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Content of the course Analysis Ill.

© Partial derivatives, differential operators.

@ Vector fields, total differential, directional derivative.

© Mean value theorems, Taylor's theorem.

Extrem values, implicit function theorem.

Implicit rapresentaion of curves and surfces.

Extrem values under equality constraints.

Newton—method, non-linear equations and the least squares method.
Multiple integrals, Fubini's theorem, transformation theorem.

Potentials, Green's theorem, Gaul3's theorem.
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Green's formulas, Stokes's theorem.
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Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

f(x1,...,xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

RT
P = P(V,t)zv
RT
p
pV
T = T(Pa\/):?
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1.1. Partial derivatives

Definition: Let D C R" be open, f : D — R, x9 e D.

@ f is called partially differentiable in x° with respect to x; if the limit

O o) i FOH 1) = )
aX,' ' t—0 t
~ im O, X+t X0 — (P, X0 x0)
t—0 t

exists. e; denotes the j—th unit vector. The limit is called partial derivative of
f with respect to x; at x°.

@ If at every point x° the partial derivatives with respect to every variable
x;, I =1,...,n exist and if the partial derivatives are continuous functions

then we call f continuous partial differentiable or a C1—function.
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Examples.

@ Consider the function
f(x1,x) = x12 + x22

At any point x° € R? there exist both partial derivatives and both
partial derivatives are continuous:

of

Of oy _
8Xl(x) 2x1,

Of oy _
8x2(x) 2x7

Thus f is a C1—function.

@ The function
f(x1,x2) = x1 + |x2]

at x® = (0,0)7 is partial differentiable with respect to x, but the
partial derivative with respect to x, does not exist!
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An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by
p(x, t) = Asin(ax — wt)

The partial derivative

op
Ix aAcos(ax — wt)

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

@
ot

describes for a fixed position x the temporal rate of change of the acoustic

= —wAcos(ax — wt)

pressure.
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Rules for differentiation

@ Let 7, g be differentiable with respect to x; and «, 8 € R, then we have the

rules
o (af(9+ 8809) = af(9+ 65500
(100 £09) = To09-£00+ 760 FE(0)
of og
9 <f(><)) _ A e for g(x) # 0
o \ &6 EoE

@ An alternative notation for the partial derivatives of f with respect to x; at
x0 is given by
D;f (x°) oder £ (x°)
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Gradient and nabla—operator.

Definition: Let D C R" be an open set and f : D — R partial
differentiable.

@ We denote the row vector
of of
rad 1) i= (g (0o 5 09))

as gradient of f at x°.
@ We denote the symbolic vector

V= (;j(l,...,(;;)-r

as nabla—operator.
@ Thus we obtain the column vector

)
V) = (gjl( ). ..,g;(x°)>

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 8/171



More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (af + 8g) = «-gradf+ [ -gradg

grad(f-g) = g-gradf+f-gradg

f 1
grad (g) = ?(g-gradf—f-gradg), g#0

Examples:
@ Let f(x,y) = €*-siny. Then:
grad f(x,y) = (&" -siny, e - cosy) = e*(siny,cosy)
@ For r(x) := |[x]l2 = v/ + - + x2 we have

X e
d == fii 0
grad r(x) o) D iir x # 0,

where x = (xi, ..., x,) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R> — R defined as

Xy

m for (x,y) #0

fxy) =
0 . for (x,y)=0

The function is partial differntiable on the entire R? and we have

£(0,0) = f£,(0,0)=0
of 2
g(xm) = w 4)—/y2)2 - 4(X2i};2)37 (x,y) # (0,0)
of - x X2
@(X,Y) N e _4(X2+y2)3’ (x,y) # (0,0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

t-0 0
of f(t,0) — (0,0 24022
0,0y = fim BO-FO0 _ (20 —_,
Ox t—0 t t
0-t 0
of f(0,t) — £(0,0 2422
90,0y = tim QOO0 _ (@)
dy t—0 t t
But: At (0,0) the function is not continuous since
11 .. &
(L) A dr
AU ANCRr S S

and thus we have

lim  f(x, f(0,0)=0
ww%mm(AH# (0,0)
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f.

Theorem: Let D C R" be an open set. Let f : D — R be partial

differentiable in a neighborhood of x° € D and let the partial derivatives

of
ox;'

i=1,...,n, be bounded. Then f is continuous in x°.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

O o) = gty — 4
ax Y T @y T T2 1 y2)3

fir (x,y) # (0,0)
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Proof of the theorem.

For |x — X%l < &, € > 0 sufficiently small we write:

f(x) — f(xo) = (F(X1y- vy Xno1,Xn)—F (X1, . .. 7x,,_l,x,?))
+ (F(xas e X1, X0) = F(x1y ey X2, X201, x9))
+ (f(xhxg,...,x,?)—f(xf,...,x,?))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xs) —g(x,(,)) = (X1, Xn—1,Xn) — F(X1, - .. 7x,,_l,xr?)

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g:

g(xn) — g(X,(,)) = g'(&n)(xn — X:?)

for an appropriate &, between x, and x°.
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

of
f(X)— f(XO) = Ix (X17"'7anla€n)'(xn_xf1))
of
+ m(xl, . ,X,,_Q,E,,_l,xg) (Xp—1 — X,?_l)
of
+ Tﬁ(fl,xg,...,xg)wxlfxf)

Using the boundedness of the partial derivatives
() = FOO) < Glxa = x|+ + Galxa — xp
for ||x — x°||oc < &, we obtain the continuity of f at x° since

f(x) — F(x°) fiir |[x — x%[| 0o — 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D C R". If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

Pf 0 (of
Oxj0x; ~ Ox; \ Ox;

Example: Second order partial derivatives of a function f(x, y):

Pr_ o (or\ o _o (o) B o
ox2  Ox \ Ox dydx Oy \ Ox Ox0y’  Oy?

Let i1,...,ik € {1,...,n}. Then we define recursively

ok f 0 ok1f
8x,-k8x,-k_1 o 6x,-1 o 8X,'k 8x,-k_18x,-k_2 oo aX,'l
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Higher order derivatives.

Definition: The function f is called k—times partial differentiable, if all
derivatives of order k,

o f

P e ———— forallil... I'kE 1,....n
Bx,-kf)x,-k_l...ax,-l ’ ’ { ’ ’ }7

exist on D.

Alternative notation:

k
Ok f o,

- k-1 *
(9X,‘kaX,'k71 . .6X,'1

Dyf =f .

If all the derivatives of k—th order are continuous the function f is called k—times
continuous partial differentiable or called a CkK~function on D. Continuous
functions f are called C%—functions.

Example: For the function f(xq,...,x,) = H x! we have 6X3 ’;Xl =7

i=1
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general

not arbitrarely exchangeable!

Example: For the function

X2 — 2
XY 5 2
flay)=4 TY
0
we calculate
0
fy(0,0) = 8y<
1o}
f:\’X(()?O) = ax <

ie. fX}’(OaO) 7£ fyx(ovo)'
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Theorem of Schwarz on exchangeablity.

Satz: Let D C R” be open and let f : D — R be a C?>~function. Then it
holds
O*f ( ) 0*f
—(x1,...,Xp) = ———
OxjOx; Lo Ix;0x;

forall i,j € {1,...,n}.

(X1, Xn)

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a Ck—function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!
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Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order £, for the function
f(x,y,z) = y*zsin(x®) + (cosh y + 17eX2)z2
The order of execution is exchangealbe since f € C3.

@ Differentiate first with respect to z:

? = y?sin(x®) + 2z(cosh y + 17¢*)
z

o Differentiate then f, with respect to x (then cosh y disappears):

fx

82 (y2 sin(x?) 4 2z(cosh y + 17eX2))
X

= 3x%y?cos(x®) + 68xze”
@ For the partial derivative of f,, with respect to y we obtain

fyz = 6x°y cos(x?)
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The Laplace operator.

The Laplace—operator or Laplacian is defined as

n
A o
' Ox?
i=1 !
For a scalar function u(x) = u(x,...,x,) we have
n
?u
Au= 8X2 = Uxx +oot Uxoxp

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

Au——uy = 0 (wave equation)
c
1 .
Au— pu = 0 (heat equation)
Au = 0 (Laplace—equation or equation for the potential)
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Vector valued functions.

Definition: Let D C R"” be open and let f : D — R™ be a vector valued
function.

The function f is called partial differentiable on x° € D, if for all
i=1,...,n the limits

0 N\ f(y0
OF 0y — i 100+ 1) = ()

ox; t—0 t

exist. The calculation is done componentwise
oh
ox;
.F 1

g.(xo): : fori=1,...,n

i of,y
8X,'
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Vectorfields.

Definition: If m = n the function f : D — R" is called a vectorfield on D.
If every (coordinate-) function fi(x) of f = (f1,...,f,)" is a Ck—function,
then f is called Ck—vectorfield.

Examples of vectorfields:

e velocity fields of liquids or gases;
e elektromagnetic fields;
e temperature gradients in solid states.

Definition: Let f : D — R" be a partial differentiable vector field. The
divergence on x € D is defined as

divf(x°) := gfi (x°)
X

i=1

or

divf(x) = V7f(x) = (V,f(x))
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Rules of computation and the rotation.

The following rules hold true:
div(af+8g) = adivf+gdivg forf,g: D — R"

div(p-f) = (Vp,f)+edivf foro:D—R,f:D—R"
Remark: Let f : D — R be a C2—function, then for the Laplacian we have
Af =div(Vf)

Definition: Let D C R3 open and f : D — R3 a partial differentiable
vector field. We define the rotation as

T 8><2 8X37 8X3 8X17 8X1 8X2

x0
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Alternative notations and additional rules.

e; ey e3

rot f(x) = V x f(x) = 6%1 3%2 6%3

h h f3

Remark: The following rules hold true:
rot(af+5g) = arotf+ Grotg

rot(p-f) = (Vy)xf+protf

Remark: Let D C R3 and ¢ : D — R be a C?~function. Then
rot (Vo) =0,

using the exchangeability theorem of Schwarz. l.e. gradient fileds are rotation-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D C R” open, x’ € D and f : D — R™. The function f(x)
is called differentiable in x° (or totally differentiable in xo), if there exists a

linear map
I(x,x%) := A - (x — x9)

with a matrix A € R™*" which satisfies the following approximation
property
f(x) = f(x°) + A - (x = x%) + o(|[x — X°|))

m f(x) — f(x%) — A - (x — x°)

x5 [ =

=0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map | the differential or the total differential
of f(x) at the point x°. We denote | by df(x?).

The related matrix A is called Jacobi-matrix of f(x) at the point x° and is
denoted by Jf(x?) (or Df(x?) or f'(x°)).

Remark: For m = n =1 we obtain the well known relation
f(x) = f(x0) + f'(x0)(x = x0) + o(Ix — xo)
for the derivative f'(xp) at the point xp.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x — x°) a scalar product (a”,x —x%).
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Total and partial differentiability.

Theorem: Let f : D - R™ x° e D c R", D open.

a) If f(x) is differentiable in x°, then f(x) is continuous in x°.

0

b) If f(x) is differentiable in x°, then the (total) differential and thus the
Jacobi—matrix are uniquely determined and we have

of , o
87x1(x )
JF(x) = 5
Ofm
Ax1

(%)

Of (0 DFf; (x)
O, (x7)

of

. x%) Dfi(x%)

c) If f(x) is a C1—function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x°, then by definition

im f(x) — f(x°) — A - (x — x°)

=0
e =]

Thus we conclude

Iim0 If(x) — f(xo) —A-(x— x0)|| =0

X—>X

and we obtain

IFG) = FC < 6 = F°) = A= (x =) + [|A - (x =)

— 0 as x — x0

Therefore the function f is continuous at x°.
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Proof of b).

Let x = x? + te;, [t| <, i € {1,...,n}. Since f in differentiable at x°, we

have

lim
x—x0

We write

f(x) — f(x%) — A - (x — x0)

f(x) — f(x%) — A - (x — x0)

[ = x°[|og

Thus

f(x0 + te;) — f(xo)

I =%l

=0

f(x° + te;) — f(x°)  tAe,

t]

t]

t] t

— 0 ast— 0

lim
t—0
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Examples.

@ Consider the scalar function f(x;,x2) = x;e®?. Then the Jacobian is given
by:
Jf(x1,x0) = Df(x1, x0) = €2(1,2x)

@ Consider the function f : R® — R? defined by

f( ) X1X2X3
X1, X2, X3) =
sin(x1 + 2x2 + 3x3)

The Jacobian is given by

(9X1 8)@ 8X3 X2X3 X1X3 X1X0
Jf(Xl,X27X3) = —

oy Ofh  Of cos(s) 2cos(s) 3cos(s)

5X1 8X2 8X3

with s = xy + 2x + 3x3.
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Further examples.

o Let f(x) = Ax, A€ R™*" and x € R". Then
Jf(x) =A for all x € R"

o Let f(x) =x"Ax = (x,Ax), A € R™" and x € R".
Then we have

f
gx,- = (e,-,Ax) + <X,Ae,'>
= e/ Ax+xT Ae;
= x"(AT 4+ Ae;

We conclude
Jf(x) = gradf(x) = x" (AT +A)
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Rules for the differentiation.

Theorem:

a) Linearitdt: LET f,g : D — R™ be differentiable in x° € D, D open. Then
af(x?) + Bg(x?), and a, B € R are differentiable in x° and we have

d(of + 8g)(x°) = adf(x’) + Bdg(x°)
Jaf +8g)(X°) = aJf(X®)+ 8Jg(x)
b) Chain rule: Let f : D — R™ be differentiable in x% € D, D open. Let

g : E — R¥ be differentiable in y = f(x°) € E C R™, E open. Then gof is

differentiable in x0.

For the differentials it holds
d(g o f)(x°) = dg(y°) 0 df(x°)
and analoglously for the Jacobian matrix

J(g o f)(x%) = Jg(y°) - JF(x°)
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Examples for the chain rule.

Let / C R be an intervall. Let h : | — R" be a curve, differentiable in
to € I with values in D C R"”, D open. Let f : D — R be a scalar function,
differentiable in x° = h(tp).

Then the composition
(foh)(t) = f(hi(t),..., ha(t))
is differentiable in tg and we have for the derivative:
(foh)(to) = Jf(h(to)) - Jh(to)
= gradf(h(t)) - h'(to)
= 3 5 (o) ()
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Directional derivative.

Definition: Let f : D — R, D C R" open, x° € D, and v € R\ {0} a
vector. Then

f 0 —f 0
D, F(x0) = lim T = 1)
t—0 t
is called the directional derivative (Gateaux—derivative) of f(x) in the
direction of v.

Example: Let f(x,y) = x?> 4+ y2 and v = (1,1). Then the directional
derivative in the direction of v is given by:

2 2 2 .2
D,f(x,y) = lim D 87— X~y

t—0 t

_2xt + t2 4 2yt + t2
= lim
t—0 t

= 2(x+y)
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Remarks.

@ For v = e; the directional derivative in the direction of v is given by the
partial derivative with respect to x;:

D7) = 57 ()

@ If v is a unit vector, i.e. ||v|]| = 1, then the directional derivative D, f(x°)
describes the slope of f(x) in the direction of v.

@ If f(x) is differentiable in x°, then all directional derivatives of f(x) in x°

exist. With h(t) = x° + tv we have

D, f(x%) = %(fo h)|i=o = grad f(x°) - v

This follows directely applying the chain rule.
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Properties of the gradient.

Theorem: Let D C R” open, f : D — R differentiable in xX° € D. Then we have

a) The gradient vector grad f(x°) € R is orthogonal in the level set
Ny = {x € D|f(x) = f(x°)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f(x°) gives the direction of the steepest slope of f(x) in
0
x0.

Idea of the proof:
a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy-Schwarz inequality
D £(x°)| = |(grad £(x°),v)| < |lgrad F(x°)]l2
Equality is obtained for v = grad f(x°)/||grad f(x°)]|..
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Curvilinear coordinates.

Definition: Let U,V C R" be open and ® : U — V be a C'-map, for
which the Jacobimatrix J®(u®) is regular (invertible) at every u® € U.

In addition there exists the inverse map ®~1: V — U and the inverse map
is also a C'-map.

Then x = ®(u) defines a coodinate transformation from the coordinates u
to x.

Example: Consider for n = 2 the polar coordinates u = (r, ) with r > 0
and —m < ¢ < 7 and set

X = rcosy
y = rsingp

with the cartesian coordinates x = (x, y).
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Calculation of the partial derivatives.

For all u € U with x = ®(u) the following relations hold
¢ 1(d(u) = u

Jo7H(x) - Jd(u)
Jo7x) = (Jo(u)™?

Let f: V > R bea given function. Set

f(u) := F(®(u))

the by using the chain rule we obtain

[ (chain rule)

n

Of 00; -~ Of
_. iz
8u, Z 6xj ou; ;g 0x;

GLY
8U,‘7
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Notations.

We use the short notation

Zg axj

Analogously we can express the partial derivatives with respect to x; by the
partial derivatives with respect to u;

0 “ 0
o = 285y
j=1

where )
(g7) = (&) ' =) T =)
We obtain these relations by applying the chain rule on 1.
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Example: polar coordinates.

We consider polar coordinates
x=®(u) = ( reese )
rsing

Jo(u) = < cosp  —rsing )

singp  rcosyp

We calculate

and thus

1.
cosy  siny cos ¢ - sin @

(g") = (g5) =

—rsing rcosg sin lcosgp
P
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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

g = cos g — 1sin i
ox Por r (p&p
o sin 0 1cos 0
ay — M"Por P

Example: Calculation of the Laplacian—operator in polar coordinates

éi = cos?yp 872 ~sin(2¢p) 0? sin%ai sin(2¢)i+ sin2gp£
Ox2 Yor r  Ordp 2 92 2 o0 PR
872 = sin2 @8724_ S'n(2§0) 82 COS2(p872 _ s|n(2<p)£+ COS2(p£
Oy® or? ro 0Ordp r2 0g? r2 Oy ror

A = i2+372_872+i872+12
O 0x2 0y2 0r2  r20p?  r or
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Example: spherical coordinates.

We consider spherical coordinates
r cos ¢ cos 6
x=®(u)=| rsinpcosd

rsinf

The Jacobian—matrix is given by:

cospcosl —rsinpcos —rcoswsinf
J®(u)=| sinpcosf rcospcosf —rsingsinf

sind 0 rcos@

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 42 /171



Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

9 _ cos cos@a—sinii—lcos sm@a
ox v or rcosf Op r ? 00
0 0 cosp 0 0
ay - sin C0596r+rcos@%_ism(’psmeae
0 o 1 0
9 = sm@a——i-fcosG%

Example: calculation of the Laplace—operator in spherical coordinates

0? 1 0? 1 02 20 tanf 0

Azi _— _—
or? + r2cos? 6 0p? + r2 062 + r or r? 96
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Chapter 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let f : D — R be a scalar differentiable
function on an open set D C R". Let a,b € D be points in D such that the
connecting line segment

[a,b] :={a+t(b—a)|t e [0,1]}
lies entirely in D. Then there exits a number ¢ € (0,1) with
f(b) —f(a) =gradf(a+6(b—a))-(b—a)

Proof: We set
h(t) :=f(a+ t(b —a))

with the mean value theorem for a single variable and the chain rules we conclude

f(b)—f(a) = h(1)—h(0) = H(0)-(1—0)

gradf(a+0(b—a))-(b—a)
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Definition and example.

Definition: If the condition [a,b] C D holds true for all points a,b € D,
then the set D is called convex.

Example for the mean value theorem: Given a scalar function
f(x,y) :=cosx +siny

Iti
j f(0,0) =f(n/2,7/2)=1 = f(x/2,7/2)—f(0,0)=0

Applying the mean value theorem there exists a 6 € (0,1) with

(o)) ()

Indeed this is true for § = 3.
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Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true
for scalar functions but in general not for vector—valued functions!

Examples: Consider the vector—valued Function

f(t) == ( cos! ) . telo,n/2]

tm2-10=(1)-(s)=(1)

, (T 7r s —sin(fm/2)
f <9§> ' (5 70) -2 < cos(67/2) )

BUT: the vectors on the right hand side have lenght v/2 and w/2 |

It is

and
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A mean value estimate for vector—valued functions.

Theorem: Let f : D — R™ be differentiable on an open set D C R". Let
a, b bei points in D with [a,b] C D. Then there exists a § € (0,1) with

If(b) = f(@)ll2 < [[Hf(a + 6(b —a))- (b —a)|2

Idea of the proof: Application of the mean value theorem to the scalar function
g(x) definid as

g(x) := (f(b) — f(a)) "f(x) (scalar product!)

Remark: Another (weaker) for of the mean value estimate is

1f(b) = f(@)[ < sup [[JF(E)] - [I(b —a)l

£€a,b]

where || - || denotes an arbitrary vector norm with related matrix norm.
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Taylor series: notations.

We define the multi-index o € N as

a:=(ag,...,a,) €Nj

Let

|

Let f : D — R be |« times continuous differentiable. Then we set

olalf

D™ = D Dg? ... DI =

where D" = Dj...D;. We write
———

a;—mal
o . « Q «
XY =X X X" for x = (xi, ..
Ingenuin Gasser (Mathematik, UniHH) Analysis |1l for students in engineering
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The Taylor theorem.

Theorem: (Taylor)
Let D C R" be open and convex. Let f : D — R be a C™*1—function and
xo € D. Then the Taylor—expansion holds true in x € D

f(x) = Tm(xx0)+ Rm(x;%o)
) — 5 Dy
|a|<m
Rolxixg) Z D*f(xo +a?(x—xo)) (x — x0)°
|a|=m+1

for an appropriate 6 € (0, 1).

Notation: In the Taylor-expansion we denote T,,(x;xo) Taylor—polynom of
degree m and Rp,(x;xg) Lagrange-remainder.
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Derivation of the Taylor expansion.

We define a scalar function in one single variable t € [0, 1] as
g(t) .= f(xo + t(x — xp))
and calculate the (univariate) Taylor—expansion at t = 0. It is
1
g(1) = g(0) +&'(0) - (1 - 0) + 5g"(¢) - (1 - 0)* forag e (0,1).
The calculation of g’(0) is given by the chain rule

d
g'(0) = Ef(x?—i—t(xl—X{)),Xg—&—t(XQ—XS),...,XS—Ft(X,,—XS))

t=0

= Dif(xo) - (xa —Xf) + ...+ Duf(x0) - (Xn —x,?)

_ Z D*f(xq) (X = x0)°

al

lee|=1

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 50/171



Continuation of the derivation.

Calculation of g”(0) gives
2

§'(0) = o+ tlx—0))

d n
o = Z DifF (X% + t(x — x°)) (xx — x9)

t=0
k=1

t=0

= Duf(xo)(a — X)) + Daf (x0)(x1 — x7) (2 — X3)
..+ Dijf (xo)(xi — x; )(XJ—XO)+ .+
+D5—1,nf (%0) (Xn—1 — X 1) (X0 — X ) + Dinf (x0)(xn Xg)z)
D*f
= Z %(x —X0)“ (exchange theorem of Schwarz!)
|a|=2 ’

Continuation: Proof of the Taylor—formula by (mathematical) induction!
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Proof of the Taylor theorem.

The function
g(t) = )"(x0 + t(x — xo))

is (m + 1)—times continuous differentiable and we have

$~60) | ")

g1) = k! (m+1)!

fora 6 € [0,1].
k=0

In addition we have (by induction over k)

(k) af(x0
g k!(O) _ Z 2 f( ) (X _ XO)a
|a|=k

and

g(mt1)(6) B Z Df(x% 4 0(x — x°))

(m+1) al (=)

|a|=m+1
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Examples for the Taylor—expansion.

© Calculate the Taylor—polynom T,(x; xg) of degree 2 of the function
f(x,y,z) =xy?sinz

@ The calculation of T,(x;xg) requires the partial derivatives up to
order 2.

© These derivatives have to be evaluated at (x,y, z) = (1,2,0)".

© The result is Ta(x;xp) in the form
To(x;x0) =4z(x +y — 2)

@ Details on extra slide.
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Remarks to the remainder of a Taylor—expansion.

Remark: The remainder of a Taylor—expansion contains all partial
derivatives of order (m + 1):

Rm(xix0) = Do —:!Q(X —x0)) (x — x0)®

|a|=m+1

If all these derivative are bounded by aconstant C in a neighborhood of x then
the estimate for the remainder hold true

m+1

m Cllx— X0||Z10+1

|Rm(x;x0)| <

We conlude for the quality of the approximation of a C™+1—function by the
Taylor—polynom
f(x) = Tm(x;x0) + O (IIx — xo||’"+1)

Special case m = 1: For a C?>—function f(x) we obtain
f(x) = F(x°) + grad £(x°) - (x — x°) + O(]|x — x°|]?).
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The Hesse—matrix.

The matrix
fX1X1(X0) fXIXn(XO)

Hf(xo) :=

anXI (XO) ce ﬁ(an (XO)

is called Hesse—matrix of f at xg.

Hesse—matrix = Jacobi—matrix of the gradient Vf

The Taylor—expansion of a C3—function can be written as
1
f(x) = f(xo) + grad f(xo)(x — x0) + E(X —x0) THF(x0)(x — x0) + O(||Ix — xo|*)

The Hesse-matrix of a C?>~function is symmetric.
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Chapter 2. Applications of multivariate differential calculus

2.1 Extrem values of multivariate functions

Definition: Let D C R”, f : D — R and x° € D. Then at x° the function
f has

@ a global maximum if f(x) < f(x°) for all x € D.
@ a strict global maximum if f(x) < f(x°) for all x € D.

@ a local maximum if there exists an € > 0 such that
f(x) < F(x°) for all x € D with ||x — x°| < e.
@ a strict local maximum if there exists an € > 0 such that

f(x) < f(x°)  forall x € D with ||x — X°| < e.

Analogously we define the different forms of minima.
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Necessary conditions for local extrem values.

Theorem: If a C'—function f(x) has a local extrem value (minimum or
maximum) at x° € D°, then

grad f(x°) =0 € R"
Proof: For an arbitrary v € R", v # 0 the function
o(t) == F(° + tv)

is differentiable in a neighborhood of t° = 0.

©(t) has a local extrem value at t° = 0. We conclude:
¢'(0) = grad f(x°)v =0
Since this holds true for all v £ 0 we obtain
grad f(x°) = (0,...,0)7
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Remarks to local extrem values.

Bemerkungen:

@ Typically the condition grad f(x°) = 0 gives a non-linear system of n

equations for n unknwons for the calculation of x = x°.

@ The points x° € D° with grad f(x°) = 0 are called stationary points of f.
Stationary points are not necessarily local extram values. As an example take
f(x,y) = x> —y?
with the gradient
grad f(x, y) = 2(x, —y)

and therefore with the only stationary point x° = (0,0) . However, the
point x° is a saddel point of f, i.e. in every neighborhood of x° there exist
two points x! and x> with

f(x') < f(xo) < f(xz).
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Classification of stationary points.

Theorem: Let f(x) be a C>~function on D and let x° € D° be a
stationary point of f(x), i.e. grad f(x°) = 0.

a) necessary condition
If x0 is a local extrem value of f, then:
x? local minimum = Hf(x°) positiv semidefinit
x0 local maximum = H f(x°) negativ semidefinit
b) sufficient condition
If Hf(x?) is positiv definit (negativ definit) then x° is a strict local
minimum (maximum) of f.

If H £(x%) is indefinit then x° is a saddel point, i.e. in every
neighborhood of x° there exist points x! and x? with
f(x!) < F(x0) < £(x3).
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Proof of the theorem, part a).

Let x° be a local minimum. For v # 0 and & > 0 sufficiently small we conclude
from the Taylor—expansion

FOO 4 ev) — F(x°) = %(€V)TH F(X° + fev)(ev) > 0 (1)

with 8 = 6(e,v) € (0,1).
The gradient in the Taylor expansion grad f(x°) = 0 vanishes since x° is
stationary.

From (1) it follows
vIHF(X? + fev)v > 0 (2)

Since f is a C>—function, the Hesse-matrix is a continuous map. In the limit
e — 0 we conclude from (2),

vIHF(C)v >0
i.e. Hf(x%) is positiv semidefinit.
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Proof of the theorem, part b).

If Hf(x%) is positiv definit, then H f(x) is positiv definit in a sufficiently small
neighborhood x € K.(x%) C D around x°. This follows from the continuity of the
second partial derivatives.

For x € K.(x?), x # x° we have
f(x) — f(xo) = %(x — xO)TH f(xO +0(x — XO))(X — XO)
> 0
with 6 € (0,1), i.e. f has a strict local minimum at x°.

If Hf(x%) is indefinit, then there exist Eigenvectors v, w for Eigenvalues of H f(x°)
with opposite sign with

vIHF(C)v >0 w HF (%) w < 0
and thus X0 is a saddel point.
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Remarks.

@ A stationary point x° with det Hf (x°) = 0 is called degenerate. The
Hesse—matrix has an Eigenvalue A = 0.

@ If x° is not degenerate, then there exist 3 cases for the Eigenvalues of
Hf (x0):

all Eigenvalues are strictly positive = x° is a strict local mir
all Eigenvalues are strictly negative = x° is a strict local ma
there are strictly positive and negative Eigenvalues = x° saddel point

@ The following implications are true (but not the inverse)

x9 local minimum < x9 strict local minimum

4 ft
Hf(x°) positiv semidefinit <«  Hf(x?) positiv definit
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Further remarks.

@ If f is a C3—function, x° a stationary point of f and Hf(x%) positiv definit.
Then the following estimate is true:

(x— XO)T Hf(xo) (x— xo) > Amin - ||IX — x0H2

where \nin denoted the smallest Eigenvalue ot the Hesse—matrix.

Using the Taylor theorem we obtain:

1
f(X) - f(xo) 2 §>‘min||X - XO||2 + R3(X; XO)
)\min
o G )

with an appropriate constant C > 0.

The function f grows at least quadratically around x°.
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Example .

We consider the function
f(x,y) =y} (x — 1) + x*(x + 1)
and look for stationary points :
grad f(x,y) = (y* + x(3x +2),2y(x — 1))
The condition grad f(x, y) = 0 gives two stationary points
X =(0,007  und x'=(-2/3,0)7.

The related Hesse—matrices of f at x? and x! are

Hf(x°)—(§ _(2)) and Hf(xl)—(_g _1%/3)

The matrix Hf (x°) is indefinit, therefore x° is a saddel point. Hf (x!) is negativ
definit and thus x! is a strict local ein strenges maximum of f.
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Chapter 2. Applications of multivariate differential calculus

2.2 Implicitely defined functions

Aim: study the set of solutions of the system of non-linear equations of
the form

g(x) =0
with g : D — R™, D C R". l.e. we consider m equations for n unknowns
with

m < n.
Thus: there are less equations than unknowns.

We call such a system of equations underdetermined and the set of
solutions G C R” contains typically infinitely many points.
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Solvability of (non-linear) equations.

Question: can we solve the system g(x) = 0 with respect to certain unknowns,

i.e. with respect to the last m variables x,_mi1,...,X,7?
In other words: is there a function f(xy,...,X,—m) with
T
gx)=0 <= (Xn—mtlr--- %) =TF(X15.e, Xoem)

Terminology: "solve” means express the last m variables by the first n — m
variables?

Other question: with respect to which m variables can we solve the system? Is
the solution possible globally on the domain of defintion D? Or only /ocally on a
subdomain D C D?

Geometrical interpretation: The set of solution G of g(x) = 0 can be expressed
(at least locally) as graph of a function f : R"™™™ — R™.
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Example.

The equation for a circle
gx,y)=x2+y?—r?=0 mit r > 0

defines an underdetermined non-linear system of equations since we have
two unknowns (x, y), but only one scalar equation.

The equation for the circle can be solved locally and defines the four
functions :

y = r—x2, —r<x<r
y = —Vr2—x2, —r<x<r
X = r2—y?, —r<y<r
x = —\/rr—y? —r<y<r
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Example.

Let g be an affin—linear function, i.e. g has the form
gx)=Cx+b forCeR™" beR™
We split the variables x into two vectors
x(1) = (x1, ... ,x,,_m)T ER™ and x@® = (Xn—m+1,- - - ,x,,)T cR”
Splitting of the matrix C = [B, A] gives the form
g(x) = BxM) + Ax(?) 4 p

with B € Rmx(n—=m) A c Rmxm

The system of equations g(x) = 0 can be solved (uniquely) with respect to
the variables x(2), if A is regular. Then

gx) =0 <« x® =_A"1Bx"V +b)=fxD)

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 68 /171



Continuation of the example.

Question: How can we write the matrix A as dependent of g7

From the equation
g(x) = Bx() + Ax®) 4+ b

we see that 5
_ 9% 1)
A NG (x',x')

holds, i.e. A is the Jacobian of the map

for fixed x(11

We conclude: Solvability is given if the Jacobian is regular (invertible).
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Implicit function theorem.

Theorem: Let g : D — R™ be a C'—function, D C R"” open. We denote the
variables in D by (x,y) with x € R"~™ und y € R™. Let Der (x°,y°) € D be a
solution of g(x°,y%) = 0.

If the Jacobi—-matrix

) By )

g . )

aiy(xoayo):: : :
(0¥ L g (x0,y0)

is regular, then there exist neighborhoods U of x® and V of y°, U x V C D and a
uniquely determined continuous differentiable function f : U — V with

fx°) =y° und g(xf(x)) =0 fiirallexe U

3109 =~ (Beeron)  (Becrcon)
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Example.

For the equation of a circle g(x,y) = x> +y? — r> = 0,r > 0 we have at
(x%y%) = (0.r)

% 0.1 =0 %80 =
5(07 r) =0, ay(O, r)=2r#0

Thus we can solve the equation of a circle in a neighborhod of (0, r) with
respect to y:
f(x)=Vr?—x?

The derivative f'(x) can be calculated by implicit diffentiation:
gxy(x) =0 = gxy(x)+g(xy(x)y'(x)=0
and therefore

2x+2y(x)y'(x) =0 = y(x)=Ff(x)=———
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Another example.

Consider the equation g(x,y) = e +3y + x> —-1=0.

It is
B)
a—i(x,y) e *4+3>0 forallx€R.

Therefore the equation con be solved fpr every x € R with respect to y =: f(x)
and f(x) is a continuous differentiable function. Implicit differentiation ives
ey X —2x
y=x(. _ 1 3 / 2% =0 — r_ 5 T er
ey = 1) +3y" +2x Y'= 553

Differentiating again gives

2+ ey —1)?
e 43

ey—xy// + ey—x(y/ _ 1)2 + 3y// + 2=0 _— y/ _

But: Solving the equation with respect to y (in terms of elementary functions) is
not possible in this case!
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general remark.

Implicit differentiation of a implicitely defined function

_o Y8
g(X,y)—O, aiy#o

y = f(x), with x,y € R, gives

8x

flix) = -5

(<) Py
Filx) = 88, — 2888y T &Ex

&
Therefore the opint x° is a stationary point of f(x) if
g% y%) =g (x°y°) =0 and g, (x°y°)#0

And x° is a local maximum (minimum) if

0 0 0 0
L(XO ’yo) >0 ( bzw. L(XO ’yo) < 0)
g, (x%,y0) &,/(x%,y9)
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Implicit representation of curves.

Consider the set of solutions of a scalar equation

g(x,y) =0

gradg = (gx,8y) # 0
then g(x, y) defines locally a function y = f(x) or x = f(y).
Definition: A solution point (x°, y?) of the equation g(x,y) = 0 with
e grad g(x°,y%) # 0 is called regular point,
e grad g(x°, %) = 0 is called singular point.
Example: Consider (again) the equation for a circle
gx,y)=x*+y*—r=0 mitr>0.
on the circle there are no singular points!
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Horizontal and vertical tangents.

Remarks:

a) If for a regular point (x°, y°) we have

g(x*)=0 und gy(xo) #0
then the set of solutions contains a horizontal tangent in x°.

b) If for a regular point (x°, y°) we have

g() £0 und g/(x°) =0

then the set of solutions contains a vertical tangent in x°.

c) If x% is a singular point, then the set of solutions is approximated at x°

second order” by the following quadratic equation

G () (x = x°)% + 28,0, (x°) (x = x)(y = ¥°) + g, () (y —¥°)* = 0
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Remarks.

Due to c) for g, 8y 8y # 0 we obtain:
detHg(x’) >0 : x%is an isolated point of the set of solutions
detHg(x’) <0 : x%is a double point
detHg(x®) =0 : x%is a return point or a cusp

Geometric interpretation:

a) If detHg(x%) > 0, then both Eigenvalues of Hg(x%) are or strictly positiv or
strictly negativ, i.e. x° is a strict local minimum or maximum of g(x).

b) If detHg(x°) < 0, then both Eigenvalues of Hg(x%) have opposite sign, i.e.
x0 is a saddel point of g(x).

c) If det Hg(x%) = 0, then the stationary point x° of g(x) is degenerate.
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Example 1.

Consider the singular point x° = 0 of the implicit equation
glxy) =y (x 1) +x*(x=2) =0

Calculate the partial derivatives up to order 2:

g = y?+3x°—4x
g = 2ykx-1)

Z&x = 6x—4

&y = 2

gy = 2(x-1)

Therefore x° = 0 is an isolated point.
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Example 2.

Consider the singular point x° = 0 of the implicit equation
gx.y) =y (x = 1) +x*(x +¢°) =0

Calculate the partial derivatives up to order 2:

g = Y +3+2xq°
g = 2y(x-1)

S = 6x—i—2q2

8y = 2y

gy = 2(x-—1)

wo = (7 2)

Therefore x° = 0 is an double point.
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Example 3.

Consider the singular point x° = 0 of the implicit equation
2 3 _
gx,y) =y (x-1)+x>=0

Calculate the partial derivatives up to order 2:

g = Yy +3x°

g = 2y(x-1)
&x = 6x

8y = 2y

gy = 2(x-1)

Hg(0) = (8 _2)

Therefore x° = 0 is a cusp (or a return point).

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 79 /171



Implicit representation of surfaces.

@ The set of solutions of a scalar equation g(x,y,z) =0 for gradg # 0 is
locally a surface in R3.

@ For the tangential in x° = (x°,y° 2%) 7 with g(x°) = 0 and grad g(x°) # 0"
we obtain by Taylor expanding (denoting Ax® = x — x?)
gradg - A% = g (<°)(x = x°) + &, () (y — ¥°) + &:(x°)(z — 20) = 0
i.e. the gradient is vertical to the surface g(x, y,z) = 0.

@ If for example g,(x°) # 0, then locally there exists a a representation at x°
of the form

z=f(x,y)
and for the partial derivatives of f(x,y) we obtain
1 8x 8y
grad f(x,y) = (. f,) = ——(gx. 8/) = (_>
(0 = (6 5) =~ (g) = (2. &
using the implicit function theorem.
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The inverted Problem.

Question: Given the set of equations
y =f(x)

with f : D — R", D C R” open. Can we solve it with respect to x, i.e. can
we invert the probem?

Theorem: (Inversion theorem)

Let D C R" be open and f : D — R" a C1function. If the Jacobian-matrix
Jf(xP) is regular for an x° € D, then there exist neighborhoods U and V
of x? and y? = f(x%) such that f maps U on V bijectively.

The inverse function f~1: V — U is also C! and for all x € U we have:

) = (JF0)) Yy =f(x)
Remark: We call f locally a C!~diffeomorphism.
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Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the
material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.
Then

vV = ar’h
O = 2nr*+2nrh
Let ¢ € Ry be the given volume (with x :=r,y := h),
f(x,y) = 2mx*+27xy
g(x,y) = nx’y—c=0
Determine the minimum of the function f(x, y) on the set
G :={(xy) eR} [g(x.y) =0}
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Solution of the constraint minimisation problem.

From g(x,y) = nx%y — ¢ = 0 follows
_c
YT e
We plug this into f(x, y) and obtain
2c

h(x) := 27x2 + 27TXL2 =2mx® + =
X X

Determine the minimum of the function h(x):

2 2c c\1/3
T
h'(x) = 4mrx X2—0 = 47rx—; = X—(§>

Sufficient condition

4 1/3
h"(x) = 4m + % = N ((C) > =127 >0
X

™
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General formulation of the problem.

Determine the extrem values of the function f : R” — R under the
constraint

g(x) =0
where g : R" — R™.
The constraints are
gi(xt,...,xn) = 0
gm(x1,...,xs) = 0

Alternatively: Determine the extrem values of the function f(x) on the

set
G:={xeR"|g(x) =0}
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The Lagrange—function and the Lagrange-Lemma.

We define the Lagrange—function
F(x) = f(x)+ > Aigi(x)
i=1

and look for the extrem values of F(x) for fixed A = (A1,...,Am)".
The numbers \;, i = 1,..., m are called Lagrange—multiplier.

Theorem: (Lagrange-Lemma) If x° minimizes (or maximizes) the
Lagrange—function F(x) (for a fixed \) on D and if g(x°) = 0 holds, then x° is
the minimum (or maximum) of f(x) on G := {x € D|g(x) = 0}.

Proof: For an arbitrary x € D we have
F() + ATg(x") < F(x) +ATg(x)

If we choose x € G, then g(x) = g(x°) = 0, thus f(x°) < f(x).
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A necessary condition for local extrema.

Let f and gj, i = 1,..., m, Cl=functions, then a necessary condition for an
extrem value x° of F(x) is given by

grad F(x) = grad f(x) + Z Aigrad gi(x) =0
i=1

Together with the constraints g(x) = 0 we obtain a set of (non-linear) equations
with (n+ m) equations and (n + m) unknowns x and .

The solutions (x°, A\%) are the candidates for the extrem values, since these
solutions satisfy the above necessary condition.

Alternatively: Define a Langrange—function
G(x,A) = F(x) + > _ Nigi(x)
i=1

and look for the extrem values of G(x,\) with respect to x and .
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Some remarks on suffiecient conditions.

© We can formulate a sufficient condition:
If the functions f and g are C>—functions and if the Hesse-matrix
HF(x?) of the Lagrange—function is positiv (negativ) definit, then x
is a strict local minimum (maximum) of f(x) on G.

0

@ In most of the applications the necessary condition are not satisfied,
allthough x? is a strict local extremum.

© And from the indefinitness of the Hesse-matrix HF (x°) we cannot
conclude, that x° is not an extremum.

@ We have a similar problem with the necessary condition which is
obtained from the Hesse—matrix of the Lagrange—function G(x, \)
with respect to x and A.
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An example of a minimisation problem with constraints.

We look for extrem values of f(x,y) := xy on the disc
K= {(x)"x*+y* <1}

Since the function f is continuous and K C R? compact we conclude from
the min—max—property the existence of global maxima and minima on K.

We consider first the interior K9 of K, i.e. the open set
KO = {(x,y) [ x*+y? <1}
The necessary condition for an extrem value is given by
gradf = (y,x) =0

Thus the origin x° = 0 is a candidate for a (local) extrem value.
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continuation of the example.

The Hesse—matrix at the origin is given by

Hf(O):<(1) é)

and is indefinit. Thus x° is a saddel point.

Therefore the extrem values have to be on the boundary which is
represented by a constraint equation:

glx,y)=x"+y*~1=0

Therefore we look for the extrem values of f(x,y) = xy under the
constraint g(x,y) = 0.

The Lagrange—function is given by
F(x,y) = xy + A(* +y* = 1)
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Completion of the example.

We obtain the non-linear system of equations

y+2x = 0
x+2y = 0
X24y? = 1

with the four solution
=3 = (VI VI KO = (-2
=g O = (VIZVIDT A0 = (V2,12
Minima and Maxima can be concluded from the values of the function
FxXM) =F(x@y=-1/2  F(xO) = F(xP)=1/2
i.e. minima are x(U and x®, maxima are x® and x®¥.

Ingenuin Gasser (Mathematik, UniHH) Analysis |1l for students in engineering

90 /171



Lagrange—multiplier—rule.

Satz: Let f,g1,...,8mn : D — R be C'-functions, und let xX° € D a local
extrem value of f(x) under the constraint g(x) = 0. In addition let the
regularity condition

rang (J g(x0)> =m

hold true. Then there exist Lagrange—multiplier A1, ..., Ay, such that for
the Lagrange function

F(x):=f(x)+>_ Nigi(x)
i=1

the following first order necessary condition holds true:

grad F(x°) =0
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Necessary condition of second order and sufficient
condition

Theorem: 1) Let x € D a local minimum of f(x) under the constraint g(x) = 0,
let the regularity condition be satisfied and let A1, ..., A, be the related
Lagrange-multiplier. Then the Hesse—matrix HF (x?) of the Lagrange—function is
positiv semi-definit on the tangential space

TG(X®) :={y € R"|grad g;(x’) -y =0fori=1,...,m}

ie itisy” HF(x%)y >0 for all y € TG(x°).

2) Let the regularity condition for a point x° € G be staisfied. If there exist
Lagrange—multiplier A1, ..., Ay, such that x° is a stationary point of the related
Lagrange—function. Let the Hesse-matrix HF (x°) be positiv definit on the
tangential space TG(x?), i.e. it holds

yTHF®)y >0 Vye TG(x%)\ {0},

then x? is a strict local minimum of f(x) under the constraint g(x) = 0.
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Example.

Determine the global maximum of the function
f(x,y) = —x>+8x—y?>+9
under the constraint
glx,y)=x*+y?~1=0
The Lagrange—function is given by
F(x) = —x*+8x —y> + 9+ A(x*> +y? — 1)

From the necessary condition we obtain the non-linear system

—-2x+8 = —-2)x
-2y = =2)\y
X2 —|—y2 - 1
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Continuation of the example.

From the necessary condition we obtain the non-linear system

—2x+8 = —2X\x
-2y = =2\y
X2y = 1

The first equation gives A\ # 1. Using this in the second equation we get y = 0.
From the third equation we obtain x = +1.

Therefore the two points (x,y) = (1,0) and (x,y) = (—1,0) are candidates for a
global maximum. Since

f(1,0)0=16  f(—1,0)=0

the global maximum of f(x, y) under the constraint g(x, y) = 0 is given at the
point (x, y) = (1,0).
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Another example.

Determine the local extrem values of
f(x,y,z) =2x+3y +2z
on the intersection of the cylinder surface
Mz = {(x,y,2)T e R3|x* 4+ y?> =2}

with the plane
E={(x,y,2)T €eR¥|x+z=1}

Reformulation: Determine the extrem values of the function f(x,y, z)
under the constraint

gl(X)y7Z) = X2+y2—220
g(x,y,z) = x+z—-1=0
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Continuation of the example.

The Jacobi—matrix

(5 0)

has rank 2, i.e. we can determine extrem values using the Lagrange—function:

F(Xayaz):2X+3y+22+A1(X2+y2_2)+)\2(X+Z—1)

The necessary condition gives the non-linear system

242Mx+X = 0
3420y = 0
24+X =0
X +y? = 2
x+z = 1
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Continuation of the example.

The necessary condition gives the non-linear system

242Mx+ X
34+2\1y
24 X
X4y

X+ 2z

From the first and the third equation it follows
2)\1X =0

From the second equation it follows A; # 0, i.e. x = 0.

Thus we have possible extrem values

(Xv)/vz) = (Ov \6’1) (X,y,Z) = (07_\671)

Ingenuin Gasser (Mathematik, UniHH) Analysis |1l for students in engineering

0

0

97 /171



Completion if the example.

The possible extrem values are
(x,y,2) = (0,V2,1) (xy,2)=(0,-V2,1)
and lie on the cylinder surface Mz of the cylinder Z with
Z = {(x,y,2)T eR¥|x*+y? <2}

Mz = {(x,y,2)T eR3|x®+y? =2}

We calculate the related functiuon values
f(0,v2,1) = 3v2+42
£(0,—v2,1) = —3v2+42

Thus the point (x,y, z) = (0,1/2,1) is a maximum an the point
(x,y,2) = (0,—+/2,1) a minimum.
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Chapter 2. Applications of multivariate differential calculus

2.4 the Newton—method
Aim: We look for the zero's of a function f : D — R"”, D C R":
fx)=0
@ We already know the fixed-point iteration
k1= B (xK)
with starting point x° and iteration map ¢ : R” — R”".

@ Convergence results are given by the Banach Fixed Point Theorem.

Advantage: this method is derivative-free.
Disadvantages:

@ the numerical scheme converges to slow (only linear),

@ there is no unique iteratin map.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 99 /171



The construction of the Newton method.

Starting point: Let Cl'~function f : D — R", D C R”" open.
We look for a zero of f, i.e. a x* € D with

f(x*)=0
Construction of the Newton—method:
The Taylor—expansion of f(x) at x° is given by

f(x) = F(x°) + JF(x®)(x = x°) + o(||Ix — X°|)
Setting x = x* we obtain
IO (x* = x0) = —f(x°)

1

An approximative solution for x* is given by x!, x! ~ x*, the solution of the linear

system of equations
Jf(xo)(x1 — XO) = —f(xo)
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The Newton—method as algorithm.

The Newton—method can be formulated as algorithm.

Algorithm (Newton—method):
(1) FOR k= 0,1,2,...
(2a) Solve Jf(x¥) - Axk = —f(x¥);

(2b) Set x**1 = xk + Axk;

@ In every Newton—step we solve a set of linear equations.
@ The solution Ax* is called Newton—correction.

@ The Newton—method is scaling-invariant.
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Scaling-invariance of the Newton—method.

Theorem: the Newton—method is invariant under linear transformations of the
form
f(x) = g(x) = Af(x)  for A € R™" regular,

i.e. the iterates for f and g are identical.

Proof: Constructing the Newton—method for g(x), then the Newton—correction is
given by
Ax = —(Jg(x)) " - g(x")

—(
—(AJF()) 7T - Af(x)
—(
—(

JF() T ATIA L F(XF)

J

F )71 (<)

and thus the Newton—correction of f and g conincide.

Using the same starting point x° we obtain the same iterates xX.
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Local convergence of the Newton—method.

Theorem: Let f : D — R” be a C'—function, D C R" open and convex. Let
x* € D a zero of f, i.e. f(x*) = 0.

Let the Jacobi—matrix Jf(x) be regular for x € D, and suppose the
Lipschitz—condition

I(IFE) T (I (y) = FC)IN < Llly = x| for allx,y € D,

holds true with L > 0. Then the Newton—method is well defined for all starting
points x € D with

2
[0 —x*|| < 7= and K. (x*)Cc D

with x* € K,(x*), k =0,1,2,..., and the Newton—iterates x* converge
quadratically to x*, i.e.

L
I = < S K = x|

x* is the unique zero of f(x) within the ball K,(x*).
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The damped Newton—method.

Additional obserrvations:
@ The Newton—method converges quadratically, but only locally.

@ Global convergence can be obtained - if applicable - by a damping term:

Algorithm (Damped Newton—-method):
(1) FOR k=0,1,2, ...
(2a) Solve Jf(xK) - Axk = —f(xk);

(2b) Set x**t1 = xk + X\ Axk;

Frage: How should we choose the damping parameters A7
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Choice of the damping paramter.

Strategy: Use a testfunction T(x) = ||f(x)|| such that
T(x) > 0, ¥YxeD
Tx) = 0 & f(x)=0

Choose A, € (0,1) such that the sequence T(x¥) decreases strictly monotonically,

i.e.
[FEI) < IFK)) fiar k> 0.

Close to the solution x* we should choose Ax = 1 to guarantee (local) quadratic
convergence.

The following Theorem guarantees the existence of damping parameters.

Theorem: Let f a C1—function on the open and convex set D C R”. For x € D
with f(x¥) # 0 there exists a ux > 0 such that

[F(x* 4+ AAX)[3 < [[f(x¥)|3 for all A € (0, k).
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Damping strategy.

11

For the initial iteration k = 0: Choose Ao € {1,3, 7, .-

such that

., Amin} as big as possible
IFO) 2 > (IO + X0 AX°)|2

holds. For subsequent iterations k > 0: Set Ay = Ax_1.
IF [[f(x¥)]l2 > |If(x* + AcAx¥)|2 THEN

o XK1= 5k 4 )\ AxK

o N\ =2\, falls A\ < 1.
ELSE

e Determine p = max{Ax/2, \c/4, ..., Amin} with

IFG 2 > IO+ Aedx) 2

o)\ =4
END
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Chapter 3. Integration in higher dimensions

3.1 Area integrals
Given a function f : D — R with domain of defintion D C R".

Aim: Calculate the volume under the graph of f(x):

V= /D F(x)dx

Remember (Analysis I1): Riemann—Integral of a function f on the

interval [a, b]:
b
l:/ f(x)dx

The integral [ is defined as limit of Riemann upper— and lower-sums, if the
limits exist and coincide.
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Construction of area integrals.

Procedure: Same as in the one dimensional case.

But: the domain of definition D is more complex.

Starting point: consider the case of two variables n = 2 and a domain of
definition D C R? of the form

D = [al, bl] X [32,b2] C Rz

i.e. D is compact cuboid (rectangle).
Let f : D — R be a bounded function.

Definition: We call Z = {(xo, x1, ..., %n), (Yo, Y1,---,¥m)} @ partition of the
cuboid D = [81, b1] X [é)z7 b2] if it holds

=X <x1<--<X,=Db
=Yo<yn< - <yYym=b
Z(D) denotes the set of partitions of D.
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Partitions and Riemann sumes.

Definition:

@ The fineness of a partition Z € Z(D) is given by

1Zl = n}?.x{‘xi-&-l - xil, |)’j+1 — _y_[|}

@ For a given partition Z the sets

QU = [X,',Xi+1] X [yj’yj+1]

are called the subcuboid of the partition Z. The volume of the subcuboid Qj
is given by
vol(Qy) = (Xi+1 =) - (Vj41 — ¥))

@ For arbitrary points x;; € Qj; of the subcuboids we call
Re(Z) =) f(xj) - vol(Qy)
ij

a Riemann sum of the partition Z.
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Riemann upper and lower sums.

Definition:

In analogy to the integral for the univariate case we call for a partition Z

Ur(Z) = ZXiGn(gUf(x)wol(Q,j)

0r(2) = szeug'f(x)-vol(Q,-j)

the Riemann lower sum and the Riemann upper sum of f(x), respectively.

Remark:

A Riemann sum for the partition Z lies always between the lower and the
upper sum of that partition i.e.

Ur(Z) < Re(Z2) < O¢(2)
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Remark.

If a partition Z; is obtained from a partition Z; by adding additional intermediate
points x; and/or y;, then

Uf(Zz) > Uf(Zl) and Of(ZQ) < Of(Zl)
For arbitrary two partitions Z; and Z, we always have:

Ur(Z1) < O¢(22)

Question: what happens to the lower and upper sums in the limit ||Z]] — O:
Ur = sup{Ur(Z2) : Z € Z(D)}
Of := inf{Or(Z2) : Z€Z(D)}

Observation: Both values Ur and Or exist since lower and upper sum are
monoton and bounded.
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Riemann upper and lower integrals.

Definition:

© The Riemann lower and upper integral of a function f(x) on D is given by

/Df(x)dx = sup{Us(Z) : Z€Z(D)}
/Ef(x)dx — inf{0/(2) : Z € Z(D)}

@ The function f(x) is called Riemann—integrable on D, if lower and upper
intergral conincide. The Riemann—integral of f(x) on D is then given by

/D F(x)dx := /D F(x)dx = /Bf(x)dx
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Remark.

Up to now we habe "only” considered the case of two variables:
f:D—R, DeR?

In higher dimensions, n > 2, the procdeure is the same.

Notation: for n =2 and n =3

/f(x,y)dxdy bzw. /f(x,y,z)dxdydz
D D

//D Flx,y)dxdy  bzw. ///D f(x,y, z)dxdydz

respectively.
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Elementary properties of the integral.

Theorem:

a) Linearity

/D (af(x) + Bg(x))dx = a /D F()dx + 3 /D 2(x)dx

b) Monotonicity
If f(x) < g(x) for all x € D, then:

/D F(x)dx < /D g(x)dx

c) Positivity
If for all x € D the relation f(x) > 0 holds, i.e. f(x) is non—negativ,

then
/ f(x)dx >0
D
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Additional properties of the integral.

Theorem:

a) Let Dy, D, and D be cuboids, D = D; U D, and vol(D; N D,) = 0, then
f(x) is on D integrable if and only if f(x) is integrable on D; and D,. And

we have
/Df(x)dx_/Dl f(x)dx+/Dz f(x)dx

b) The following estimate holds for the integral

’ /D F(x)dx

< sup|f(x)] - vol(D)

xeD
c) Riemann criterion
f(x) is integrable on D if and only if :
Ve>0 3ZeZ(D) : Of(Z)—Un(Z)<e
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Fubini's theorem.

Theorem: (Fubini's theorem) Let f : D — R be integrable, D = [a1, b1] X [a2, bo]
be a cuboid. If the integrals

bs by
Flx) = / fuy)dy und  G(y)= / F(x, y)dx

exist for all x € [a1, b1] and y € [az, by), respectively, then

/Df(x)dx = /b /b f(x, y)dydx
/f(x)dx = /b2 /b f(x,y)dxdy

D

holds true.

Importance:

Fubini's theorem allows to reduce higher-dimensional integrals to one-dimensional
integrals.
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Example.

Given the cuboid D = [0, 1] x [0, 2] and the function

f(x,y)=2—xy

We will show that continuous functions are integrable on cuboids. Thus we can
apply Fubini's theorem:

2 1 2 2yt
/f(x)dx = //f(x,y)dxdy:/ {2)(} dy
D o Jo 0 2 |0
2 27Y=2
Yy Yy
2—7 = 2 _ — =
fege=lpg] =

y

Remark: Fubini's theorem requires the integrability of f(x). The existence of the
two integrals F(x) and G(y) does not guarantee the integrability of f(x)!
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The characteristic function.

Definition: Let D C R"” compact and f : D — R bounded. We set

) f(x) : ifxeD
(X)'_{ 0 : ifxeR"\D

In particular for f(x) = 1 we call £*(x) the characteristic function of D.

The characteristic function of D is called Xp(x).

Let Q be the smallest cuboid with D C Q. The function f(x) is called
integrable on D, if f*(x) is integrable on Q. We set

/Df(x)dx::/Qf*(x)dx
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Measurability and null sets.

Definition: The compact set D C R” is called measurable, if the integral

vol(D) ::/Dldx:/QXD(x)dx

exists. We call vol(D) the volume of D in R".

The compact set D is called null set, if D is measurable and if vol(D) = 0 holds.

Remark:

@ If D a cuboid, then @ = D and thus

/Df(x)dx—/Qf*(x)dX_/Qf(X)dx

i.e. the introduced concepts of integrability coincide.
@ Cuboids are measurable sets.

@ vol(D) is the volume of the cuboid on R".
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Three more properties of integration.

We have the following theorems for integrals in higher dimensions.

Theorem: Let D C R"” be compact. D is measurable if and only if the
boundary 9D of D is a null set.

Theorem: Let D C R"” be compact and measurable. Let f : D — R be
continuous. Then f(x) is integrable on D.

Theorem: (Mean value theorem) Let D C R” be compact, connected and
measurable, and let f : D — R be continuous, then there exist a point
& € D with

/ F(x)dx = £(£) - vol(D)
D
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"Normal” areas.

Definition:

@ A subset D C R? is called "normal” area, there exist continuous functions

g,hand g, h with
D={(x,y)la<x<bund g(x) <y < h(x)}

and
D:{(X,y)\ggygE und g(y)SXSE(Y)}

respectively.

@ A subset D C R3 is called "normal” area , if there is a representation
D = {(x,x,x3)]a<x <b g(x)<x < h(x)

and @(xi, ) < xk < (i, ) }

with a permutation (i, j, k) of (1,2,3) and continuos functions g, h, ¢ and .
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Projectable sets.

Definition: A subset D C R" is called projectable in the direction x;,
i € {1,....n}, if there exist a measurable set B C R"~! and continuous

functions ¢, 1 such that

DZ{XER”‘)? = (Xl,...,X,',l,X,'+1,...,X,~,)TEB

und p(X) < x; <YP(X) }

Remark:
@ Projectable sets are measurable sets. Since "normal” areas are

projectable, "normal” areas are measurable.

@ Often the area of integration D can be represented by a union of
finite many "normal” areas. Such areas are then also measurable.
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Integration on "normal” areas and projectable sets.

Theorem: If f(x) is a continuous function on a "normal” area

D={(x,y) €R* : a<x<band g(x) <y < h(x)}

b ph(x)
/ f(x)dx = / / f(x,y)dy dx
D a Jg(x)

Analogous relations hold in higher dimensions: If D C R” is a projectable set in
the direction x;, i.e. D has a representation of the form

then we have

D:{XERH“Z = (Xl,...,X,',17X,'+]_,...,Xn)TEB

and ¢(X) < x; <Y(X) }

/Df(x)dx:/B (/::) f(x)dx,-) dx
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Example.

Given a function
F(x,y) = x+2y

Calculate the integral on the area bounded by two parabolas
D:={(x,y)| —1<x<1lund x*<y<2-x?}

The set D is a "normal” area and f(x,y) is continuous. Thus

1 2—x2 1 2
/ fx,y)dx = / (/ (x+ 2y)dy> dx :/ Dy + 2% dx
D -1 x2 -1
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Example.

Calculate the volume of the rotational paraboloid
Vi={(x,y,2)" | x¥*+y*<land x> +y?<z<1}
Representation of V as "normal” area

V={(xy,2)" | -1<x<1, —V1-x2<y<V1-x2and *+y* <z <1}

Then we have

vol(V) = / / /sz dzdydx_/ / 1—x2—y2)dydx

1 % y=v1i-x? 4 1
= / [(1X2)y} dx = 7/ (1 — x?)32dx
1 3], vie 3/

e

3

1
_ ! [x(\/ 1—x2)3+ gx 1-x2+ garcsin(x)} =
-1
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Integration over arbitrary domains.

Definition: Let D C R" ba a compact and measurable set. We call
Z ={D,...,Dn} an universal partition of D, if the sets Dy are compact,

measurable and connected and if

Di=D and Vi#j: D'nD=0.

s

1

J

We call
diam(Dj) := sup { [x — yl| | x,y € Dj }

the diameter of the set D; and
|Z|| := max{diam(D;) | j=1,...,m}

the fineness of the universal partition Z.

126 /171
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Riemann sums for universal partitions.

For a continuous function f : D — R we define the Riemann sums
m -
Re(Z) = (/) vol(Dy)
j=1

with arbitrary ¥/ € Di,j=1,...,m.

Theorem: For any sequence (Zx)ken of universal partitons of D with
IIZk|| — 0 (as k — o0) and for ony sequence of related Riemann sums
R¢(Zy) we have

k“—>moo Rf(Zk) = /D f(X)dX
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Center (of mass) of areas and solids.

An important application of the area integrals is the calculation of the
centers (of mass) of areas and solids.

Definition: Let D C R? (or R3) be a measurable set and p(x), x € D, a
given mass density. Then the center (of mass) of the area (or the solid) D
is given by
xdx
Xs 1= po
Jp p(x)dx

The numerator integral (over a vector valued function) is intended
componentwise (and gives as result a vector).
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Example.

Calculate the center of mass of the pyramid P

T ax
= < — <x<
Pi={(xy.2)" | max(lyl.|z)) < 3. 0<x<h}

Calculate the volume of P under assumption of constant mass density

h 1o [
/ / dz dy dx
0 _ax ax

vol (P)
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Continuation of the example.

and ., a2 X
2h h

/ / y
0 ax J_ ax

“2h 2h z

The center of mass of P lies in the point xs

Ingenuin Gasser (Mathematik, UniHH)

h 2 “h

// axy dy dx
0 J- h
0

= (2h,0,0)7.
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Moments of inertia of areas and solids.

Another important application of area integrals is the calculation of
moments of inertia of areas and solids.

Definition: (moments of inertia with respect to an axis)

Let D C R? (or R3) be a measurable set, p(x) denotes for x € D a mass
density and r(x) the distance of the point x € D from the given axis of
rotation.

Then the moment of inertia of D with respect to this axis is given by

= Xr2X X
0= [ s (4
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Example.

We calculate the moment of inertia of a homogeneous cylinder
Z:={(xy.2)" XP+y <’ —l/2<z<1/2}

with respect to the x—axis assuming a constant density p.

S)

/zﬂ(y2 +2%)d(x,y,2) = p /Z (v? +2%)d(x, v, 2)
VrZ=x2 1/2
/ / (y? + 2%) dz dy dx
—r VriE=x2J—1/2
FZ—XZ /3
= / / (Iy? +1 )dydx
—r 1’27)(2

7r/r

_ 2
= 12(3 +19)
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The theorem of transformation.

Aim: A generalisation of the (one dimensional) rule of substitution

©(b) b
/ F(x) dx = / Fo(D)¢ (1) dt
»(a) a

Theorem: (Theorem of transformation) Let & : U — R”, U C R” be open and a
C'-map. Let D C U be a compact, measurable set such that ® is a
Cl—diffeomorphisms on D°. Then ®(D) is compact and measurable and for any
continuous function f : (D) — R the rule of transformation

/ dx—/ f(P(u)) |det JO(u)| du
&(D)
holds.

Remark: Note that the rule of transformation requires the bijectivety of ¢ only
on the inertior D° of D — not on the boundary 9D!
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Example.

Calculate the center of mass of a homogeneous spherical octant
V={(xy,2)" | x*+y*+2*<1lund x,y,z >0}

It is easier to calculate the center of mass using spherical coordinates:

X r cos ¢ cos
y | = rsinpcosyy | =(r,p,¢)
z rsiny

The transformation is defined on R3 and with
T T
D=[0,1 [o, —} [o, —}
[0,1] %10, 5] x |0, 5
we have ®(D) = V. It is ® on D° a C'—diffeomorphisms with

det JO(r, @, 10) = r? cos 1)
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Continuation of the example.

According to the theorem of transformation it follows

1 prm/2 pw/2 T
vol (V) = / dx = / / / r? cos dipdpdr = 3
v o Jo 0

1 pmw/2 pm/2
/de:/ / / (rcos pcosp) r? costh dip de dr
v 0o Jo 0

1 /2 /2 T
/ ridr - / cospdyp - / cos? i) dip = —
0 0 0 16

The it follows x; = %.

and

vol (V) - xs

In Analogy we calculate ys = zs = %.
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The Theorem of Steiner.

Theorem: (Theorem of Steiner) For the moment of inertia of a homogeneous
solid K with total mass m with respect to a given axis of rotation A we have

Oa = md2+65

S is the axis through to center of mass of the solid K parallel to the axis A and d
the distance of the center of mass x; from the axis A.

Idea of the proof: Set x := ®(u) = xs + u. Then with the unit vector a in
direction of the axis A

o1 = p / (%) — (x,2)%)dx

= X u, X u, — (X u 2X
- p/D(<s+ X ) — (x5 + 0,2)2)d

where
D :={x—xs|x€ K}
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Chapter 3. Integration over general areas

3.2 Line integrals

We already had a defintion of a line integral of a scalar field for a piecewise
Cl-curve c: [a,b] — D, D C R", and a continuous scalar function f : D — R

/f(x) ds ;:/ F(e(8)e(2)]] dt

where || - || denotes the Euklidian norm.

Generalisation: Line integrals of vector valued functions, i.e.

/C f(x)dx :=?

Application: A point mass is moving along c(t) in a force field f(x).
Question: How much physical work has to be done along the curve?
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Line integral on vector fields.

Definition: For a continuous vector field f : D — R"”, D C R"” open, and a
piecewise Cl—curve c : [a, b] — D we define the line integral on vector
fields by

/Cf(x)dx - /ab<f(c(t),¢(t)> dt

Derivation: Approximate the curve by piecewise linear line segments with
corners c(t;), where

Z={a=t <ty < - <tym=>b}

is a partition of the interval [a, b].

Then the workload along the curve c(t) in the force field f(x) is
approximately given by :

~1

Ar Y (f(e(t), cltita) — (i)

i

3

Il
o
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Continuation of the derivation.

Thus:
n m-—1
A = N(ci(tiva) — ¢(t)
j=1 i=0
n m-1
= )&i(mip)(tiva — i)
j=1 i=0

For a sequence of partitions Z with ||Z]| — 0 the left side converges to the
above defined line integral on vector fields.

Remarks: For a closed curve c(t), i.e. c(a) = c(b), we use the notation

7{ f(x) dx
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Properties of the line integral on vector fields.

o Linearity:

/C (af(x) + Ba(x)) dx = a / F(x) dx + B / g(x) dx

/ f(x) dx = — / f(x) dx,

—C c

o ltis:

where (—c)(t) :=c(b+ a—t), a<t < b, denotes the inverted path.

/C i f(x) dx = / 1 f(x) dx + / 2 f(x) dx

where ¢ + ¢» denotes the path composed by c; and cp such that the
end point of c; coincides with the starting point of cs.

@ ltis
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Further properties of the line integral on vector fields.

@ The line integral on vector fields is invariant under paramterisation.

o ltis
b
[ f0dx = [ (H(e(e). T} le(e) o = [ (£.T) s
¢(t)

with the tangent unit vector T(t) = ———

lle(e)l

@ Formal notation:

[ia= [ > 9= 3 JLCES

with

[ A= /abf,-(c(t»c'f(f) a
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Example.

Let x € R3 and
f(X) = (_an722)T
c(t) := (cost,sint,at)” with 0 <t <27

We calculate

/Cf(x) dx — /(—ydx 4 xdy + 2%dz)

C

2w
= / (—sint)(—sint) + costcost + a’t2a) dt
0

2w
= / (1+a%t?) dt
0

33
= 2n+ §(27T)3
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The circulation of a field along a curve.

Definition: Let u( ) be the velocity field of a moving fluid. We call the
line integral §_u(x)dx along a closed curve the circulation of the field u(x).

Example: For the field u(x, y)

= (y,0)" € R? we obtain along the curve
c(t) =(rcost,1+rsint)T, 0< ¢

< 27 the circulation

27

?{u(x) dx = A (14 rsint)(—rsint)dt

2w
= / (—rsint — r’sin t)dt
0

2 27

r .
= [rcost—Q(t—sm tcost)| = -—mr
0

2
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Curl free vector fields.

Definition: A continuous vector field f(x), x € D C R”, is called curl free,
if the line integral along all closed and piecewise Cl—curves c(t) in D
vanishes, i.e.

j(I{f(x) dx=0 for all closed c.
C

Remark: A vector field is curl free if an only if the value of the line
integral [_f(x)dx depends only from the starting and the end point of the
path, but not on the specific path c. In this case we call the line integral
path independent.

Question: Which criteria on the vector field f(x) guarantee the path
independency of the line integral?
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Connected sets.

Definition: A subset D C R"” is called connected, if any two points in D
can be connected by a piecewise Cl—curve:

Vxy%eD : Jc:[a,b] =D : c(a)=x" A c(b) =y°
An open and connected set D C R" is called domain in R".

Remark: An open set D C R" is not connected if and only if there exist
disjoint and open sets Uj, U, C R" with

UlﬁDi(Z), U2ﬁD7£®, D c U u U,

Not connected sets are — in contrary to connected sets — a separable in at
least two disjoint open sets.
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Gradient fields, antiderivatives, potentials.

Definition: Let f : D — R" be a vector field on a domain D C R". The vector
field is called gradient field, if there is a scalar C*—function ¢ : D — R with

f(x) = Veo(x)
The function ¢(x) is called antiderivative or potential of f(x), and the vector field

f(x) is called conservativ.

Remark: Suppose a mass point is moving in a conservative force field K(x), i.e. K
has a potential ¢(x) such that K(x) = V(x). The the function U(x) = —¢(x)
gives the potential energy:

K(x) = mx = =V U(x)
Multiplying this relation with x we obtain

mi#) + (VUG %) = & (;mnxw + U(x)) —0
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Fundamental theorem on line integrals.

Theorem: (Fundamental theorem on line integrals)
Let D C R" be a domain and f(x) a continuous vector field on D.

1) If f(x) has a potential ¢(x), then for all piecewise
Cl—curves c : [a, b] — D we have:

In particular the line integral is path independent and f(x)
is curl free.

2) In the opposite direction we have: If f(x) is curl free, then f(x) has a
potential ¢(x).
Let x° € D be a fixed point and c, (for x € D) denotes an arbitrary piecewise
Cl—curve in D connecting the points x° and x, then ((x) is given by:

p(x) = /f(x) dx + const.

Cx
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Example I.

The central force field

X
K(X) [y
1[I
has the potential
1
U(x) = N —(F +6 +5)7?

since

— X
VUK = 06+ +3) 2 (x,y,2)" = TP

The workload along a piecewise Cl—curve c : [a, b] — R3\ {0} is given by

A= [~ (g = o)
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Example Il.

The vector field
2xy + 23

f(x) :== x? +3z
3xz%2 + 3y

has the potential
o(x) = X%y + xz° + 3yz

For an arbitrary C'—curve c(t) from P = (1,1,2) to @ = (3,5, —2) we
have

/f(x) dx = o(Q) — p(P) = —9 — 15 = 24

If we interpret f(x) as electrical field, then the line integral on vector fields
represents the electrical voltage between the two points P and Q.
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Example IlI.

Consider the vector field

f(x,y):X2_1H/2< _o mit (x,y)T € D =R2\ {0}

For the unit sphere c(t) := (cost,sint)”, 0 < t < 27, we obtain

/C f(x)dx = /0 a (f(c(t), &(t)) dt
= [{(E) (e )) e
= /Ozﬂldt:27r

f(x,y) is therefore not curl free and has no potential on D.
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Requirements for potentials.

Remark: If f(x), x € D C R3 is a C!-vector field with potential ¢(x), then
curl f(x) = curl (Ve(x)) =0 fir allex e D
Thus curl f(x) = 0 is a necessary condition for the existence of a potential.

If we define for a vector field f : D — R2, D  R?, the scalar curl

0f of
§(X7Y) - aiy(xvy)

curl f(x,y) ==
then curl f(x, y) = 0 is a necessary condition even in 2 dimensions.

The condition
curl f(x) =0

is a sufficient condition, if the domain D is simply connected, i.e. if D has no

"holes" .
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Example.

We consider the vector field

f(X>y): .

Calculating the curl gives

w[5(7)

x2 + y?

The curl of f(x, y) vanishes.
But f(x, y) has on the set D = R?\ {0} no potential.

The domain is not simply connected.
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( e ) with (x,y)" € D =R?\ {0}

O _x \, 0
Ox \ x2 + y2 ox

1 2x2

y
x2 + y?

1 2y?

x2+y?2 (X2 4 y2)? +

0
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The integral theorem of Green for vector fields in R2.

Theorem: (Integral theorem of Green)

Let f(x) be a C1-vector field on a domain D C R2. Let K C D be compact
and projectable with respect to both coordinates, such that K is bounded
by a closed and piecewise Cl—curve c(t).

The parameterisation of c(t) is chosen such that K is always on the left
when going along the curve with increasing parameter (positive

circulation). Then:
]{f(x) dx = / curl f(x) dx
c K

The integral theorem is also valid for domains which can be splittet in
finite many domains which all are projectable with respect to both
coordinate directions, so called Green domains.

Remark:
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Alternative formulation of the integral theorem of Green I.

We have seen that the relation

fi f(x) dx = f (f,T)ds

holds, where T(t) = % denotes the tangent unit vector.

With the intergral thoerem of Green we obtain

/Kcurl f(x) dx = ng(f,T) ds

Is f(x) a velocity field, then the fluid motion described by f is curl free if

curl f(x) = 0, since
}l{f(x)dx

is the circulation of f(x).
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Alternative formulation of the integral theorem of Green II.

If we substitute in the above equations the vector T by the outer normal vector
n=(Ty,—T1)", we obtain

?{ (f,n)ds = f{ (ﬂTQ—fQTl)ds:f. <( _f>,T> ds
oK oK oK 1
—f )
/rot ( ) dx:/ divf dx
K fl K

/Kdiv f(x) dx = ?iK(f, n) ds

If f(x) is the velocity field of a fluid motion, then the right side describes describes
the total flow of the fluid through the boundary of K. Therefore if divf(x) =0,
then the fluid motion is is source and sink free (or divergence free).

and thus the relation
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Back again to the existence of potentials.

Conclusion: If curlf(x) = 0 for all x € D, D C R? a domain, then we have

7{ F(x) dx = 0

for every closed piecewise Cl—curve, which surounds a Green domain
B C D completely.

Definition: A domain D C R” is called simply connected, if any closed
curve ¢ : [a, b] — D can be shrinked continuously in D to a point in D.
More precise: There is a continuous map for x> € D

® :[a,b] x [0,1] = D

with ®(t,0) = c(t), for all t € [a, b] and ®(t,1) =x° € D, for all
t € [a, b]. The map ®(t,s) is called a homotopy.
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Criteria for integrability for potentials.

Theorem: Let D C R” be a simply connected domain. A Cl-vector field
f: D — R" has a potential on D if and only if the integrability criteria

Jf(x) = (Jf(x))"  forallxe D

are satisfied, i.e. if of of
k fi .
— = Vi, k
Ox O I

Remark: For n = 2,3 the integrability criteria coincide with

rotf(x) =0
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Example.

For x € R3\ {0} let the vector field be

2
¥+sinz
P

2y2

fx) = Inr? + —5 +z&’ with r? = x? 4+ y? + 22,
r

2yz

— + e’ + xcosz
;

We would like to study the existence of a potential for f(x).

The set D = R3\ {0} is apparentely simply connected. In addition we have
curlf(x) =0

Thus f(x) has a potential.
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Calculation of the potential.

We need to have: f(x) = Vi(x). Thus:

0 2
aif - fl(X7y7Z): %+Sinz

By integration with respect to the variable x we obtain
o(x) =yInr? + xsinz + c(y, z)

with an unknown function c(y, z).

Pluging into the equation

9 y®
y H(x,y,z) =Inr? + 2 + ze¥
gives
2y 0 2
I+ 24 4

2
_ 2
2 Ty TNty
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Calculation of the potential (continuation).

From this we get the condition

and therefore
cly.2) = z¢* + d(2)

for an unknown function d(z). So far we know:
o(x) =yInr? + xsinz + ze + d(z2)
The last condition is

2yz

0
i f(x,y,z) = 7+ey+xcosz

0z
Therefore d’(z) = 0 and the potential is given by

o(x) =yInr’ + xsinz+ze’ + ¢ force R
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Chapter 3. Integration in higher dimensions

3.3 Surface integrals

Definition: Let D C R? be a domain and p: D — R3 a C'-map
_ : 3 _ T 2
x=p(u) withxeR andu= (v, m2)’ € DCR

If for all u € D the two vectors

ouy Ouo

are linear independent, we call
F:={p(u) |ue D}

a surface or a piece o surface. The map x = p(u) is called a
parameterisation or parameter representation of the surface F.
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Example I.

We consider for a given r > 0 the map
r cos

p(p,z) =1 rsing for (¢, z) € R%
z

The corresponding parameterized surface is an unbounded cylinder in R3.

If we restrict the area of definition, e.g.
(p,2) € K :=[0,27] x [0, H] C R?

we obtain a bounded cylinder of height H.
The partial derivatives

o —rsiny op 0
— = rcos ¢ , —=|( 0
Op 0 0z 1

of p(i, z) are linearly independent on R2.
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Example Il.

The graph of a scalar C*~function ¢ : D — R, D C R?, is a surface.

A parametrisation is given by

tn
p(u1, up) = up forue D
@(Ul, U2)
The partial derivatives

0 0

7p = 0 , 7p — 1

Ou ou

Puy Pup

are linear independent.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 163 /171



The tangential plane on a surface.

The two linear independent vectors

p

op, o
8u1( 0) und —(u”)

8U2
are tangential on the surface F.

The two vectore span the tangential plane T oF of the surface F at the
point x = p(u).

The tangential plane has a parameter representation

Op

ToF @ x=x +A8—( )+ u "o

Du —(u9) for A, u € R.

Question: How can wie calculate the size of a given surface F?
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The surface integral of a piece of surface.

Definition: Let p : D — R3 be a parameterisation of a surface, and let K C D be
compact, measurable and connected. Then the "content” of p(K) is defined by
the surface integral

dp dp

do := —_— X — d
/p(K) A 8U]_ ! 6U2 (U)H .
We call 5 5
_ || 9P 9P
do := H3U1(u) X 0, (u)|| du

the surface element of the surface x = p(u).

Remark: The surface integral is independent of the particular parameterisation
of the surface. This follows from the theorem of transformation.
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Example.

For the lateral surface of a cylinder Z = p(K) with

K :=[0,27] x [0, H] C R?

and

rcos
x=p(p,z):= | rsiny for (¢,z) € R?
z

we obtain
dp _ Op
— X —||=r
dp 0z

the value

2 H
0(2) = / do :/ rd(p, z) :/ / rdzdyp = 27wrH
V4 K 0 0
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Example.

If the surface is the graph of a scalar function, i.e. x3 =
the related tangential vectors we have

Ip
8x1

Thus we obtain

and

Jp
" o Oxp

H Ix

Ingenuin Gasser (Mathematik, UniHH)

1
0

X1

dp

>< R
8X2

©(x1,x2), the for

0 2%
1 = —Px
Px> 1

= /1493 ¢

= / do
p(K)
= / \/ 1+ 90>2(1 + (10>2<2 d(X17X2)
K
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Example.

For the surface of the parabloid P, given by
P:={(x,%,x) €R¥|x3=2—x7 —x3, x{ +x5 <2},

we have

opP) = /2 i 1+ 4x2 +x2 d(x1, %)
X x5 <2
V2 2w 2
= / / \/mrdcpdrzﬂ/ V1+4sds
o Jo 0
1(1+45)3/2 2 1(27 1) L
= i — =T —_ — = —17T
6 . 6 3
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Remark.

For the vector product of two vectors a,b € R3 we have
la > b]|? = [|a|/?|[b[* — (a, b)?

Thus we have
2

o0 || oe[*| 20 [*_ /o Op\?
8X1 aXQ N 8X1 8X2 8X1 ’ 3X2
If we define
_|[or — (O Dby
N 8x1 ’ . 8x1 aXQ 8X2 ’

we obtain the relation
=V EG — F2 d(ul, U2)
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Example.

For the surface element of the sphere

82 = {(a2x)” €R 4 458 +38 = r7)

we obtain using the parameterisation via spherical coordinates

X1 cos  cos 6 o
xp | =r| sinpcosd fir (p,0) € [0,27] x [——, —}
X3 sin 0

the relations

p —sinpcosd p —C.OSQOS.IHG
a—:r cos  cos 6 und %:r —sinpsinf
¥ 0 cosf

Thus we have

E=r’cos’d, F=0, G=r?
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Continuation of the examples.

With
E=r’cos’, F=0, G=r?

we obtain the relation
=V EG — F2 d(ul, U2)
and therefore

do = r?cosfd(y,0) fiir (p,0) € [0, 27] x [—g, g]

We can calculate the surface of the sphere as follows

w/2 2w
O = /do—/ / r? cos 0 dy db
S? w/2

= 271r? sm9 = 47r?

—7/2
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