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Content of the course Analysis IlI.

© Partial derivatives, differential operators.

@ Vector fields, total differential, directional derivative.

© Mean value theorems, Taylor's theorem.

Extrem values, implicit function theorem.

Implicit rapresentaion of curves and surfces.

Extrem values under equality constraints.

Newton—method, non-linear equations and the least squares method.
Multiple integrals, Fubini's theorem, transformation theorem.

Potentials, Green's theorem, GaufB}'s theorem.
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Green's formulas, Stokes's theorem.
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Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let
f(x1,...,xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

RT
P = P(V,t)zv
RT
p
pV
T = T(Pa\/):?
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1.1. Partial derivatives

Definition: Let D C R" be open, f : D — R, x9 e D.

@ fis called partially differentiable in x° with respect to x; if the limit

O o) o i FOOH 1) = )
8x,- | t—0 t
— im O, xP . x0) — (P, X0 x0)
t—0 t

exists. e; denotes the /—th unit vector. The limit is called partial derivative of
f with respect to x; at x°.

@ If at every point x° the partial derivatives with respect to every variable
xj, I =1,...,n exist and if the partial derivatives are continuous functions

then we call f continuous partial differentiable or a C*—function.
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Examples.

@ Consider the function
f(x1,x) = x12 4 x22

At any point x° € R? there exist both partial derivatives and both
partial derivatives are continuous:

of

Of oy _
8Xl(x) 2x1,

Of oy _
8x2(x) 2x7

Thus f is a C1—function.

@ The function
f(x1,x2) = x1 + |x2]

at x® = (0,0)7 is partial differentiable with respect to x, but the
partial derivative with respect to x, does not exist!

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 5/98



An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by
p(x, t) = Asin(ax — wt)

The partial derivative

op
X aAcos(ax — wt)

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

@
ot

describes for a fixed position x the temporal rate of change of the acoustic

= —wAcos(ax — wt)

pressure.
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Rules for differentiation

@ Let 7, g be differentiable with respect to x; and «, 8 € R, then we have the

rules
o (af(9+ 8809) = g (9+ 65500
o (F00-809) = T09-800+ 76 FE(0)
of og
9 <f(><)) _ A e for g(x) # 0
o \ &6 50

@ An alternative notation for the partial derivatives of f with respect to x; at
x0 is given by
D;f (x°) oder £ (x°)
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Gradient and nabla—operator.

Definition: Let D C R"” be an open set and f : D — R partial
differentiable.

@ We denote the row vector

rad £) i= (e b0 5 (9))

as gradient of f at x°.
@ We denote the symbolic vector

V= <(;)X1"“’8?<,,>T

as nabla—operator.
@ Thus we obtain the column vector

)
V() = (g)fl( ). ..,g;(x°)>
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More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (af + 8g) = «-gradf+ [ -gradg

grad(f-g) = g-gradf+f-gradg

f 1
grad (g) = ?(g.gradf—f-gradg), g#0

Examples:
@ Let f(x,y) = €*-siny. Then:
grad f(x,y) = (&* -siny, " - cosy) = e*(siny,cosy)

@ For r(x) := |[x]l2 = /*Z + - + x2 we have

X X ..
gradr(x) = — = —— fiir x # 0,
r(x) [xll2
where x = (xi, . .., Xx,) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R> — R defined as

Xy

m for (x,y) #0

fxy) =
0 . for (x,y) =0

The function is partial differntiable on the entire R?> and we have

£(0,0) = f£,(0,0)=0
of 2
g(xm) ~ 4)—/y2)2 — 4(x2):—};/2)3’ (x,y) # (0,0)
of ~ 5% X2
@(X,Y) N Yy _4(X2+y2)3’ (x,y) # (0,0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

t-0 0
of f(t,0) — (0,0 24+ 022
o 0,0) = lim (BO-FOO_ (20 ~_,
Ox t—0 t t
0-t 0
of f(0,t) — £(0,0 2422
9 0,00 = tim QOO0 _(@+8)?
dy t—0 t t
But: At (0,0) the function is not continuous since
11 toL -
(Y- b d
S N S S

and thus we have

lim  f(x, f(0,0) =0
ww%mm(AH# (0,0)
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f.

Theorem: Let D C R" be an open set. Let f : D — R be partial

differentiable in a neighborhood of xX° € D and let the partial derivatives

of
ox;'

i=1,...,n, be bounded. Then f is continuous in x°.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

of N y X2y .
&(Xa}/) - (X2 —1—}/2)2 o 4(X2 +y2)3 fur (Xv)/) 7é (0, O)
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Proof of the theorem.

For |Ix — X%l < &, € > 0 sufficiently small we write:

f(x) — f(xo) = (F(X1y- ey Xno1,Xn)—F (X1, . .. 7x,,_l,x,?))
+ (F(xs e X1, X0) = F(X1y e vy X2, X201, x9))
+ (f(xhxg,‘..,x,?)—f(xf,...,x,?))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xn) —g(x,(,)) = (X1, ey Xn—1,Xn) — F(X1, - .. 7x,,_l,xr?)

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g:

g(xn) — g(X,(,)) = g'(&n)(xn — X:?)

for an appropriate &, between x, and x°.
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

of
f(X)— f‘(XO) = Ix (Xla"wxnflagn)'(xn_xg)
of
+ m(xl, ... ,X,,_2,§n_1,x,?) - (Xp—1 — X,?_l)
of
+ Tﬁ(fl,xg,...,xg)wxlfxf)

Using the boundedness of the partial derivatives
() = F) < Glxa = x|+ + Calxa — xp
for ||x — x°|| o < €, we obtain the continuity of f at x° since

f(x) = F(xX°)  fiir [x =x%)eoc = 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D C R". If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

Pf 9 (of
Oxj0x; ~ Ox; \ Ox;

Example: Second order partial derivatives of a function f(x, y):

Pr_ o (or\ o _o (o) #r o
ox2  Ox \ Ox dydx Oy \ Ox Ox0y’  Oy2

Let i1,...,ik € {1,...,n}. Then we define recursively

ok f 0 ok1f
8x,-k8x,-k_1 cee 6X,'1 o 8X,'k 8x,-k_18x,-k_2 oo aX,'l
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Higher order derivatives.

Definition: The function f is called k—times partial differentiable, if all
derivatives of order k,

o f

P e ————— forallil... I'kE 1,....n
8x,-k(*)x,-k_1...6x,-1 ’ ’ { ’ ’ }7

exist on D.
Alternative notation:

k
Ok f _ 55

— Ik—1 *
aX,'kaX,'k71 o o .8X,'1

Dyf = f .

If all the derivatives of k—th order are continuous the function f is called k—times
continuous partial differentiable or called a CkK~function on D. Continuous
functions f are called C%—functions.

Example: For the function f(xq,...,x,) = H x! we have axa fﬁn =7

i=1
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general

not arbitrarely exchangeable!

Example: For the function

X2 — 2
XY 2
foy) =4 TY
0
we calculate
15)
fy(0,0) = 8y(
0
f;’X(O?O) = ax <

ie. fX}’(OaO) 7£ fyx(ovo)'
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Theorem of Schwarz on exchangeablity.

Satz: Let D C R” be open and let f : D — R be a C?>-function. Then it
holds
O*f ( ) O*f
—(x1,...,Xp) = ———
OxjOx; Lo Ox;0x;

forall i,j € {1,...,n}.

(X1, Xn)

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a Ck—function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!
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Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order f,,, for the function
f(x,y,z) = y*zsin(x®) + (cosh y + 17eX2)z2
The order of execution is exchangealbe since f € C3.

@ Differentiate first with respect to z:

? = y?sin(x®) + 2z(cosh y + 17¢*)
V4

o Differentiate then f, with respect to x (then cosh y disappears):

fox

82 (y2 sin(x*) 4 2z(cosh y + 17eX2))
X

= 3x%y?cos(x®) + 68xze™
@ For the partial derivative of f,, with respect to y we obtain

fyz = 6x°y cos(x?)
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The Laplace operator.

The Laplace—operator or Laplacian is defined as

n
A -
' Ox?
i=1 o
For a scalar function u(x) = u(x, ..., x,) we have
n
?u
Au = 8X2 = Uxx +oet U xn

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

Au——uy = 0 (wave equation)
€
1 .
Au— Zu = 0 (heat equation)
Au = 0 (Laplace—equation or equation for the potential)
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Vector valued functions.

Definition: Let D C R"” be open and let f : D — R™ be a vector valued
function.

The function f is called partial differentiable on x° € D, if for all
i=1,...,n the limits

0 N\ f(y0
ﬁ(xo) — im f(x” + te;) — f(x”)

ox; t—0 t

exist. The calculation is done componentwise
o
ox;
.F 1

g_(xo): : fori=1,...,n

i ofyy
8X,'
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Vectorfields.

Definition: If m = n the function f : D — R” is called a vectorfield on D.
If every (coordinate-) function fi(x) of f = (f1,...,f,)" is a Ck—function,
then f is called Ck—vectorfield.

Examples of vectorfields:

e velocity fields of liquids or gases;
e elektromagnetic fields;
e temperature gradients in solid states.

Definition: Let f : D — R" be a partial differentiable vector field. The
divergence on x € D is defined as

divf(x°) := gfi (x°)
X

i=1

or

divf(x) = V7f(x) = (V,f(x))
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Rules of computation and the rotation.

The following rules hold true:
div(af+8g) = adivf+gdivg forf,g: D — R"

div(p-f) = (Ve,f)+edivf foro:D—Rf:D—R"
Remark: Let f : D — R be a C2—function, then for the Laplacian we have
Af =div(Vr)

Definition: Let D C R3 open and f : D — R3 a partial differentiable
vector field. We define the rotation as

o 8X2 8X37 8X3 8x1’ 8X1 8X2

x0
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Alternative notations and additional rules.

e] e €3

rot f(x) = V x f(x) = 6%1 3%2 6%3

h h f

Remark: The following rules hold true:
rot(af+/5g) = arotf+ frotg

rot(p-f) = (Vo) xf+protf

Remark: Let D C R3 and ¢ : D — R be a C?~function. Then
rot (Vo) =0,

using the exchangeability theorem of Schwarz. l.e. gradient fileds are rotation-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D C R” open, x’ € D and f : D — R™. The function f(x)
is called differentiable in x° (or totally differentiable in xg), if there exists a

linear map
I(x,x%) := A - (x — x0)

with a matrix A € R™*" which satisfies the following approximation
property
f(x) = f(x°) + A - (x = x%) + o(|[x — X°|))

m f(x) — f(x°) — A - (x — x0)

x5 [ =

=0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map | the differential or the total differential
of f(x) at the point x°. We denote | by df(x?).

The related matrix A is called Jacobi-matrix of f(x) at the point x° and is
denoted by Jf(x?) (or Df(x?) or f'(x°)).

Remark: For m = n = 1 we obtain the well known relation
f(x) = f(x0) + f'(x0)(x = x0) + o(|x — o)
for the derivative f/(xo) at the point xp.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x — x°) a scalar product (a”,x — x%).
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Total and partial differentiability.

Theorem: Let f : D - R™ x° e D c R", D open.

a) If f(x) is differentiable in x°, then f(x) is continuous in x°.

0

b) If f(x) is differentiable in x°, then the (total) differential and thus the
Jacobi—matrix are uniquely determined and we have

of , o
87X1(X )
JF(x) = 5
Ofm
Ax1

(%)

0fy (0 DFf (x)
B, (x7)

of

B %) Dfin(x%)

c) If f(x) is a C—function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x°, then by definition

im f(x) — f(x%) — A - (x — x°)

=0
o x>

Thus we conclude

lim IF(x) = f(x°) = A- (x=xO)|| =0

X—>X

and we obtain

IF6) = FO - < IFG) = F°) = A= (x =) + [|A - (x = x°)|

— 0 as x — x0

Therefore the function f is continuous at x°.
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Proof of b).

Let x =x? + te;, [t| <&, i € {1,...,n}. Since f in differentiable at x°, we

have

lim
x—x0

We write

f(x) — f(x%) — A - (x — x0)

f(x) — f(x%) — A - (x — x°)

[ = x°|oq

Thus

f(x0 + te;) — f(xo)

< =Xl

=0

f(x° + te;) — f(x°)  tAe,

t]

t]

t] t

— 0 ast— 0

lim
t—0

Ingenuin Gasser (Mathematik, UniHH)
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Examples.

@ Consider the scalar function f(x;,x2) = x;e®?. Then the Jacobian is given
by:
Jf(x1,x0) = Df(x1, x0) = €2(1,2xq)

@ Consider the function f : R® — R? defined by

£ ) X1X2X3
X1, X2,X3) =
sin(x1 + 2x2 + 3x3)

The Jacobian is given by

(9X1 8)@ 8X3 X2 X3 X1X3 X1X0
Jf(X17X27X3) = =

o Ofh  Oh cos(s) 2cos(s) 3cos(s)

6x1 8X2 8X3

with s = x1 + 2x + 3x3.
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Further examples.

o Let f(x) = Ax, A€ R™*" and x € R". Then
Jf(x) =A for all x € R"

o Let f(x) =x"Ax = (x,Ax), A € R™" and x € R".
Then we have

f
gx,- = (ej, Ax) + (x, Ae;)
= e/ Ax+x"Ae;
= x"(AT 4+ Ae;

We conclude
Jf(x) = gradf(x) = x" (AT +A)
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Rules for the differentiation.

Theorem:

a) Linearitdt: LET f,g: D — R™ be differentiable in x° € D, D open. Then
af(x®) + Bg(x?), and a, B € R are differentiable in x° and we have

d(of + 8g)(x°) = adf(x’)+ Bdg(x°)
Jaf +8g)(X°) = aJf(X®)+ 8Jg(x°)
b) Chain rule: Let f : D — R™ be differentiable in x% € D, D open. Let

g : E — RX be differentiable in y® = f(x°) € E C R™, E open. Then gof is

differentiable in x°.

For the differentials it holds

d(g o f)(x°) = dg(y°) o df(x’)

and analoglously for the Jacobian matrix
J(g o)) = Jg(y°) - JF(x°)
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Examples for the chain rule.

Let / C R be an intervall. Let h : /| — R" be a curve, differentiable in
to € I with values in D C R"”, D open. Let f : D — R be a scalar function,
differentiable in x° = h(tp).

Then the composition
(foh)(t) = f(hi(t),..., ha(t))
is differentiable in tg and we have for the derivative:
(foh)(to) = Jf(h(to)) - Jh(to)
= gradf(h(t)) - h'(to)

= Y S hlto) - il
k=1
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Directional derivative.

Definition: Let f : D — R, D C R" open, x° € D, and v € R\ {0} a
vector. Then

f 0 —f 0
Dy F(x°) 1= fim X V) = FOC)
t—0 t
is called the directional derivative (Gateaux—derivative) of f(x) in the
direction of v.

Example: Let f(x,y) = x>+ y2 and v = (1,1)". Then the directional
derivative in the direction of v is given by:

2 2 2 2
D,f(x,y) = lim X+t +r+t) —x"—y

t—0 t

_ 2xt + t2 4 2yt + t2
= l|lim
t—0 t

= 2(x+y)
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Remarks.

@ For v = e; the directional derivative in the direction of v is given by the
partial derivative with respect to x;:

D F() = 57 ()

@ If v is a unit vector, i.e. |[v|]| = 1, then the directional derivative D, f(x°)
describes the slope of f(x) in the direction of v.

@ If f(x) is differentiable in x°, then all directional derivatives of f(x) in x°

exist. With h(t) = x° + tv we have

D, f(x%) = %(fo h)|i—o = grad f(x°) - v

This follows directely applying the chain rule.
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Properties of the gradient.

Theorem: Let D C R” open, f : D — R differentiable in xX° € D. Then we have

a) The gradient vector grad f(x°) € R is orthogonal in the level set
Ny = {x € D|f(x) = f(x°)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f(x°) gives the direction of the steepest slope of f(x) in
0
x°.

Idea of the proof:
a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy-Schwarz inequality
D, £(x°)| = |(grad £(x°),v)| < |lgrad F(x°)]2
Equality is obtained for v = grad f(x°)/||grad f(x°)]|..
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Curvilinear coordinates.

Definition: Let U,V C R" be open and ® : U — V be a C'-map, for
which the Jacobimatrix J&(u®) is regular (invertible) at every u® € U.

In addition there exists the inverse map ®~!: V — U and the inverse map
is also a C'-map.

Then x = ®(u) defines a coodinate transformation from the coordinates u
to x.

Example: Consider for n = 2 the polar coordinates u = (r, ) with r > 0
and —7 < ¢ < 7 and set

X = rcosy
y = rsingp

with the cartesian coordinates x = (x, y).
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Calculation of the partial derivatives.

For all u € U with x = ®(u) the following relations hold
o Hd(u) = u
Jo7Hx)-Jo(u) = I, (chain rule)
Jo7i(x) = (o)™t
Let f: V > R bea given function. Set
f(u) := F(®(u))

the by using the chain rule we obtain

n

of 00; - Of
_. 9"
8u, Z 6xj ou; ;g 0x;

GLY
8U,‘ ’
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Notations.

We use the short notation
b, .0
_— = uv_—_
ou; Zg 0x;
Jj=1

Analogously we can express the partial derivatives with respect to x; by the
partial derivatives with respect to u;

0 “ 0
o = 285y
j=1

where )
(g5) = (&)t =(o) T =o YT
We obtain these relations by applying the chain rule on 1.
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Example: polar coordinates.

We consider polar coordinates
x=®(u) = ( reosy )
rsin g

Jo(u) = < cosp —rsing )

We calculate

sinp  rcosyp
and thus

1.
cosy  siny Cos ¢ — sin @

(g") = (g5) =

—rsing rcosg sin ¢ lcosgp
P
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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

g = cos g = 1sin i
ox Por r (p&p
9 _ sin 0 1cos 0
ay — M"¥or Y0

Example: Calculation of the Laplacian—operator in polar coordinates

éi = cos?yp iz _sin(2¢p) 0? sin%ai sin(2¢)i+ Sin2gpﬁ
Ox?2 Yor r  Ordp 2 92 2 g PR
872 = 5in2 @8724_ S'n(2§0) 82 COS2(p872 _ s|n(2<p)£+ COSz(pg
oy® or? ro 0Ordp r2  0¢? r2 dp r Or

A = i2+372_872+i872+12
O 0x2 0y2 0r2  r20p?  r Or
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Example: spherical coordinates.

We consider spherical coordinates
r cos ¢ cos 0
x=®(u)=| rsinpcosd

rsinf

The Jacobian—matrix is given by:

cospcos —rsingpcos —rcosywsinb
J®(u)=| sinpcosf rcospcosf —rsingsinf

sind 0 rcos@
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Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

9 _ cos cosHa —Sinii—lcos sin@g
ox X Or rcosf 0p r X 00
0 0 cosp O 0
ay sm«pcos@ar+rCOSQ%—fsmgosmGag
0 o 1 0
5 = sm@a——i-fcoseﬁ

Example: calculation of the Laplace—operator in spherical coordinates

H? 1 0?2 1 62 20 tanf O

Azi —_ _—
or? * r2 cos? 0 0p? u r2 0602 * r or r2 96
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Chapter 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let f : D — R be a scalar differentiable
function on an open set D C R". Let a,b € D be points in D such that the
connecting line segment

[a,b] :={a+t(b—a)|t € [0,1]}
lies entirely in D. Then there exits a number ¢ € (0,1) with
f(b) —f(a) =gradf(a+6(b—a))-(b—a)

Proof: We set
h(t) := f(a+ t(b —a))

with the mean value theorem for a single variable and the chain rules we conclude

f(b)— f(a) = h(1)—h(0) = H(0)-(1—0)

gradf(a+0(b—a))-(b—a)
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Definition and example.

Definition: If the condition [a,b] C D holds true for all points a,b € D,
then the set D is called convex.

Example for the mean value theorem: Given a scalar function
f(x,y):=cosx +siny

Iti
; f(0,0) = f(n/2,7/2)=1 = f(x/2,7/2)—f(0,0)=0

Applying the mean value theorem there exists a 6 € (0,1) with

s (o(12)) ()

Indeed this is true for § = 3.
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Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true
for scalar functions but in general not for vector—valued functions!

Examples: Consider the vector—valued Function

f(t) = ( s ) . telo,n/2]

(m2-0= (1 )-(5)=("1)

, (T 7r s —sin(fm/2)
f (0§> ' (5 70) 2 < cos(6/2) )

BUT: the vectors on the right hand side have lenght v/2 and w/2 |

It is

and

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 46 /98



A mean value estimate for vector—valued functions.

Theorem: Let f : D — R be differentiable on an open set D C R". Let
a, b bei points in D with [a,b] C D. Then there exists a § € (0,1) with

If(b) —f(a)ll2 < [[Jf(a + 6(b —a)) - (b—a)l}2

Idea of the proof: Application of the mean value theorem to the scalar function
g(x) definid as

g(x) := (f(b) — f(a)) "f(x) (scalar product!)

Remark: Another (weaker) for of the mean value estimate is

1f(b) = f(@)I < sup [[JF(E) - [I(b —a)l

£€a,b]

where || - || denotes an arbitrary vector norm with related matrix norm.
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Taylor series: notations.

We define the multi-index o € N as

a:=(ag,...,a,) €Nj

Let

|

Let f : D — R be |« times continuous differentiable. Then we set

olelf

D* = DM Dg2 .. DY =

where D" = Dj...D;. We write
———

a;—mal
o . e} o «
XY =X X X" for x = (xq, ..
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The Taylor theorem.

Theorem: (Taylor)
Let D C R” be open and convex. Let f : D — R be a C™*1—function and
xo € D. Then the Taylor—expansion holds true in x € D

f(x) = Tm(xx0)+ Rm(x;%o)
T P
|| <m
Rolxixg) = Z D*f(xo +a?(x—xo)) (x — x0)°
|a|=m+1

for an appropriate 6 € (0, 1).

Notation: In the Taylor—expansion we denote T,(x;xo) Taylor—polynom of
degree m and R,(x; %) Lagrange—remainder.
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Derivation of the Taylor expansion.

We define a scalar function in one single variable t € [0, 1] as
g(t) :=f(xo + t(x — xp))
and calculate the (univariate) Taylor—expansion at t = 0. It is
1
g(1) = g(0) +&'(0)- (1-0) + 5g"(¢) - (1 - 0)* forag e (0,1).
The calculation of g’(0) is given by the chain rule

d
g'(0) = Ef(x?—Ft(Xl—X{)),Xg—‘rt(XQ—XQO),...,XS—Ft(Xn—XS))

t=0

= Dif(xo) - (xa —Xf) + ...+ Dyf(x0) - (Xn —x,?)

_ Z D*f(xo) (X = x0)®

a!

=1
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Continuation of the derivation.

Calculation of g”(0) gives
2

£'(0) = o+ tlx—0))

d n
7 = EZDkf(XO+ t(x —x9) (x — x9)

t=0
k=1

t=0

= Duf(xo)(a — x0)* + Daf(x0)(a — x7) (x2 — X3)
..+ Dif (xo)(xi — x; )(XJ—XO)+ .+
+Dn—1,nf (%0) (Xn—1 — X 1) (X0 — X ) + Dinf (x0)(xn Xg)z)
D*f
= Z %(x —X0)“ (exchange theorem of Schwarz!)
|ae|=2 ’

Continuation: Proof of the Taylor—formula by (mathematical) induction!
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Proof of the Taylor theorem.

The function
g(t) = )"(x0 + t(x — xo))

is (m + 1)—times continuous differentiable and we have

$-60) | g 0)

g1) = k! (m+1)!

fora 6 € [0,1].
k=0

In addition we have (by induction over k)

£90) _ 5~ D)

k! ol

(x— XO)O‘

|a|=k

and

g(mt1)(9) _ Z Df(x% 4 0(x — x))

(m+1) al b=

|a|=m+1
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Examples for the Taylor—expansion.

© Calculate the Taylor—polynom T,(x; xg) of degree 2 of the function
f(x,y,z) =xy?sinz

@ The calculation of T,(x;xg) requires the partial derivatives up to
order 2.

© These derivatives have to be evaluated at (x,y, z) = (1,2,0).

© The result is Ta(x;xp) in the form
Ta(x;x0) =4z(x +y — 2)

@ Details on extra slide.
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Remarks to the remainder of a Taylor—expansion.

Remark: The remainder of a Taylor—expansion contains all partial
derivatives of order (m + 1):

Rm(ix0) = Y D71 —:!Q(X —x0)) (x — x0)®

|a|=m+1

If all these derivative are bounded by aconstant C in a neighborhood of xg then
the estimate for the remainder hold true

m—+1

m Cllx— X0||omo+1

|Rm(x;%0)| <

We conlude for the quality of the approximation of a C™+1—function by the
Taylor—polynom
f(x) = Tm(x;x0) + O (||x — x0||m+1)

Special case m = 1: For a C°>—function f(x) we obtain
f(x) = £F(x°) + grad £(x°) - (x — x°) + O(||x — x°||?).

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 54 /98



The Hesse—matrix.

The matrix
fX1X1(X0) fXIXn(XO)

Hf (xo) :=

anXI (XO) te ﬁ(an (Xo)

is called Hesse—matrix of f at Xg.

Hesse—matrix = Jacobi—matrix of the gradient Vf

The Taylor—expansion of a C3—function can be written as
1
f(x) = f(xo) + grad f(xo)(x — xo) + E(X —x0) THf (x0)(x — x0) + O(||Ix — xo||*)

The Hesse—matrix of a C?>~function is symmetric.
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Chapter 2. Applications of multivariate differential calculus

2.1 Extrem values of multivariate functions

Definition: Let D C R”, f : D — R and x° € D. Then at x° the function
f has

@ a global maximum if f(x) < f(x°) for all x € D.
@ a strict global maximum if f(x) < f(x°) for all x € D.

@ a local maximum if there exists an € > 0 such that
f(x) < F(x°) for all x € D with ||x — X°|| < e.
@ a strict local maximum if there exists an € > 0 such that

f(x) < F(x°)  forall x € D with ||x — X°| < e.

Analogously we define the different forms of minima.
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Necessary conditions for local extrem values.

Theorem: If a C'—function f(x) has a local extrem value (minimum or
maximum) at x° € D°, then

grad f(x°) =0 € R"
Proof: For an arbitrary v € R", v # 0 the function
o(t) == F(C + tv)

is differentiable in a neighborhood of t° = 0.

©(t) has a local extrem value at t° = 0. We conclude:
¢'(0) = grad f(x°)v =0
Since this holds true for all v £ 0 we obtain
grad f(x°) = (0,...,0)7
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Remarks to local extrem values.

Bemerkungen:

@ Typically the condition grad f(x°) = 0 gives a non-linear system of n

equations for n unknwons for the calculation of x = x°.

@ The points x° € D° with grad f(x°) = 0 are called stationary points of f.
Stationary points are not necessarily local extram values. As an example take
f(x,y) = x> —y?
with the gradient
grad f(x, y) = 2(x, —y)

and therefore with the only stationary point x° = (0,0) . However, the
point x° is a saddel point of f, i.e. in every neighborhood of x° there exist
two points x! and x? with

f(x') < f(xo) < f(x2).
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Classification of stationary points.

Theorem: Let f(x) be a C>~function on D° and let x° € D° be a
stationary point of f(x), i.e. grad f(x°) = 0.

a) necessary condition
If x0 is a local extrem value of f, then:
x? local minimum = H f(x°) positiv semidefinit
x0 local maximum = H f(x°) negativ semidefinit
b) sufficient condition
If Hf(x?) is positiv definit (negativ definit) then x° is a strict local
minimum (maximum) of f.

If H £(x%) is indefinit then x° is a saddel point, i.e. in every
neighborhood of x° there exist points x! and x? with
f(x!) < F(x0) < £(x2).
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Proof of the theorem, part a).

Let x° be a local minimum. For v # 0 and & > 0 sufficiently small we conclude
from the Taylor—expansion

FOO 4 ev) — F(x°) = %(€V)TH F(X° + fev)(ev) > 0 (1)

with 6 = 6(e,v) € (0,1).
The gradient in the Taylor expansion grad f(x°) = 0 vanishes since x° is
stationary.

From (1) it follows
vIHF(X® + fev)v > 0 (2)

Since f is a C>—function, the Hesse-matrix is a continuous map. In the limit
e — 0 we conclude from (2),

vIHF(: )V >0
i.e. Hf(x%) is positiv semidefinit.
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Proof of the theorem, part b).

If Hf(x%) is positiv definit, then H f(x) is positiv definit in a sufficiently small
neighborhood x € K.(x%) C D around x°. This follows from the continuity of the
second partial derivatives.

For x € K.(x°), x # x° we have
f(x) - f(x°) = %(x —xO)TH F(x® + 0(x — x°))(x — x°)
> 0
with § € (0,1), i.e. f has a strict local minimum at x°.

If Hf(x%) is indefinit, then there exist Eigenvectors v, w for Eigenvalues of H f(x°)
with opposite sign with

vIHF(C)v >0 w HF(%)w < 0
and thus x° is a saddel point.
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Remarks.

@ A stationary point x° with det Hf(x°) = 0 is called degenerate. The
Hesse—matrix has an Eigenvalue A = 0.

@ If x° is not degenerate, then there exist 3 cases for the Eigenvalues of
Hf (x0):

all Eigenvalues are strictly positive = x° is a strict local mir
all Eigenvalues are strictly negative = x° is a strict local ma
there are strictly positive and negative Eigenvalues = x° saddel point

@ The following implications are true (but not the inverse)

x9 local minimum < X9 strict local minimum

¥ ft

Hf (x°) positiv semidefinit <«  Hf(x?) positiv definit
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Further remarks.

@ If f is a C3—function, x° a stationary point of f and Hf (x%) positiv definit.

Then the following estimate is true:
(x = x®)THF(O) (x = x°) > Apmin - [Ix — %02

where \nin denoted the smallest Eigenvalue ot the Hesse—matrix.

Using the Taylor theorem we obtain:

1
f(X) - f(xo) 2 §>‘min||X - XO||2 S R3(X; XO)
>\min
> xR (22 - clx=1)

with an appropriate constant C > 0.

The function f grows at least quadratically around x°.
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Example .

We consider the function
f(x,y) = y*(x — 1)+ x*(x + 1)
and look for stationary points :
grad f(x,y) = (y* + x(3x +2),2y(x — 1))
The condition grad f(x, y) = 0 gives two stationary points
X =(0,00" und x!=(-2/3,0)7.

The related Hesse—matrices of f at x? and x! are

Hf(x°)—(§ _2) and Hf(xl)—(_(z) _1%/3>

The matrix Hf (x°) is indefinit, therefore x° is a saddel point. Hf (x!) is negativ
definit and thus x! is a strict local ein strenges maximum of f.
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Chapter 2. Applications of multivariate differential calculus

2.2 Implicitely defined functions

Aim: study the set of solutions of the system of non-linear equations of
the form

g(x) =0
with g : D — R™ D C R". l.e. we consider m equations for n unknowns
with

m < n.
Thus: there are less equations than unknowns.

We call such a system of equations underdetermined and the set of
solutions G C R" contains typically infinitely many points.
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Solvability of (non-linear) equations.

Question: can we solve the system g(x) = 0 with respect to certain unknowns,

i.e. with respect to the last m variables x,_ 11, .., X7
In other words: is there a function f(xy,. .., X,—m) with
T
gx)=0 <= (Xn—mtls--- %) = F(X15 e, Xoem)

Terminology: "solve” means express the last m variables by the first n — m
variables?

Other question: with respect to which m variables can we solve the system? Is
the solution possible globally on the domain of defintion D? Or only /ocally on a
subdomain D C D?

Geometrical interpretation: The set of solution G of g(x) = 0 can be expressed
(at least locally) as graph of a function f : R"™™ — R™.
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Example.

The equation for a circle
gx,y)=x>+y?—r?=0 mit r > 0

defines an underdetermined non-linear system of equations since we have
two unknowns (x, y), but only one scalar equation.

The equation for the circle can be solved locally and defines the four
functions :

y = r2—x2, —r<x<r
y = —vVr2—x2, —r<x<r
x = rP—y2 —r<y<r
x = —\/rr—y? —r<y<r
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Example.

Let g be an affin—linear function, i.e. g has the form
gx) =Cx+b forCeR™" beR™
We split the variables x into two vectors
x(1) — (x1,... ,x,,_m)T ER™ and x® = (Xn—m+1, - - - ,x,,)T cR”
Splitting of the matrix C = [B, A] gives the form
g(x) = BxM) + Ax?) 4 p

with B € Rmx(n—m) A c Rmxm

The system of equations g(x) = 0 can be solved (uniquely) with respect to
the variables x(2), if A is regular. Then

gx) =0 <« x® =_A1BxYV +b)=rfxD)
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Continuation of the example.

Question: How can we write the matrix A as dependent of g?

From the equation
g(x) = Bx() + Ax®) 4+ b

we see that 5
_ 9% 1) @
A x(2) (X ) X )

holds, i.e. A is the Jacobian of the map

for fixed x(11

We conclude: Solvability is given if the Jacobian is regular (invertible).

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 69 /98



Implicit function theorem.

Theorem: Let g : D — R™ be a C'—function, D C R"” open. We denote the
variables in D by (x,y) with x € R"~™ und y € R™. Let Der (x°,y°) € D be a
solution of g(x°,y°%) = 0.

If the Jacobi—matrix

P} 8
o Tﬁ(xomo) P o %,y%)
ai(xoayo) =
Y 08m 8gm
(%Y%) o gEm(x%yP)

is regular, then there exist neighborhoods U of x® and V of y°, U x V C D and a
uniquely determined continuous differentiable function f : U — V with

fx°) =y° und g(xf(x)) =0 fiirallexe U

1509 =~ (Beeron)  (Beorcon)

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 70/98

and



Example.

For the equation of a circle g(x,y) = x?> +y? — r?> = 0,r > 0 we have at
(x°y%) = (0.r)

% 0.1 =0 %80 =
5(07 r) =0, ay(O, r)=2r#0

Thus we can solve the equation of a circle in a neighborhod of (0, r) with
respect to y:
f(x)=Vr?—x?

The derivative '(x) can be calculated by implicit diffentiation:
gly(x) =0 = g(x,y(x))+g(x, y(x))y'(x) =0
and therefore

2+ =0 = Y =Fx)=-—
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Another example.

Consider the equation g(x,y) = e +3y + x> —1=0.

It is
)
a—i(x,y) — e *4+3>0 forallx€R.

Therefore the equation con be solved fpr every x € R with respect to y =: f(x)
and f(x) is a continuous differentiable function. Implicit differentiation ives
er—x — 2x
y=x(./ _ 1 3 / 2% = 0 — r_ 5 TR
ey = 1) +3y" +2x Ve

Differentiating again gives

2+ ey —1)?
e > +3

ey—xy// < ey—x(y/ _ 1)2 + 3y// + 2=0 — y/ _

But: Solving the equation with respect to y (in terms of elementary functions) is
not possible in this case!
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general remark.

Implicit differentiation of a implicitely defined function

_o %8
g(X,y)—O, 37}/7&0

y = f(x), with x,y € R, gives

8x

flix) = —&

(x) Py
Filx) = 88 — 2888y T &8

&
Therefore the opint x° is a stationary point of f(x) if
g(x%y%) = g(x"y°) =0 and g (x°y°)#0

And x° is a local maximum (minimum) if

0 0 0 0
L(XO ’yo) >0 < bzw. L(XO ’yo) < 0)
g, (x%,y0) &,/(x%,y0)

Ingenuin Gasser (Mathematik, UniHH) Analysis |1l for students in engineering

73/98



Implicit representation of curves.

Consider the set of solutions of a scalar equation

g(x,y) =0

gradg = (gx,8y) # 0
then g(x, y) defines locally a function y = f(x) or x = f(y).
Definition: A solution point (x°, y?) of the equation g(x,y) = 0 with
e grad g(x°, %) # 0 is called regular point,
e grad g(x?,y%) = 0 is called singular point.
Example: Consider (again) the equation for a circle
gx,y)=x*+y*—r=0 mitr>0.
on the circle there are no singular points!
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Horizontal and vertical tangents.

Remarks:

a) If for a regular point (x°, y°) we have

g(x*)=0 und gy(xo) #0
then the set of solutions contains a horizontal tangent in x°.

b) If for a regular point (x°, y°) we have

g() £0 und g/(x°) =0

then the set of solutions contains a vertical tangent in x°.

c) If x% is a singular point, then the set of solutions is approximated at x° “in

second order” by the following quadratic equation

G () (x = x°)% + 28,0, (x°) (x = x°)(y — ¥°) + g, () (y —¥°)* =0
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Remarks.

Due to c) for g, 8y 8y # 0 we obtain:
detHg(x’) >0 : x%is an isolated point of the set of solutions
detHg(x’) <0 : x°is a double point
detHg(xX®) =0 : x%is a return point or a cusp

Geometric interpretation:

a) If detHg(x%) > 0, then both Eigenvalues of Hg(x%) are or strictly positiv or
strictly negativ, i.e. x° is a strict local minimum or maximum of g(x).

b) If detHg(x°) < 0, then both Eigenvalues of Hg(x%) have opposite sign, i.e.
x0 is a saddel point of g(x).

c) If det Hg(x%) = 0, then the stationary point x° of g(x) is degenerate.
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Example 1.

Consider the singular point x® = 0 of the implicit equation
gl y) =y (x—1)+x*(x=2) =0

Calculate the partial derivatives up to order 2:

g = y?+3x°—4x
g = 2y(kx-1)

Z&x = 6x—4

&y = 2

gy = 2(x-1)

Therefore x° = 0 is an isolated point.
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Example 2.

Consider the singular point x® = 0 of the implicit equation
gx.y) =y (x 1) +x*(x +¢°) =0

Calculate the partial derivatives up to order 2:

g = Yy +3+2xq°
g = 2y(x-1)

o = 6x42q°

8y = 2y

gy = 2(x-—1)

wo = (% 2)

Therefore x° = 0 is an double point.
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Example 3.

Consider the singular point x° = 0 of the implicit equation
_ 2 3 _
gx,y) =y (x-1)+x>=0

Calculate the partial derivatives up to order 2:

g = Yy +3%°

g = 2(x-1)
&x = 6x

&y = 2y

gy = 2(x-—1)

Hg(0) = (8 _2)

Therefore x° = 0 is a cusp (or a return point).
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Implicit representation of surfaces.

@ The set of solutions of a scalar equation g(x,y,z) =0 for gradg # 0 is
locally a surface in R3.

@ For the tangential in x° = (x°,y% 2%)7 with g(x°) = 0 and grad g(x°) #0"
we obtain by Taylor expanding (denoting Ax® = x — x?)
gradg - A% = g (<°)(x = x°) + £, () (y — ¥°) + &:(°)(z — 20) = 0
i.e. the gradient is vertical to the surface g(x, y,z) = 0.

o If for example g,(x°) # 0, then locally there exists a a representation at x°
of the form

z = f(x,y)
and for the partial derivatives of f(x,y) we obtain
1 8x 8y
(9 = (s 5) =~ (g) = -2, &
using the implicit function theorem.
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The inverted Problem.

Question: Given the set of equations
y = f(x)

with f : D — R", D C R” open. Can we solve it with respect to x, i.e. can
we invert the probem?

Theorem: (Inversion theorem)

Let D C R” be open and f : D — R" a C1function. If the Jacobian-matrix
Jf(x®) is regular for an x° € D, then there exist neighborhoods U and V
of x? and y® = f(x%) such that f maps U on V bijectively.

The inverse function f~1: V — U is also C! and for all x € U we have:

JIFHy) = (JFC)) Yy =f(x)
Remark: We call f locally a C!~diffeomorphism.
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Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the
material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.
Then

V = ar’h
O = 2nr*+2nrh
Let ¢ € Ry be the given volume (with x :=r,y := h),
f(x,y) = 2mx®+27mxy
g(x,y) = nx’y—c=0
Determine the minimum of the function f(x, y) on the set
G ={(xy) €R} |g(x,y) =0}
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Solution of the constraint minimisation problem.

From g(x,y) = nx%y — ¢ = 0 follows
c

y= X2

We plug this into f(x, y) and obtain
2c

h(x) := 27x2 + 27TXL2 =2mx® + =
X X

Determine the minimum of the function h(x):

2 2 1/3
h'(x):47rx—;:0 = 4wx:7§ = X:(i)
Sufficient condition

4 1/3
W(x)=4r + = = # (5) =127 > 0
x3 T
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General formulation of the problem.

Determine the extrem values of the function f : R” — R under the
constraint

g(x) =0
where g : R" — R™.
The constraints are
gi(x1,...,xn) = 0
gm(x1,...,xs) = 0

Alternatively: Determine the extrem values of the function f(x) on the

set
G :={xeR"|g(x) =0}
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The Lagrange—function and the Lagrange-Lemma.

We define the Lagrange—function
F(x) =)+ > Nigi(x)
i=1

and look for the extrem values of F(x) for fixed A = (A1,...,Am) .
The numbers \;, i = 1,..., m are called Lagrange—multiplier.

Theorem: (Lagrange-Lemma) If x minimizes (or maximizes) the
Lagrange—function F(x) (for a fixed \) on D and if g(x°) = 0 holds, then x° is
the minimum (or maximum) of 7(x) on G := {x € D|g(x) = 0}.

Proof: For an arbitrary x € D we have
F(°) +ATg(x%) < F(x) + ATg(x)

If we choose x € G, then g(x) = g(x°) = 0, thus f(x°) < f(x).
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A necessary condition for local extrema.

Let f and gj, i = 1,..., m, C'=functions, then a necessary condition for an
extrem value x° of F(x) is given by

grad F(x) = grad f(x) + Z Aigrad gi(x) =0
i=1

Together with the constraints g(x) = 0 we obtain a set of (non-linear) equations
with (n+ m) equations and (n + m) unknowns x and .

The solutions (x°, A\%) are the candidates for the extrem values, since these
solutions satisfy the above necessary condition.

Alternatively: Define a Langrange—function
G(x,A) = F(x) + > _ Nigi(x)
i=1

and look for the extrem values of G(x,\) with respect to x and .
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Some remarks on suffiecient conditions.

© We can formulate a necessary condition:
If the functions f and g are C>~functions and if the Hesse-matrix
HF(x?) of the Lagrange—function is positiv (negativ) definit, then x°
is a strict local minimum (maximum) of f(x) on G.

@ In most of the applications the necessary condition are not satisfied,
allthough x? is a strict local extremum.

© And from the indefinitness of the Hesse-matrix HF (x°) we cannot
conclude, that x° is not an extremum.

© We have a similar problem with the necessary condition which is
obtained from the Hesse—matrix of the Lagrange—function G(x, \)
with respect to x and A.
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An example of a minimisation problem with constraints.

We look for extrem values of f(x,y) := xy on the disc
K= {0x)"x*+y* <1}

Since the function f is continuous and K C R? compact we conclude from
the min—max—property the existence of global maxima and minima on K.

We consider first the interior KO of K, i.e. the open set
K= {(x,y)" |x*+y* <1}
The necessary condition for an extrem value is given by
gradf = (y,x) =0

Thus the origin x° = 0 is a candidate for a (local) extrem value.
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continuation of the example.

The Hesse—matrix at the origin is given by

Hf(O):<(1) é)

and is indefinit. Thus x° is a saddel point.

Therefore the extrem values have to be on the boundary which is
represented by a constraint equation:

glx,y)=x*+y*~1=0

Therefore we look for the extrem values of f(x,y) = xy under the
constraint g(x,y) = 0.

The Lagrange—function is given by
F(x,y) =xy + A( +y* — 1)
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Completion of the example.

We obtain the non-linear system of equations

y+2x = 0
x+2\y = 0
X24y? = 1

with the four solution
=g 5 = (VIR -V KO = (-2 DT
A== O =(VIBVIDT KO = (-1
Minima and Maxima can be concluded from the values of the function
FxXM) =Fx@)=-1/2  F(xO) = F(x?)=1/2
i.e. minima are x and x®, maxima are x®) and x®¥.
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Lagrange—multiplier—rule.

Satz: Let f,g1,...,8mn : D — R be C'-functions, und let xX° € D a local
extrem value of f(x) under the constraint g(x) = 0. In addition let the
regularity condition

rang (J g(x0)> =m

hold true. Then there exist Lagrange—multiplier A1, ..., Ay, such that for
the Lagrange function

F(x) = f(x)+>_ Nigi(x)
i=1

the following first order necessary condition holds true:

grad F(x°) = 0
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Necessary condition of second order and sufficient
condition

Theorem: 1) Let xX° € D a local minimum of f(x) under the constraint g(x) = 0,
let the regularity condition be satisfied and let A1, ..., A, be the related
Lagrange-multiplier. Then the Hesse—matrix HF (x?) of the Lagrange—function is
positiv semi-definit on the tangential space

TG(x®) :={y € R"|gradg;(x’) -y =0fori=1,...,m}

ie itisy” HF(x%)y >0 for all y € TG(x°).

2) Let the regularity condition for a point x° € G be staisfied. If there exist
Lagrange—multiplier A1, ..., Ay, such that x° is a stationary point of the related
Lagrange—function. Let the Hesse-matrix HF (x°) be positiv definit on the
tangential space TG(x?), i.e. it holds

yTHF®)y >0 Vye TG(x%)\ {0},

then x? is a strict local minimum of f(x) under the constraint g(x) = 0.
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Example.

Determine the global maximum of the function
f(x,y) = —x>+8x—y?>+9
under the constraint
glx,y)=x+y?~1=0
The Lagrange—function is given by
F(x) = —x*+8x —y> + 9+ A(x*> + y? — 1)

From the necessary condition we obtain the non-linear system

—2x+8 = —2)Xx
—2y = =2)\y
. —|—y2 - 1
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Continuation of the example.

From the necessary condition we obtain the non-linear system

—2x+8 = —2X\x
-2y = =2\y
X2y = 1

The first equation gives A # 1. Using this in the second equation we get y = 0.
From the third equation we obtain x = +1.

Therefore the two points (x,y) = (1,0) and (x,y) = (—1,0) are candidates for a
global maximum. Since

f(1,00=16  f(—1,0)=0

the global maximum of f(x, y) under the constraint g(x, y) = 0 is given at the
point (x, y) = (1,0).
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Another example.

Determine the local extrem values of
f(x,y,z) =2x+3y +2z
on the intersection of the cylinder surface
Mz :={(x,y,z)" € R®|x* +y* =2}

with the plane
E={(x,y,2)T €eR3¥|x+2z=1}

Reformulation: Determine the extrem values of the function f(x,y, z)
under the constraint

gl(X,y,Z) = X2+y2—2:0
g(x,y,z) = x+z—-1=0
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Continuation of the example.

The Jacobi—matrix

(% 1)

has rank 2, i.e. we can determine extrem values using the Lagrange—function:

F(X,y,Z):2X+3y+2Z+A1(X2+y2—2)+)\2(X+2_1)

The necessary condition gives the non-linear system

24+2Mx+X = 0
3422y = 0
2+X = 0
Xty = 2
x+z = 1
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Continuation of the example.

The necessary condition gives the non-linear system

24+2Mx+ X
34+2\1y
24+ X
X4y

X+ 2z

From the first and the third equation it follows
2)\1X =0

From the second equation it follows A; # 0, i.e. x = 0.

Thus we have possible extrem values

(Xv)/vz) = (0’ ﬁ’l) (Xayvz) = (07_\[271)
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Completion if the example.

The possible extrem values are
(x,,2) = (0,v2,1) (xy,2)=(0,-V2,1)
and lie on the cylinder surface Mz of the cylinder Z with
Z = {(xy,2)T eR¥|x*+y? <2}

Mz = {(x,y,2)T eR3|x®+y? =2}

We calculate the related functiuon values
f(0,v2,1) = 3v2+42
£(0,—v2,1) = —3v2+42

Thus the point (x,y, z) = (0,1/2,1) is a maximum an the point
(x,y,2) = (0,—+/2,1) a minimum.
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