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Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

f (x1, . . . , xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT .

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

p = p(V , t) =
RT

V

V = V (p,T ) =
RT

p

T = T (p,V ) =
pV

R
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1.1. Partial derivatives

Definition: Let D ⊂ Rn be open, f : D → R, x0 ∈ D.

f is called partially differentiable in x0 with respect to xi if the limit

∂f

∂xi
(x0) := lim

t→0

f (x0 + tei )− f (x0)

t

= lim
t→0

f (x01 , . . . , x
0
i + t, . . . , x0n )− f (x01 , . . . , x

0
i , . . . , x

0
n )

t

exists. ei denotes the i–th unit vector. The limit is called partial derivative of
f with respect to xi at x

0.

If at every point x0 the partial derivatives with respect to every variable
xi , i = 1, . . . , n exist and if the partial derivatives are continuous functions
then we call f continuous partial differentiable or a C1–function.
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Examples.

Consider the function

f (x1, x2) = x21 + x22

At any point x0 ∈ R2 there exist both partial derivatives and both
partial derivatives are continuous:

∂f

∂x1
(x0) = 2x1,

∂f

∂x2
(x0) = 2x2

Thus f is a C1–function.

The function
f (x1, x2) = x1 + |x2|

at x0 = (0, 0)T is partial differentiable with respect to x1, but the
partial derivative with respect to x2 does not exist!
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An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

p(x , t) = A sin(αx − ωt)

The partial derivative

∂p

∂x
= αA cos(αx − ωt)

describes at a given time t the spacial rate of change of the pressure.

The partial derivative

∂p

∂t
= −ωA cos(αx − ωt)

describes for a fixed position x the temporal rate of change of the acoustic
pressure.
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Rules for differentiation

Let f , g be differentiable with respect to xi and α,β ∈ R, then we have the
rules

∂

∂xi

�
αf (x) + βg(x)

�
= α

∂f

∂xi
(x) + β

∂g

∂xi
(x)

∂

∂xi

�
f (x) · g(x)

�
=

∂f

∂xi
(x) · g(x) + f (x) · ∂g

∂xi
(x)

∂

∂xi

�
f (x)

g(x)

�
=

∂f

∂xi
(x) · g(x)− f (x) · ∂g

∂xi
(x)

g(x)2
for g(x) �= 0

An alternative notation for the partial derivatives of f with respect to xi at
x0 is given by

Di f (x
0) oder fxi (x

0)
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Gradient and nabla–operator.

Definition: Let D ⊂ Rn be an open set and f : D → R partial
differentiable.

We denote the row vector

grad f (x0) :=

�
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

�

as gradient of f at x0.

We denote the symbolic vector

∇ :=
� ∂

∂x1
, . . . ,

∂

∂xn

�T

as nabla–operator.

Thus we obtain the column vector

∇f (x0) :=

�
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

�T
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More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (αf + βg) = α · grad f + β · grad g

grad (f · g) = g · grad f + f · grad g

grad

�
f

g

�
=

1

g2
(g · grad f − f · grad g), g �= 0

Examples:

Let f (x , y) = ex · sin y . Then:
grad f (x , y) = (ex · sin y , ex · cos y) = ex(sin y , cos y)

For r(x) := �x�2 =
�
x21 + · · ·+ x2n we have

grad r(x) =
x

r(x)
=

x

�x�2
für x �= 0,

where x = (x1, . . . , xn) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R2 → R defined as

f (x , y) :=





x · y
(x2 + y2)2

: for (x , y) �= 0

0 : for (x , y) = 0

The function is partial differntiable on the entire R2 and we have

fx(0, 0) = fy (0, 0) = 0

∂f

∂x
(x , y) =

y

(x2 + y2)2
− 4

x2y

(x2 + y2)3
, (x , y) �= (0, 0)

∂f

∂y
(x , y) =

x

(x2 + y2)2
− 4

xy2

(x2 + y2)3
, (x , y) �= (0, 0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

∂f

∂x
(0, 0) = lim

t→0

f (t, 0)− f (0, 0)

t
=

t · 0
(t2 + 02)2

− 0

t
= 0

∂f

∂y
(0, 0) = lim

t→0

f (0, t)− f (0, 0)

t
=

0 · t
(02 + t2)2

− 0

t
= 0

But: At (0, 0) the function is not continuous since

lim
n→∞

f

�
1

n
,
1

n

�
=

1
n · 1

n�
1
n · 1

n + 1
n · 1

n

�2 =
1
n2

4
n4

=
n2

4
→ ∞

and thus we have
lim

(x,y)→(0,0)
f (x , y) �= f (0, 0) = 0
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f .

Theorem: Let D ⊂ Rn be an open set. Let f : D → R be partial
differentiable in a neighborhood of x0 ∈ D and let the partial derivatives
∂f

∂xi
, i = 1, . . . , n, be bounded. Then f is continuous in x0.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

∂f

∂x
(x , y) =

y

(x2 + y2)2
− 4

x2y

(x2 + y2)3
für (x , y) �= (0, 0)
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Proof of the theorem.

For �x− x0�∞ < ε, ε > 0 sufficiently small we write:

f (x)− f (x0) = (f (x1, . . . , xn−1, xn)−f (x1, . . . , xn−1, x
0
n ))

+ (f (x1, . . . , xn−1, x
0
n )− f (x1, . . . , xn−2, x

0
n−1, x

0
n ))

...

+ (f (x1, x
0
2 , . . . , x

0
n )− f (x01 , . . . , x

0
n ))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xn)− g(x0n ) := f (x1, . . . , xn−1, xn)− f (x1, . . . , xn−1, x
0
n )

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g :

g(xn)− g(x0n ) = g �(ξn)(xn − x0n )

for an appropriate ξn between xn and x0n .
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

f (x)− f (x0) =
∂f

∂xn
(x1, . . . , xn−1, ξn) · (xn − x0n )

+
∂f

∂xn−1
(x1, . . . , xn−2, ξn−1, x

0
n ) · (xn−1 − x0n−1)

...

+
∂f

∂x1
(ξ1, x

0
2 , . . . , x

0
n ) · (x1 − x01 )

Using the boundedness of the partial derivatives

|f (x)− f (x0)| ≤ C1|x1 − x01 |+ · · ·+ Cn|xn − x0n |

for �x− x0�∞ < ε, we obtain the continuity of f at x0 since

f (x) → f (x0) für �x− x0�∞ → 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D ⊂ Rn. If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

∂2f

∂xj∂xi
:=

∂

∂xj

�
∂f

∂xi

�

Example: Second order partial derivatives of a function f (x , y):

∂2f

∂x2
=

∂

∂x

�
∂f

∂x

�
,

∂2f

∂y∂x
=

∂

∂y

�
∂f

∂x

�
,

∂2f

∂x∂y
,

∂2f

∂y2

Let i1, . . . , ik ∈ {1, . . . , n}. Then we define recursively

∂k f

∂xik∂xik−1
. . . ∂xi1

:=
∂

∂xik

�
∂k−1f

∂xik−1
∂xik−2

. . . ∂xi1

�
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Higher order derivatives.

Definition: The function f is called k–times partial differentiable, if all
derivatives of order k ,

∂k f

∂xik∂xik−1
. . . ∂xi1

for all i1, . . . , ik ∈ {1, . . . , n},

exist on D.

Alternative notation:

∂k f

∂xik∂xik−1
. . . ∂xi1

= DikDik−1
. . .Di1 f = fxi1 ...xik

If all the derivatives of k–th order are continuous the function f is called k–times
continuous partial differentiable or called a Ck–function on D. Continuous
functions f are called C0–functions.

Example: For the function f (x1, . . . , xn) =
n�

i=1

x ii we have ∂nf
∂xn...∂x1

=?
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general
not arbitrarely exchangeable!

Example: For the function

f (x , y) :=





xy
x2 − y2

x2 + y2
: for (x , y) �= (0, 0)

0 : for (x , y) = (0, 0)

we calculate

fxy (0, 0) =
∂

∂y

�
∂f

∂x
(0, 0)

�
= −1

fyx(0, 0) =
∂

∂x

�
∂f

∂y
(0, 0)

�
= +1

i.e. fxy (0, 0) �= fyx(0, 0).
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Theorem of Schwarz on exchangeablity.

Satz: Let D ⊂ Rn be open and let f : D → R be a C2–function. Then it
holds

∂2f

∂xj∂xi
(x1, . . . , xn) =

∂2f

∂xi∂xj
(x1, . . . , xn)

for all i , j ∈ {1, . . . , n}.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C k–function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!
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Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order fxyz for the function

f (x , y , z) = y2z sin(x3) + (cosh y + 17ex
2

)z2

The order of execution is exchangealbe since f ∈ C3.

Differentiate first with respect to z :

∂f

∂z
= y2 sin(x3) + 2z(cosh y + 17ex

2

)

Differentiate then fz with respect to x (then cosh y disappears):

fzx =
∂

∂x

�
y2 sin(x3) + 2z(cosh y + 17ex

2

)
�

= 3x2y2 cos(x3) + 68xzex
2

For the partial derivative of fzx with respect to y we obtain

fxyz = 6x2y cos(x3)
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The Laplace operator.

The Laplace–operator or Laplacian is defined as

Δ :=
n�

i=1

∂2

∂x2i

For a scalar function u(x) = u(x1, . . . , xn) we have

Δu =
n�

i=1

∂2u

∂x2i
= ux1x1 + · · ·+ uxnxn

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

Δu − 1

c2
utt = 0 (wave equation)

Δu − 1

k
ut = 0 (heat equation)

Δu = 0 (Laplace–equation or equation for the potential)
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Vector valued functions.

Definition: Let D ⊂ Rn be open and let f : D → Rm be a vector valued
function.

The function f is called partial differentiable on x0 ∈ D, if for all
i = 1, . . . , n the limits

∂f

∂xi
(x0) = lim

t→0

f(x0 + tei )− f(x0)

t

exist. The calculation is done componentwise

∂f

∂xi
(x0) =




∂f1
∂xi
...

∂fm
∂xi




for i = 1, . . . , n
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Vectorfields.

Definition: If m = n the function f : D → Rn is called a vectorfield on D.
If every (coordinate-) function fi (x) of f = (f1, . . . , fn)

T is a Ck–function,
then f is called Ck–vectorfield.

Examples of vectorfields:

• velocity fields of liquids or gases;
• elektromagnetic fields;
• temperature gradients in solid states.

Definition: Let f : D → Rn be a partial differentiable vector field. The
divergence on x ∈ D is defined as

div f(x0) :=
n�

i=1

∂fi
∂xi

(x0)

or
div f(x) = ∇T f(x) = (∇, f(x))
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Rules of computation and the rotation.

The following rules hold true:

div (α f + β g) = α div f + β div g for f, g : D → Rn

div (ϕ · f) = (∇ϕ, f) + ϕ div f for ϕ : D → R, f : D → Rn

Remark: Let f : D → R be a C2–function, then for the Laplacian we have

Δf = div (∇f )

Definition: Let D ⊂ R3 open and f : D → R3 a partial differentiable
vector field. We define the rotation as

rot f(x0) :=

�
∂f3
∂x2

− ∂f2
∂x3

,
∂f1
∂x3

− ∂f3
∂x1

,
∂f2
∂x1

− ∂f1
∂x2

�T
�����
x0
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Alternative notations and additional rules.

rot f(x) = ∇× f(x) =

��������

e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

��������
Remark: The following rules hold true:

rot (α f + β g) = α rot f + β rot g

rot (ϕ · f) = (∇ϕ)× f + ϕ rot f

Remark: Let D ⊂ R3 and ϕ : D → R be a C2–function. Then

rot (∇ϕ) = 0 ,

using the exchangeability theorem of Schwarz. I.e. gradient fileds are rotation-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D ⊂ Rn open, x0 ∈ D and f : D → Rm. The function f(x)
is called differentiable in x0 (or totally differentiable in x0), if there exists a
linear map

l(x, x0) := A · (x− x0)

with a matrix A ∈ Rm×n which satisfies the following approximation
property

f(x) = f(x0) + A · (x− x0) + o(�x− x0�)
i.e.

lim
x→x0

f(x)− f(x0)− A · (x− x0)

�x− x0� = 0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map l the differential or the total differential
of f(x) at the point x0. We denote l by df(x0).

The related matrix A is called Jacobi–matrix of f(x) at the point x0 and is
denoted by J f(x0) (or Df(x0) or f �(x0)).

Remark: For m = n = 1 we obtain the well known relation

f (x) = f (x0) + f �(x0)(x − x0) + o(|x − x0|)

for the derivative f �(x0) at the point x0.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x− x0) a scalar product �aT , x− x0�.
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Total and partial differentiability.

Theorem: Let f : D → Rm, x0 ∈ D ⊂ Rn, D open.

a) If f(x) is differentiable in x0, then f(x) is continuous in x0.

b) If f(x) is differentiable in x0, then the (total) differential and thus the
Jacobi–matrix are uniquely determined and we have

J f(x0) =




∂f1
∂x1

(x0) . . .
∂f1
∂xn

(x0)

...
...

∂fm
∂x1

(x0) . . .
∂fm
∂xn

(x0)




=




Df1(x
0)

...

Dfm(x
0)




c) If f(x) is a C1–function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x0, then by definition

lim
x→x0

f(x)− f(x0)− A · (x− x0)

�x− x0� = 0

Thus we conclude

lim
x→x0

�f(x)− f(x0)− A · (x− x0)� = 0

and we obtain

�f(x)− f(x0)� ≤ �f(x)− f(x0)− A · (x− x0)�+ �A · (x− x0)�

→ 0 as x → x0

Therefore the function f is continuous at x0.
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Proof of b).

Let x = x0 + tei , |t| < ε, i ∈ {1, . . . , n}. Since f in differentiable at x0, we
have

lim
x→x0

f(x)− f(x0)− A · (x− x0)

�x− x0�∞
= 0

We write

f(x)− f(x0)− A · (x− x0)

�x− x0�∞
=

f(x0 + tei )− f(x0)

|t| − tAei
|t|

=
t

|t| ·
�
f(x0 + tei )− f(x0)

t
− Aei

�

→ 0 as t → 0

Thus

lim
t→0

f(x0 + tei )− f(x0)

t
= Aei i = 1, . . . , n
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Examples.

Consider the scalar function f (x1, x2) = x1e
2x2 . Then the Jacobian is given

by:
Jf (x1, x2) = Df (x1, x2) = e2x2(1, 2x1)

Consider the function f : R3 → R2 defined by

f(x1, x2, x3) =

�
x1x2x3

sin(x1 + 2x2 + 3x3)

�

The Jacobian is given by

Jf(x1, x2, x3) =




∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3


 =

�
x2x3 x1x3 x1x2

cos(s) 2 cos(s) 3 cos(s)

�

with s = x1 + 2x2 + 3x3.
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Further examples.

Let f(x) = Ax, A ∈ Rm×n and x ∈ Rn. Then

Jf(x) = A for all x ∈ Rn

Let f (x) = xTAx = �x,Ax�, A ∈ Rn×n and x ∈ Rn.
Then we have

∂f

∂xi
= �ei ,Ax�+ �x,Aei �

= eTi Ax + xTAei

= xT (AT + A)ei

We conclude
Jf (x) = gradf (x) = xT (AT + A)
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Rules for the differentiation.

Theorem:

a) Linearität: LET f, g : D → Rm be differentiable in x0 ∈ D, D open. Then
α f(x0) + β g(x0), and α,β ∈ R are differentiable in x0 and we have

d(αf + βg)(x0) = α df(x0) + β dg(x0)

J(αf + βg)(x0) = α Jf(x0) + β Jg(x0)

b) Chain rule: Let f : D → Rm be differentiable in x0 ∈ D, D open. Let
g : E → Rk be differentiable in y0 = f (x0) ∈ E ⊂ Rm, E open. Then g ◦ f is
differentiable in x0.

For the differentials it holds

d(g ◦ f)(x0) = dg(y0) ◦ df(x0)

and analoglously for the Jacobian matrix

J(g ◦ f)(x0) = Jg(y0) · Jf(x0)
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Examples for the chain rule.

Let I ⊂ R be an intervall. Let h : I → Rn be a curve, differentiable in
t0 ∈ I with values in D ⊂ Rn, D open. Let f : D → R be a scalar function,
differentiable in x0 = h(t0).

Then the composition

(f ◦ h)(t) = f (h1(t), . . . , hn(t))

is differentiable in t0 and we have for the derivative:

(f ◦ h)�(t0) = Jf (h(t0)) · Jh(t0)

= gradf (h(t0)) · h�(t0)

=
n�

k=1

∂f

∂xk
(h(t0)) · h�k(t0)
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Directional derivative.

Definition: Let f : D → R, D ⊂ Rn open, x0 ∈ D, and v ∈ R \ {0} a
vector. Then

Dv f (x
0) := lim

t→0

f (x0 + tv)− f (x0)

t

is called the directional derivative (Gateaux–derivative) of f (x) in the
direction of v.

Example: Let f (x , y) = x2 + y2 and v = (1, 1)T . Then the directional
derivative in the direction of v is given by:

Dv f (x , y) = lim
t→0

(x + t)2 + (y + t)2 − x2 − y2

t

= lim
t→0

2xt + t2 + 2yt + t2

t

= 2(x + y)
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Remarks.

For v = ei the directional derivative in the direction of v is given by the
partial derivative with respect to xi :

Dv f (x
0) =

∂f

∂xi
(x0)

If v is a unit vector, i.e. �v� = 1, then the directional derivative Dv f (x
0)

describes the slope of f (x) in the direction of v.

If f (x) is differentiable in x0, then all directional derivatives of f (x) in x0

exist. With h(t) = x0 + tv we have

Dv f (x
0) =

d

dt
(f ◦ h)|t=0 = grad f (x0) · v

This follows directely applying the chain rule.

Ingenuin Gasser (Mathematik, UniHH) Analysis III for students in engineering 35 / 54



Properties of the gradient.

Theorem: Let D ⊂ Rn open, f : D → R differentiable in x0 ∈ D. Then we have

a) The gradient vector grad f (x0) ∈ Rn is orthogonal in the level set

Nx0 := {x ∈ D | f (x) = f (x0)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f (x0) gives the direction of the steepest slope of f (x) in
x0.

Idea of the proof:

a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy–Schwarz inequality

|Dv f (x
0)| = |(grad f (x0), v)| ≤ �grad f (x0)�2

Equality is obtained for v = grad f (x0)/�grad f (x0)�2.
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Curvilinear coordinates.

Definition: Let U,V ⊂ Rn be open and Φ : U → V be a C1-map, for
which the Jacobimatrix JΦ(u0) is regular (invertible) at every u0 ∈ U.

In addition there exists the inverse map Φ−1 : V → U and the inverse map
is also a C1–map.

Then x = Φ(u) defines a coodinate transformation from the coordinates u
to x.

Example: Consider for n = 2 the polar coordinates u = (r ,ϕ) with r > 0
and −π < ϕ < π and set

x = r cosϕ

y = r sinϕ

with the cartesian coordinates x = (x , y).
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Calculation of the partial derivatives.

For all u ∈ U with x = Φ(u) the following relations hold

Φ−1(Φ(u)) = u

JΦ−1(x) · JΦ(u) = In (chain rule)

JΦ−1(x) = (JΦ(u))−1

Let f̃ : V → R be a given function. Set

f (u) := f̃ (Φ(u))

the by using the chain rule we obtain

∂f

∂ui
=

n�

j=1

∂ f̃

∂xj

∂Φj

∂ui
=:

n�

j=1

g ij ∂ f̃

∂xj

with

g ij :=
∂Φj

∂ui
, G(u) := (g ij) = (JΦ(u))T
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Notations.

We use the short notation

∂

∂ui
=

n�

j=1

g ij ∂

∂xj

Analogously we can express the partial derivatives with respect to xi by the
partial derivatives with respect to uj

∂

∂xi
=

n�

j=1

gij
∂

∂uj

where
(gij) := (g ij)−1 = (JΦ)−T = (JΦ−1)T

We obtain these relations by applying the chain rule on Φ−1.
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Example: polar coordinates.

We consider polar coordinates

x = Φ(u) =

�
r cosϕ
r sinϕ

�

We calculate

JΦ(u) =

�
cosϕ −r sinϕ
sinϕ r cosϕ

�

and thus

(g ij) =




cosϕ sinϕ

−r sinϕ r cosϕ


 (gij) =




cosϕ −1

r
sinϕ

sinϕ
1

r
cosϕ



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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

∂

∂x
= cosϕ

∂

∂r
− 1

r
sinϕ

∂

∂ϕ

∂

∂y
= sinϕ

∂

∂r
+

1

r
cosϕ

∂

∂ϕ

Example: Calculation of the Laplacian–operator in polar coordinates

∂2

∂x2
= cos2 ϕ

∂2

∂r2
− sin(2ϕ)

r

∂2

∂r∂ϕ
+

sin2 ϕ

r2
∂2

∂ϕ2
+

sin(2ϕ)

r2
∂

∂ϕ
+

sin2 ϕ

r

∂

∂r

∂2

∂y2
= sin2 ϕ

∂2

∂r2
+

sin(2ϕ)

r

∂2

∂r∂ϕ
+

cos2 ϕ

r2
∂2

∂ϕ2
− sin(2ϕ)

r2
∂

∂ϕ
+

cos2 ϕ

r

∂

∂r

Δ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r2
∂2

∂ϕ2
+

1

r

∂

∂r
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Example: spherical coordinates.

We consider spherical coordinates

x = Φ(u) =




r cosϕ cos θ

r sinϕ cos θ

r sin θ




The Jacobian–matrix is given by:

JΦ(u) =




cosϕ cos θ −r sinϕ cos θ −r cosϕ sin θ

sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ

sin θ 0 r cos θ



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Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

∂

∂x
= cosϕ cos θ

∂

∂r
− sinϕ

r cos θ

∂

∂ϕ
− 1

r
cosϕ sin θ

∂

∂θ

∂

∂y
= sinϕ cos θ

∂

∂r
+

cosϕ

r cos θ

∂

∂ϕ
− 1

r
sinϕ sin θ

∂

∂θ

∂

∂z
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

Example: calculation of the Laplace–operator in spherical coordinates

Δ =
∂2

∂r2
+

1

r2 cos2 θ

∂2

∂ϕ2
+

1

r2
∂2

∂θ2
+

2

r

∂

∂r
− tan θ

r2
∂

∂θ
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Kapitel 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let f : D → R be a scalar differentiable
function on an open set D ⊂ Rn. Let a, b ∈ D be points in D such that the
connecting line segment

[a, b] := {a + t(b− a) | t ∈ [0, 1]}

lies entirely in D. Then there exits a number θ ∈ (0, 1) with

f (b)− f (a) = grad f (a + θ(b− a)) · (b− a)

Proof: We set
h(t) := f (a + t(b− a))

with the mean value theorem for a single variable and the chain rules we conclude

f (b)− f (a) = h(1)− h(0) = h�(θ) · (1− 0)

= grad f (a + θ(b− a)) · (b− a)
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Definition and example.

Definition: If the condition [a, b] ⊂ D holds true for all points a, b ∈ D,
then the set D is called convex.

Example for the mean value theorem: Given a scalar function

f (x , y) := cos x + sin y

It is
f (0, 0) = f (π/2,π/2) = 1 ⇒ f (π/2,π/2)− f (0, 0) = 0

Applying the mean value theorem there exists a θ ∈ (0, 1) with

grad f

�
θ

�
π/2
π/2

��
·
�

π/2
π/2

�
= 0

Indeed this is true for θ = 1
2 .
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Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true
for scalar functions but in general not for vector–valued functions!

Examples: Consider the vector–valued Function

f(t) :=

�
cos t
sin t

�
, t ∈ [0,π/2]

It is

f(π/2)− f(0) =

�
0
1

�
−
�

1
0

�
=

�
−1
1

�

and

f �
�
θ
π

2

�
·
�π
2
− 0

�
=

π

2

�
− sin(θπ/2)

cos(θπ/2)

�

BUT: the vectors on the right hand side have lenght
√
2 and π/2 !
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A mean value estimate for vector–valued functions.

Theorem: Let f : D → Rm be differentiable on an open set D ⊂ Rn. Let
a, b bei points in D with [a, b] ⊂ D. Then there exists a θ ∈ (0, 1) with

�f(b)− f(a)�2 ≤ �J f(a + θ(b− a)) · (b− a)�2

Idea of the proof: Application of the mean value theorem to the scalar function
g(x) definid as

g(x) := (f(b)− f(a))T f(x) (scalar product!)

Remark: Another (weaker) for of the mean value estimate is

�f(b)− f(a)� ≤ sup
ξ∈[a,b]

�J f(ξ))� · �(b− a)�

where � · � denotes an arbitrary vector norm with related matrix norm.
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Taylor series: notations.

We define the multi–index α ∈ Nn
0 as

α := (α1, . . . ,αn) ∈ Nn
0

Let
|α| := α1 + · · ·+ αn α! := α1! · · · · · αn!

Let f : D → R be |α| times continuous differentiable. Then we set

Dα = Dα1
1 Dα2

2 . . .Dαn
n =

∂|α|f
∂xα1

1 . . . ∂xαn
n

,

where Dαi
i = Di . . .Di� �� �

αi–mal

. We write

xα := xα1
1 xα2

2 . . . xαn
n for x = (x1, . . . , xn) ∈ Rn.
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The Taylor theorem.

Theorem: (Taylor)
Let D ⊂ Rn be open and convex. Let f : D → R be a Cm+1–function and
x0 ∈ D. Then the Taylor–expansion holds true in x ∈ D

f (x) = Tm(x; x0) + Rm(x; x0)

Tm(x; x0) =
�

|α|≤m

Dαf (x0)

α!
(x− x0)

α

Rm(x; x0) =
�

|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)

α

for an appropriate θ ∈ (0, 1).

Notation: In the Taylor–expansion we denote Tm(x; x0) Taylor–polynom of
degree m and Rm(x; x0) Lagrange–remainder.
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Derivation of the Taylor expansion.

We define a scalar function in one single variable t ∈ [0, 1] as

g(t) := f (x0 + t(x− x0))

and calculate the (univariate) Taylor–expansion at t = 0. It is

g(1) = g(0) + g �(0) · (1− 0) +
1

2
g ��(ξ) · (1− 0)2 for a ξ ∈ (0, 1).

The calculation of g �(0) is given by the chain rule

g �(0) =
d

dt
f (x01 + t(x1 − x01 ), x

0
2 + t(x2 − x02 ), . . . , x

0
n + t(xn − x0n ))

���
t=0

= D1f (x0) · (x1 − x01 ) + . . .+ Dnf (x0) · (xn − x0n )

=
�

|α|=1

Dαf (x0)

α!
· (x− x0)

α
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Continuation of the derivation.

Calculation of g ��(0) gives

g ��(0) =
d2

dt2
f (x0 + t(x− x0))

���
t=0

=
d

dt

n�

k=1

Dk f (x
0 + t(x− x0))(xk − x0k )

���
t=0

= D11f (x0)(x1 − x01 )
2 + D21f (x0)(x1 − x01 )(x2 − x02 )

+ . . .+ Dij f (x0)(xi − x0i )(xj − x0j ) + . . .+

+Dn−1,nf (x0)(xn−1 − x0n−1)(xn − x0n ) + Dnnf (x0)(xn − x0n )
2)

=
�

|α|=2

Dαf (x0)

α!
(x− x0)

α (exchange theorem of Schwarz!)

Continuation: Proof of the Taylor–formula by (mathematical) induction!
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Proof of the Taylor theorem.

The function
g(t) := f (x0 + t(x− x0))

is (m + 1)–times continuous differentiable and we have

g(1) =
m�

k=0

g (k)(0)

k!
+

g (m+1)(θ)

(m + 1)!
for a θ ∈ [0, 1].

In addition we have (by induction over k)

g (k)(0)

k!
=

�

|α|=k

Dαf (x0)

α!
(x− x0)α

and
g (m+1)(θ)

(m + 1)!
=

�

|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)α
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Examples for the Taylor–expansion.

1 Calculate the Taylor–polynom T2(x; x0) of degree 2 of the function

f (x , y , z) = x y2 sin z

at (x , y , z) = (1, 2, 0)T .

2 The calculation of T2(x; x0) requires the partial derivatives up to
order 2.

3 These derivatives have to be evaluated at (x , y , z) = (1, 2, 0)T .

4 The result is T2(x; x0) in the form

T2(x; x0) = 4z(x + y − 2)

5 Details on extra slide.
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Remarks to the remainder of a Taylor–expansion.

Remark: The remainder of a Taylor–expansion contains all partial
derivatives of order (m + 1):

Rm(x; x0) =
�

|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)

α

If all these derivative are bounded by aconstant C in a neighborhood of x0 then
the estimate for the remainder hold true

|Rm(x; x0)| ≤
nm+1

(m + 1)!
C �x− x0�m+1

∞

We conlude for the quality of the approximation of a Cm+1–function by the
Taylor–polynom

f (x) = Tm(x; x0) + O
�
�x− x0�m+1

�

Special case m = 1: For a C2–function f (x) we obtain

f (x) = f (x0) + grad f (x0) · (x− x0) + O(�x− x0�2).
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