Remark.

For the vector product of two vectors a,b € R3 we have
lla x b = flafl?[|b][? - (a, b)2

Thus we have

ap 8p2_ (9p?'8p2 dp 9p\?
Ox1  Ox oxy O0x2 Ox1’ Oxo
If we define
2 2
Y R N Y 1Y
(9X1 ’ ' (9X1 ’ 8X2 ' 6X2 ’
we obtain the relation
do =V EG — F? d(uy, up)
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Example. 4 <
For the surface element of the sphere | -/
i S
S?={(x1,%,8)T €R® |2 + 3 42 = 12} /
_ﬁ_jf[\,;.n ¥ B --_._’%
we obtain using the parameterisation via spherical coordinates e i ol
X1 cos pcosf - £
X2 | =r| sinpcosh fiir (¢, 6) € [0,27] x [—E,E] (] 1w &g
X3 sinf
the relations ’
dp —sinpcosf. \ T . ap —cospsinf
3= cos ¢ cos f und 0= —sinpsind
v 0 - cos @
Thus we have \ll
E=r’cos’f, F= 0, G=r>
=] (= s E E OaeE
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Continuation of the examples.

With

E=r?cos?9, F=0, G=r?

we obtain the relation

=VEG— F?2d(u,u) .
Wy

and therefore /--—-'j

We can calculate the surface of the sphere as follows |

2 " T
do = r?cos0d(p,0) fiir (i0,0) € [0,27] x P‘E 5] j

/ ;. ) l‘—\ .
[ | S'mzu\ s phils 1‘1'1\ /

7

/2 2 \ . < ﬂzbf
0 = ‘/Zdo._/7r /ﬂr cosGd<pd0 ' % /
S?

/2
= 2nr’sin 0 = 47r?
—m/2
ar «@ = = = ©Dac
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Surface integrals of scalar and vector fields.

Definition: Let x = p(u) be a C'~parametrisation of a surface F = p(K),
where K C D is compact, measurable and connected.

e For a continuous function f : F — R the surface integral of a scalar

field is defined as

/'nw—/fm»ﬂ/ﬂﬂif/

Hle

o For a continuous vector field f : F — R? the surface integral of a

vector field is defined as /\,\f_/:; hon M{ @ ./‘Lv\ O~ h;,- E/VL’,/J S
/f(x) do :=/ < (p (u)) 8p > du
F Buz
P
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Alternative representation of surface integrals.

Othere representations of surface integrals of vector fields

The unit normal vector n(x) on a surface F is given by

op op

n(x) = n(p(u)) = ————\ o

8u1 BUZ

Therefore we can write

[feado = [ (o0, 52 x 52 du

= [ @), o) | g
------ ~do
= [ (669, do
i ® 9aC
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Interpretation of surface integrals.

Remark: ) f('(/ =1 St12e J/ yw\[@«l
o If f(x) is the mass density of a surface with a mass distribution, the
the surface integral of the scalar field (mass density) gives the total
mass of the surface.

o If f(x).is the velocity field of a stationary flow, then the surface
integral of the vector field (velocity field) gives the amount of flow
" which passes the surface F per time unit, i.e. the flow of f(x) through '

the surface F.

o If F is a closed surface, i.e. surface (boundary) of a compact and
simply connected region (body) in R3, we write

?{_ f(x) do bzw. ﬁ_ f(x) do

The parameterisation is chosen such that the unit normal vector n(x)
is pointing outwards. o el e B e By B T

Ingenuin Gasser (Mathematik, UniHH) Analysis 1! for students in engineering 174 /182



The divergence theorem (GauB theorem).

Theorem: (divergence theorem/GauB theorem) Let G C R3 a compact
and measurable standard domain, i.e. G is projectable with respect to all
coordinates. The boundary &G consists of finite many smooth surfaces
with outer normal vector n(x).

If f: D — R3 is a Cl-vector field with G C D, then

/Gdiv f(x) dx = }éc f(x) do

Interpretation of the GauB theorem: The left side is an integral of the
scalar function g(x) := div f(x) over G. The right hand side is a surface
integral of the vector field f(x). If f(x) is the vectorfield of an

S

s

.
o

-

incompressible flow, then div f(x) = 0 and therefore - f
£(x) d 0 -
x)do =0 - )
aG ‘m
o [ 2 = E 9vae
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Example.

Consider the vector field

f(x) = x = (x1, %2, x3) "

s;m
Ok. ke

S -

/"/

&

and the sphere K:
K:= {(X1:X2,X3)T eR3 | x} + X3 +x§ <1}
We have 3 .
Qons§  divf()=3 = ‘% Qx F{v
and thus l | ’
g fv,d}ula = / div f(x) dx:3-v0|(K) = A o L%Q/()

The rel)ated surface integral can be calculated easily using spherical
coordinates.

a6 = = = wace
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The Green formulas.

» Theorem: (Green formulas) Let the set G C R3 satisfy the prerequisites
of the GauB theorem. For C*~functions f,g : D — R, G C D we have the

relations:
» . ' og A
. fA f = T N L
f (:~>j () /G( g:{— (V' ,Vg())xdx - f@n do ) \5‘5) 5—6\ o,
/’//‘\ 2% ey &«——~ = “ 2k
D (B ges e o S

We denote by e ne W[éél
of .
—(x)=Dnf(x) forxedG
on
the directional derivative of f(x) in the direction of the outer unit normal
vector n(x).

or <& = = z wace
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5 b

«

Proof of the Green formulas.

We set
F(x) = f(x) - Vg(x)

Then we have

. o (;.08), 0 (; 08\, 0 (; %
i Fx) 8—x1 (f" 5(;) * Ix (f. 8xz) E Ox3 d Ox3
= f-Ag+(VFf,Vg)

Now we apply the GauB theorem: v J

— & Vfoh D

‘/G.(ng-F(Vf,Vg))dx " ‘/GdiVF(X)dX=ng(F,n) do

7]
= f f(Vg,n)do = 28 do
a6 oG On

The second formula follows directely by exchanging f and g.

o ) = = Q>
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The Stokes theorem.

Theorem: (Stokes theorem)

Let f : D — R3 be a Cl-vector field on a domain D C R3.
=

Let F = p(K) be a surface in D, F C D, with parameterisation x = p(u),
u e R2 Let K C R2 be a Green area.

The boundary K is parameterised by a piecewise smooth C—curve c and
the image &(t) := p(c(t)) parameterises the boundary 9F of the surface F.

The orientation of the boundary curve &(t) is chosen such that
n(€(t)) x &(t) points in the direction of the surface.

/Fcurlf(x) dozﬁFf(x) dx

Then we have

ar <3 =, «2r» B VAE
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Example.
Given the vector field
— T . :
f(X,y,Z) - (——yvx’ —Z) .

and let the closed curve c : [0,27] — R3 be parameterised by &
© ¢(t) = (cost,sint,0)T  fir0<t<2m fw“"’*"l

. ) V7 %

Then: , ‘{;_,_‘ / 2

./HW» hgwol } j{f(x) dc == /021r<f(c(t)),é(t)> dt

(o4

2 —sint —sint
= / < cost ) cost dt
0 0 0
2 =
= (sin” t + cos? t) dt = 2m
0 NV T —
d o & = = = 9var
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Continuation of the example.

We define a surface F C R3, bounded by the curve c(t):

x COS (p COS 7P Q=/z M}f .

y | = sinpcostyp | =:p(p, )
z sin
with (¢, ¥) € K = [0,2x] x [0,7/2], i.e. the surface F is the upper half I Jﬁf““* <
sphere. ’ Soron s Pla
Stokes theorem tells us: | Wi l‘w@f Shee
o Quod O«ﬁyﬁ
/curlf(x) dozjl{ f(x) dx =T
F c=0F '
We have already calculated the right side, a surface integral of a vector
field:
-7{ f(x) dx = 2w
c=0F .
= & = & = wae
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Completion of the example.

It remains a surface integral of a vector field:

7

(_:V\/:L7__, (;"’"’t . ap 8p
fF.mff(x)doa/K <mff(p(<p,w)) x2 ¢> Fdi

Attention: the right hand side is an intergal over a domain.

We have curl f(x) = (0,0,2)7 and

. 2
- 3 \ ) Bp Bp cclasgocos2 P
/ \ [P 30 X = 3 sin p cos“
TARNC N +CA,(/ \.\\ T sin 1 cos ¢
Thus: i

/2 Zw/\/k_,/a) /2 I

curlf x) do = 2sintp cosp dpdip = 27r sin(2y) dyp = 2m ‘,

AN W” ——— )D - |

§m ¢ T o S = = = wac
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