Remark.

For the vector product of two vectors $a,b\in\mathbb{R}^3$ we have

$$\|\mathbf{a} \times \mathbf{b}\|^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2$$

Thus we have

$$\left\| \frac{\partial \mathbf{p}}{\partial x_1} \times \frac{\partial \mathbf{p}}{\partial x_2} \right\|^2 = \left\| \frac{\partial \mathbf{p}}{\partial x_1} \right\|^2 \left\| \frac{\partial \mathbf{p}}{\partial x_2} \right\|^2 - \left\langle \frac{\partial \mathbf{p}}{\partial x_1}, \frac{\partial \mathbf{p}}{\partial x_2} \right\rangle^2$$

If we define

$$E := \left\| \frac{\partial p}{\partial x_1} \right\|^2, \quad F := \left\langle \frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2} \right\rangle^2, \quad G := \left\| \frac{\partial p}{\partial x_2} \right\|^2,$$

we obtain the relation

$$do = \sqrt{EG - F^2} d(u_1, u_2)$$

Ingenuin Gasser (Mathematik, UniHH)

Analysis III for students in engineerin

Example.

For the surface element of the sphere

$$S_r^2 = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_2^2 = r^2\}$$

we obtain using the parameterisation via spherical coordinates

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = r \begin{pmatrix} \cos \varphi \cos \theta \\ \sin \varphi \cos \theta \\ \sin \theta \end{pmatrix} \qquad \text{für } (\varphi, \theta) \in [0, 2\pi] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

the relations

$$\frac{\partial \mathbf{p}}{\partial \varphi} = r \begin{pmatrix} -\sin \varphi \cos \theta \\ \cos \varphi \cos \theta \\ 0 \end{pmatrix} \quad \text{und} \quad \frac{\partial \mathbf{p}}{\partial \theta} = r \begin{pmatrix} -\cos \varphi \sin \theta \\ -\sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$$

Thus we have

Industrial We flave
$$E=r^2\cos^2\theta,\quad F=0,\quad G=r^2$$
 Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineering 170/171

Continuation of the examples.

With

$$E = r^2 \cos^2 \theta, \quad F = 0, \quad G = r^2$$

we obtain the relation

$$do = \sqrt{EG - F^2} d(u_1, u_2)$$

$$do = r^2 \cos \theta \ d(\varphi, \theta)$$
 für $(\varphi, \theta) \in [0, 2\pi] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

we obtain the relation
$$do = \sqrt{EG - F^2} \, d(u_1, u_2)$$
 and therefore
$$do = r^2 \cos \theta \, d(\varphi, \theta) \qquad \text{für } (\varphi, \theta) \in [0, 2\pi] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 We can calculate the surface of the sphere as follows
$$O = \int_{S_r^2} do = \int_{-\pi/2}^{\pi/2} \int_0^{2\pi} r^2 \cos \theta \, d\varphi \, d\theta$$

$$= 2\pi r^2 \sin \theta \Big|_{-\pi/2}^{\pi/2} = 4\pi r^2$$

Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineer

Surface integrals of scalar and vector fields.

Definition: Let x = p(u) be a C^1 -parametrisation of a surface F = p(K), where $K \subset D$ is compact, measurable and connected.

• For a continuous function $f: F \to \mathbb{R}$ the surface integral of a scalar field is defined as

$$\int_{F} f(x) do := \int_{K} f(p(u)) \underbrace{\left\| \frac{\partial p}{\partial u_{1}} \times \frac{\partial p}{\partial u_{2}} \right\| du}_{O_{1} \otimes O_{2}} du$$

is defined as $\int_{F} f(x) do := \int_{K} \left\langle f(p(u)), \frac{\partial p}{\partial u_{1}} \times \frac{\partial p}{\partial u_{2}} \right\rangle du$ ullet For a continuous vector field ${\sf f}: F o \mathbb{R}^3$ the surface integral of a vector field is defined as

Alternative representation of surface integrals.

Othere representations of surface integrals of vector fields

The unit normal vector n(x) on a surface F is given by

$$n(x) = n(p(u)) = \frac{\frac{\partial p}{\partial u_1} \times \frac{\partial p}{\partial u_2}}{\left\| \frac{\partial p}{\partial u_1} \times \frac{\partial p}{\partial u_2} \right\|}$$

Therefore we can write

$$\int_{F} f(x) do = \int_{K} \left\langle f(p(u)), \frac{\partial p}{\partial u_{1}} \times \frac{\partial p}{\partial u_{2}} \right\rangle du$$

$$= \int_{K} \left\langle f(p(u)), n(p(u)) \right\rangle \underbrace{\left\| \frac{\partial p}{\partial u_{1}} \times \frac{\partial p}{\partial u_{2}} \right\| du}_{\int_{G}} du$$

$$= \int_{F} \left\langle f(x), n(x) \right\rangle do$$

Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineering

Interpretation of surface integrals.

Remark:) f(1 = 1

Size of simple

- If f(x) is the mass density of a surface with a mass distribution, the the surface integral of the scalar field (mass density) gives the total mass of the surface.
- If f(x) is the velocity field of a stationary flow, then the surface integral of the vector field (velocity field) gives the amount of flow which passes the surface F per time unit, i.e. the flow of f(x) through the surface F.
- If F is a closed surface, i.e. surface (boundary) of a compact and simply connected region (body) in \mathbb{R}^3 , we write

$$\oint_F f(x) do \qquad \text{bzw.} \qquad \oint_F f(x) do$$

The parameterisation is chosen such that the unit normal vector n(x) is pointing outwards.

The divergence theorem (Gauß theorem).

Theorem: (divergence theorem/Gauß theorem) Let $G \subset \mathbb{R}^3$ a compact and measurable standard domain, i.e. G is projectable with respect to all coordinates. The boundary ∂G consists of finite many smooth surfaces with outer normal vector n(x).

If $f: D \to \mathbb{R}^3$ is a \mathcal{C}^1 -vector field with $G \subset D$, then

$$\int_{G} \operatorname{div} f(x) \, dx = \oint_{\partial G} f(x) \, do$$

Interpretation of the Gauß theorem: The left side is an integral of the scalar function g(x) := div f(x) over G. The right hand side is a surface integral of the vector field f(x). If f(x) is the vectorfield of an incompressible flow, then div f(x) = 0 and therefore

$$\oint_{\partial G} f(x) do = 0$$

Ingenuin Gasser (Mathematik, UniHH)

Analysis III for students in engineer

Example.

Consider the vector field

$$f(x) = x = (x_1, x_2, x_3)^T$$

and the sphere K:

Ingenuin Gasser (Mathematik, UniHH)

$$K := \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 \le 1\}$$

We have

Gauss div
$$f(x) = 3 = \frac{3}{1 - 1} \frac{3}{1 - 1}$$

and thus
$$= \int_{K} \operatorname{div} f(x) dx = 3 \cdot \operatorname{vol}(K) = 4\pi \qquad \Longrightarrow \qquad \text{Vol}(K) = \frac{4\pi}{3}$$

The related surface integral can be calculated easily using spherical coordinates.

Analysis III for students in engineering

The Green formulas.

Theorem: (Green formulas) Let the set $G \subset \mathbb{R}^3$ satisfy the prerequisites of the Gauß theorem. For \mathcal{C}^2 -functions $f,g:D\to\mathbb{R},\ G\subset D$ we have the

$$\int_{G} (f\Delta g + \langle \nabla f, \nabla g \rangle) dx = \oint_{\partial G} f \frac{\partial g}{\partial n} do$$

$$\int_{G} (f\Delta g + \langle \nabla f, \nabla g \rangle) dx = \oint_{\partial G} f \frac{\partial g}{\partial n} do$$

$$\int_{G} (f\Delta g - g\Delta f) dx = \oint_{\partial G} \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) do$$

We denote by

$$\frac{\partial f}{\partial n}(x) = D_n f(x) \qquad \text{for } x \in \partial G$$

the directional derivative of f(x) in the direction of the outer unit normal vector n(x).

Proof of the Green formulas.

We set

$$F(x) = f(x) \cdot \nabla g(x)$$

Then we have

$$\operatorname{div} F(x) = \frac{\partial}{\partial x_1} \left(f \cdot \frac{\partial g}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(f \cdot \frac{\partial g}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(f \cdot \frac{\partial g}{\partial x_3} \right)$$
$$= f \cdot \Delta g + \langle \nabla f, \nabla g \rangle$$

Now we apply the Gauß theorem:
$$\int_{G} (f\Delta g + \langle \nabla f, \nabla g \rangle) dx = \int_{G} \operatorname{div} F(x) dx = \oint_{\partial G} \langle F, n \rangle do$$
$$= \oint_{\partial G} f \langle \nabla g, n \rangle do = \oint_{\partial G} f \frac{\partial g}{\partial n} do$$

The second formula follows directely by exchanging f and g.

The Stokes theorem.

Theorem: (Stokes theorem)

Let $f: D \to \mathbb{R}^3$ be a C^1 -vector field on a domain $D \subset \mathbb{R}^3$.

Let F = p(K) be a surface in D, $F \subset D$, with parameterisation x = p(u), $u \in \mathbb{R}^2$. Let $K \subset \mathbb{R}^2$ be a Green area.

The boundary ∂K is parameterised by a piecewise smooth \mathcal{C}^1 -curve c and the image $\tilde{c}(t) := p(c(t))$ parameterises the boundary ∂F of the surface F.

The orientation of the boundary curve $\tilde{c}(t)$ is chosen such that $n(\tilde{c}(t)) \times \tilde{c}(t)$ points in the direction of the surface.

Then we have

$$\int_{F} \operatorname{curl} f(x) \, do = \oint_{\partial F} f(x) \, dx$$

Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineering

Example.

Given the vector field

$$f(x,y,z) = (-y,x,-z)^T$$

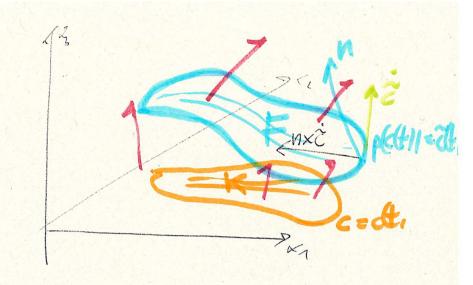
and let the closed curve $c:[0,2\pi]\to\mathbb{R}^3$ be parameterised by

$$c(t) = (\cos t, \sin t, 0)^T$$
 für $0 \le t \le 2\pi$

Aight how
$$\int_{c}^{2\pi} f(x) dx = \int_{0}^{2\pi} \langle f(c(t)), \dot{c}(t) \rangle dt$$

$$= \int_{0}^{2\pi} \left\langle \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix} \right\rangle dt$$

$$= \int_{0}^{2\pi} (\sin^{2} t + \cos^{2} t) dt = 2\pi$$



Continuation of the example.

We define a surface $F \subset \mathbb{R}^3$, bounded by the curve c(t):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi \\ \sin \varphi \cos \psi \\ \sin \psi \end{pmatrix} =: p(\varphi, \psi)$$

with $(\varphi,\psi)\in K=[0,2\pi]\times[0,\pi/2]$, i.e. the surface F is the upper half with $(\varphi,\psi)\in K=[0,2\pi]\times[0,\pi/2]$, i.e. the surface F is the upper half sphere.

Stokes theorem tells us:

$$\int_{F} \operatorname{curl} f(x) do = \oint_{c=\partial F} f(x) dx = 2 \pi$$

We have already calculated the right side, a surface integral of a vector field:

$$\oint_{c=\partial F} f(x) \, dx = 2\pi$$
Analysis III for students in engineering 181/182

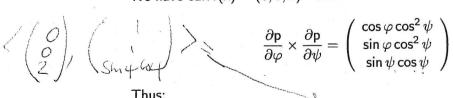
Completion of the example.

It remains a surface integral of a vector field:

$$\int_{F} \cot f(x) do = \int_{K} \left\langle \cot f(p(\varphi, \psi)), \frac{\partial p}{\partial \varphi} \times \frac{\partial p}{\partial \psi} \right\rangle d\varphi d\psi$$

Attention: the right hand side is an intergal over a domain.

We have $\operatorname{curl} f(x) = (0, 0, 2)^T$ and



Thus.
$$\int_{F} \operatorname{curl} f(x) do = \int_{0}^{\pi/2} \int_{0}^{2\pi} \frac{2 \sin \psi \cos \psi \, d\varphi d\psi}{2 \sin \psi \cos \psi} d\varphi d\psi = 2\pi \int_{0}^{\pi/2} \sin(2\psi) \, d\psi = 2\pi$$

Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineeri

upper holf share 15