \cdot i\omega} - \int_{0}^{\infty} \frac{1}{s \cdot i\omega} \right) = \frac{1}{2i} \int_{0}^{\infty} \frac{1}{s \cdot i\omega} e^{-st} dt$$

$$= \frac{1}{2i} \left(\int_{0}^{\infty} \frac{1}{s \cdot i\omega} - \int_{0}^{\infty} \frac{1}{s \cdot i\omega} - \int_{0}^{\infty} \frac{1}{s \cdot i\omega} e^{-st} dt \right)$$

$$= \frac{1}{2i} \left(\int_{0}^{\infty} \frac{1}{s \cdot i\omega} - \int_{0}$$

Buch Kap. 11.6

Beispiele

Satz 11.13 (Eindeutigkeitssatz)

Für die Funktionen $f_1, f_2: [0,\infty) \to \mathbb{R}$ seien von exponentieller Ordnung γ und stückweise glatt. Ferner gelte $F_1(s) = F_2(s)$ für $Re \, s > \gamma$. Dann gilt in jedem gemeinsamen Stetigkeitspunkt von f_1 und f_2

$$f_1(t)=f_2(t).$$

Mit diesem Eindeutigkeitssatz ist es nun möglich, von einer Laplace-Transformierten F(s) auf die eindeutig bestimmte Funktion f(t) mit

$$\mathcal{L}[f(t)] = F(s)$$

zu schließen.

Buch Kap. 11.7

Hierfür benötigen wir ein wenig Funktionentheorie \rightarrow nächstes Semester.

Satz 11.12 (Umkehrsatz für die LAPLACE-Transformation)

Die Funktion $f:[0,\infty)\to\mathbb{R}$ sei von exponentieller Ordnung γ und stückweise glatt. Dann gilt für alle $\sigma=\operatorname{Re} s>\gamma$

$$\underbrace{\frac{1}{2\pi}\lim_{A\to\infty}\int_{-A}^{A}F(\sigma+i\omega)e^{(\sigma+i\omega)t}d\omega}_{} = \underbrace{\begin{cases} \frac{f(t+0)+f(t-0)}{2} & \text{für } t>0, \\ \frac{f(0+0)^{2}}{2} & \text{für } t=0. \end{cases}}_{}$$

Insbesondere gilt in jedem Stetigkeitspunkt t von f

$$f(t) = \frac{1}{2\pi} \lim_{A \to \infty} \int_{-\Delta}^{A} F(\sigma + i\omega) e^{(\sigma + i\omega)t} d\omega.$$

Beispiele

$$F_{(s)} = \frac{1}{s \cdot a}$$

$$f(t) = \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} \frac{1}{\sigma - \alpha + i\omega} e^{(G + i\omega)t} d\omega$$

$$= \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} \frac{1}{\sigma - \alpha + i\omega} e^{(G - \alpha + i\omega)t} d\omega$$

$$= \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} \frac{1}{\sigma - \alpha + i\omega} e^{(G - \alpha + i\omega)t} d\omega$$