~f{@‘n
fké“‘!

Cianll ;"’

Requirements for potentials.

‘The condition

Remark: If f(x), x € D C R? is a Cl~vector field with potential p(x), then Cn g ‘L = ¥ X"L %
curl f(x) = curl (Vip(x}) =0 firallexe D 2y €y G
e : . ; j 2 8 o 3w
Thus curl f{x) = 0 is a necessary condition for the existence of a potential. ~ ¢ é‘)

V’l fz fs

If we define for a vector field f : D — R?, D C R2, the scalar curl § i:, }f

S F2 )~ Higy) uw S84

then curl f(x, y) = 0 is a necessary conditicn even in 2 dimensions.

curl f{x) =0 " Gy €y E’S E
is a sufficient condition, if the domain D is simply connected, i.e. |f D has no a I 3;, .9> ;E
"holes”. E
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Example.
We considér the vector field
foy)=——s( ¥ )  with(xy) e D=F\{0} 1
2 ¥ X2 i }'2 . x 3 " -.
Calculating the curl gives | ! \ & ’ \
AR AR R -
iy 6’9] Rz Qf,@"‘“ L:) o,
= %
A o e i - o
B s R R

= 3

The curl of f(x, y) vanishes.
But f(x, y) has on the set D = R?\ {0} no potential.
The domain is not simply connected.

ing : 152/ 155
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The integral theorem of Green for vector fields in R%
, 7 B
Theorem: (Integral theorem of Green) 1)
Let f(x) be a Cl~vector field on a domain D C R2. Let K C D be compact LN
and projectable with respect to both coordinates, such that K is bounded : 3
by a closed and piecewise Cl~curve c(t). JW
The parameterisation of c(t) is chosen such that K is always on the left !
when going along the curve with increasing parameter (positive ' T, k%x
circulation). Then: i
}(f(x) dx = / curl f(x) dx o
c K

Remark:

The integral theorem is also valid for domains which can be splittet in
finite many domains which all are projectable with respect to both g
coordinate directions, so called Green domains.
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Alternative formulation of the integral theorem of Green I.

We have seen that the relation _
ff(x) dx = f.(f, T)ds \
c (=
holds, where T(t) = ﬁ{’gﬂ denotes the tangent unit vector. ‘

With the intergral thoerem of Green we obtain

f curl f(x) dx = {f, T)ds
K - Jak

Is f(x) a velocity field, then the fluid motion described by f is curl free if
cutl f(x) = 0, since :

f;.f(x)dx-

is the circulation of f(x).

o . 2 wao
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Alternative formulation of the integral theorem of Green Il

If we substitute in the above equatlons the vector T by the outer normal vector r ( I %
n=(T2,—T1)7, we obtain 1/.] = (f’UT):O /

ng(f,n)ds f (ﬁrz—fgrl)ds=jéK<( “2 | 7 h
) [@v(( —f ) dx——] dlvfd?j
and thus the reiai?g:ﬂ CW{/ iL'L) aqu éjkﬁl) OJ’U'r; \‘u

fdivf(x)dx-—-% (f,n) ds

If f(x) is the velocity field of a fluid motion, then the right side describes descnbes D/lb F{O h,'t\/ g‘,,_‘{;
the total flow of the fluid through the boundary of K. Therefore if divf(x) =

$

-~ no
then the fluid motion is is source and sink free (or divergence free). d Vr ‘L 2 e Prfa?‘mr_
m}-fé, :
. = ) : = = oo Jl V{-)“ b .
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Back again to the existence of potentials.
Conclusion: If curl f(x) =0forallxe D, D C R? a domain, then we have
./‘i. 7 r V. f f(x) dx == D
b-’lrl"~17 v““-’id-""‘;’- C
" for every closed piecewise C1—curve, which surounds a Green domain
\ B C D completely.
Definition: A domain D C R" is called simply connected, if any closed - ( ﬂ)
curve ¢ : [a, b] = D can be shrinked continuously in D to a point in D. : y

More precise: There is a continuous map for x° € D

b : {31 b] X [07 1] =B ; | ﬁ'l?ﬂ) “ 'j/(«. d/;
: ..,;niw_ . L

with ®(t,0) = c(t), for all t € [a, b] and ®(t,1) =x° € D, for all
t € [a, b]. The map ®(t,s) is called a homotopy.
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~ Criteria for integrability for potentials.

Theorem: Let D c R" bé a_simply connected, domain. A Cl—vector field
f: D — R" has a potential on D if and only if the integrability criteria

: Jf(x) = (JF))T  forallxe D
are satisfied, i.e. if WS, ' i
% ) 86. V. k R ,Anvé A ! bz ‘{.S >£z g
by B W23 Gl <[ 9f - 025 5O

dafo - 2244

Remark: For n = 2, 3 the integrability criteria coincide with

rotf(x) =0 ' : y
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Example. : : i

Forx € R3 \ {0} let the vector field be

2y . . : 7
~5-4-sinz ; T
2 . 3
f(x) = In r2+-2-¥§-+zey with r2 = x2 + y? + 22, & 3 \
r o
5 .
—'%7: + e’ +xcosz
r

We would like to study the existence of a potential for f(x).

The set D = R\ {0} is apparentely simply connected. In addition we have
curlf(x) =0

Thus f(x) has a potential.
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_ Calculation 'Of thepotential. . f. e

We need to have: f(x) = Vip(x). Thus:

F agﬁ—f(xy.z')—-ZX‘V~|-sinz
M L "'3; = n\x Y, e ";5"
_ T 4 o "
By integration with respect to the varig‘b%é x we obtain
x)=yInr’ +xsinz+cly,z
p(x) =y z+cly,2)
with an unknown function c(y, z).

Pluging into the equation

Op _ e 2y?
-é—;—fg(x,y,z)—lnr +~;_-§w+zey

gives

2y? 2 2 .
S! f“'P fg/{+:;+g;=iry’+ p +ze’

le;};l_r\" L+ %?

T X
il P

= = oace

159 /171
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Calculation of the potential (continuation).
From this we get the condition
28 ze¥
dy
and therefore
c(y,z) = ze¥ + d(z)
for an unknown function d(z). So far we know:
-3
©o(x) = yInr? + xsinz + ze¥ + d(z) ({)2 -‘-’2—\?"— T
o
The last condition is ‘
3 H"‘ %{gzﬁ(x,y,z)x%f+ey+xcosz
Therefore d’(z) = 0 and the potential is given by
“
p(x)=ylnrP +xsinz+ze¥ +¢c¢ forceR
R ) = B wac
' 160 /171
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3.3 Surface integrals

Definition: Let D C R? be a domain andp:D—R3a C'-map

P (Uq, e )
Ul =

P( il P¢ C"“ ,Uz

x=p(u) withxeR¥andu= (1, uz)T e DR PS ("'44 “Z-)
If for all u € D the two vectors g 7
*Tug My
' _ LB o =
P, 1 . ' 0

are linear indepéndent, we call sz

F:={p(u) | ve D}
a surface or a piece o surface. The map x = p(u) is called a

parameterisation or parameter representation of the surface F.

= I =

i

ac

We consider for a given r > 0 the map

afucel

: reos

ple,z) = ( rsing ) for (g, z) € R2.
A z ‘

The corresponding parameterized surface is an unbounded cylinder in R3
If we restrict the area of definition, e.g.

(v,2) € K == [0,27] x [0, H] C R?
we obtain a bounded cylinder of height H.
The partial derivatives

0
2 il g
e 0 i T
of p{(, z) are linearly independent on R2.

Dace



o= (1) e (5 ’F‘U
| e e 1

- (2)eoR]x[aM] g |
| e | e A
f‘lﬁ}(["; ” =l (‘%\f}“ e /4 ’:Ofo/?'d/l de = E;]"d
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REET A -

The graph of a scalar C1~function ¢ : D — R, D C R?, is a surface. .

A parametrisation is given by

- ) i,
- p(uy, u2) = up forue D
. fp(-uly U2)

The partial derivatives

ag e % y -
8(11 iy ® i 8”2 ) K

Py Puy

H‘
(=]

are linear independent.

The two linear independent vectors

p o .
a—ul—(u ) und

are tangential on the surface F.

The two vectore span the tangential plane ToF of the surface F at the
point x° = p(u).

The tangential plane has a parameter representation

dp op :
ToF : x=x0 0 g0 o _
wF 1 x=x +A8u1_(u )+pzau2(u_) forA,peR

Question: How can wie calculate the size of a given surface F?




The surface integral of a piece of surface.

Definition: Let p : D — R® be a parameterisation of a surface, and let K C D be
compact, measurable and connected. Then the "content” of p(K) is defined by

the surface integral
f do :=/
p(K)

3p ap
B u) x 5‘&;(”)

the surface element of the surface x = p(u).

>

Op dp
Bul ks duy (u)
R ]

We call
do ;=

Remark: The surface integral is independent of the particular parameterisation
of the surface. This follows from the theorem of transformation.

e % nlaEe B HAG
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Example.

For the lateral surface of a cylinder Z = p(K) with i 4
K = [0,2n] x [0, H] C R? I Vo | |
= ; T’;L-_/ ! _)‘
and %
reosp \ L
x=p(p,z):=| rsinp for (p,z) € R?
2 ; -
we obtain el Lol -y o \,
= - o J A j'—'” -1 5»\.\-’}'/} = /2.
= AR I | ¢ i g
a(p az o A O
the value

a4
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Example

If the surface is the graph of a sca[ar function, i.e. x3 = <,o(x1, xz) the for
the related tangential vectors we have

ap ap 1 ‘ 0 {le n e
. 5—-— bl —é— = 0 x 1 = —Pxs ng— -
X1 X2 G — s
Pxi Pxo 1 > - . 3
Thus we obtain : a1
op 3p

\,c‘ 1+(Px1 +‘10X2

O(p(K)) = [ (’K) do

6x1 BXQ
and

P

[ Jre T A dlas)

Ao duy

= = = z 9

167 /171
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Example.

For the surface of the parablo:d P, given by

= {(X]JXZJXS) € RS | g =2~ X1 Xz: X1 +X2 < 2}
/\" W <l
we have q) E )() n "’(_‘1

o(P) = ]2 : AJ1+82 - éxgd(xl,xz)
xf4x5<2
g

P(—vw (o2 nes 1:-; .
o Sl SRR B B e A nt=s

Aoz ols
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