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Content of the course Analysis IlI.

© Partial derivatives, differential operators.

@ Vector fields, total differential, directional derivative.

© Mean value theorems, Taylor's theorem.

Extrem values, implicit function theorem.

Implicit rapresentaion of curves and surfces.

Extrem values under equality constraints.

Newton—method, non-linear equations and the least squares method.
Multiple integrals, Fubini's theorem, transformation theorem.

Potentials, Green's theorem, GaufB}'s theorem.
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Green's formulas, Stokes's theorem.
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Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let
f(x1,...,xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

RT
P = P(V7t):7
RT
p
pV
T = T(Pa\/):?
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1.1. Partial derivatives

Definition: Let D C R” be open, f : D — R, x9 e D.

@ fis called partially differentiable in x° with respect to x; if the limit

O o) o i FOOH 1) = )
8x,- | t—0 t
— im O, X+t X0 — (P, X0 x0)
t—0 t

exists. e; denotes the j—th unit vector. The limit is called partial derivative of
f with respect to x; at x°.

@ If at every point x° the partial derivatives with respect to every variable
Xj, I =1,...,n exist and if the partial derivatives are continuous functions

then we call f continuous partial differentiable or a C*—function.
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Examples.

@ Consider the function
f(x1,x) = x12 4 x22

At any point x° € R? there exist both partial derivatives and both
partial derivatives are continuous:

of

Of oy _
8Xl(x) 2X1,

Of oy _
8x2(x) 2x7

Thus f is a C1—function.

@ The function
f(x1,x2) = x1 + |x2]

at x® = (0,0)7 is partial differentiable with respect to x, but the
partial derivative with respect to x, does not exist!
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An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by
p(x, t) = Asin(ax — wt)

The partial derivative

op
X aAcos(ax — wt)

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

@
ot

describes for a fixed position x the temporal rate of change of the acoustic

= —wAcos(ax — wt)

pressure.
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Rules for differentiation

@ Let 7, g be differentiable with respect to x; and «, 8 € R, then we have the

rules
o (af(9+ 8809) = g (9+ 65500
o (F09-£09) = S09-800+ 760 FE(0)
of og
9 <f(><)) _ AT e for g(x) # 0
o \ &6 50

@ An alternative notation for the partial derivatives of f with respect to x; at
x0 is given by
D;f (x°) oder £ (x°)
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Gradient and nabla—operator.

Definition: Let D C R" be an open set and f : D — R partial
differentiable.

@ We denote the row vector

arad ) i= (e (0o 5 (9))

as gradient of f at x°.
@ We denote the symbolic vector

V= <(;)X1"“’8?<,,>T

as nabla—operator.
@ Thus we obtain the column vector

)
V() = (g)fl( ). ..,g;(xo)>
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More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (af + 8g) = «-gradf+ [ -gradg

grad(f-g) = g-gradf+f-gradg

f 1
grad (g) = ?(g.gradf—f-gradg), g#0

Examples:
@ Let f(x,y) = €*-siny. Then:
grad f(x,y) = (&* -siny, " - cosy) = e*(siny,cos y)

@ For r(x) := |[x]la = /*Z + - + x2 we have

X X
d = —— = fii 0
grad r(x) P XD iir x # 0,

where x = (xi, . .., X,) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R> — R defined as

Xy

m for (x,y) #0

fxy) =
0 . for (x,y) =0

The function is partial differntiable on the entire R?> and we have

£(0,0) = f£,(0,0)=0
of 2
g(xm) ~ 4)—/y2)2 — 4(x2):—};/2)3’ (x,y) # (0,0)
of - 5% X2
@(X,Y) = 2+ _4(X2+y2)3’ (x,y) # (0,0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

t-0 0
of f(t,0) — (0,0 24+ 022
o 0,0) = lim (BO-FOO_ (20 ~_,
Ox t—0 t t
0-t 0
of f(0,t) — £(0,0 2422
9 0,00 = tim QOO0 _(@+8)?
Oy t—0 t t
But: At (0,0) the function is not continuous since
11 toL -
i 7 (307) =T =B = g o
A O 10 A

and thus we have

lim  f(x, f(0,0) =0
ww%mm(AH# (0,0)
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f.

Theorem: Let D C R" be an open set. Let f : D — R be partial

differentiable in a neighborhood of x° € D and let the partial derivatives

of
ox;'

i=1,...,n, be bounded. Then f is continuous in x°.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

A R S
ax Y T @22 T T2 1 y2)3

fir (x,y) # (0,0)
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Proof of the theorem.

For ||lx — X%l < &, € > 0 sufficiently small we write:

f(x) — f(xo) = (F(X1y- ey Xno1,Xn)—F (X1, . .. 7x,,_l,x,?))
+ (F(xas e X1, X0) = F(X1y - vy X2, X201, x9))
+ (f(xhxg,‘..,x,?)—f(xf,...,x,?))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xn) —g(x,(,)) = (X1, ey Xn—1,Xn) — F(X1, - - - 7x,,_l,xr?)

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g:

g(xn) — g(X,(,)) = g'(&n) (%0 — X:?)

for an appropriate &, between x, and x°.
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

of
f(X)— f‘(XO) = Ix (Xla"wxnflaé-n)'(xn_xg)
of
+ m(xl, ... ,X,,_2,§n_1,x,?) - (Xp—1 — X,?_l)
of
+ Tﬁ(fl,xg,...,xg)wxlfxf)

Using the boundedness of the partial derivatives
() = FO) < Glxa = x|+ + Galxa — xp
for ||x — x°||» < €, we obtain the continuity of f at x° since

f(x) — F(x°) fiir |[x — x%[| 0o — 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D C R". If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

Pf 9 (of
Oxj0x; ~ Ox; \ Ox;

Example: Second order partial derivatives of a function f(x, y):

Pr_ o (or\ o _o (o) #r o
ox2  Ox \ Ox dydx Oy \ Ox Ox0y’  Oy?

Let i1,...,ik € {1,...,n}. Then we define recursively

ok f 0 ok1f
8x,-k8x,-k_1 cee 6x,-1 o 8X,'k 8x,-k_18x,-k_2 oo 8x,-1
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Higher order derivatives.

Definition: The function f is called k—times partial differentiable, if all
derivatives of order k,

o f

P S ————— forallil... I'kE 1,....n
8x,-k(*)x,-k_1...8x,-1 ’ ’ { ’ ’ }7

exist on D.
Alternative notation:
Okf

9T _pD,,..Dif=f,.
aX,'kaX,'k71 .. .6X,'1 ket e

If all the derivatives of k—th order are continuous the function f is called k—times
continuous partial differentiable or called a CkK~function on D. Continuous
functions f are called C%—functions.

Example: For the function f(xy,...,x,) = H x! we have axa ’;Xl =7

i=1
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general

not arbitrarely exchangeable!

Example: For the function

X2 — 2
XY 2
fy) =4 TY
0
we calculate
15)
fy(0,0) = 8y(
0
f:VX(O7O) = ax <

i.e. f><}’(070) 7£ fyx(ovo)'
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Theorem of Schwarz on exchangeablity.

Satz: Let D C R” be open and let f : D — R be a C?>~function. Then it
holds
O*f ( ) O*f
—(x1,...,Xp) = ———
IxjOx; Lo Ox;0x;

forall i,j € {1,...,n}.

(X1, Xn)

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a Ck—function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!
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Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order f,,, for the function
f(x,y,z) = y*zsin(x®) + (cosh y + 17eX2)z2
The order of execution is exchangealbe since f € C3.

@ Differentiate first with respect to z:

? = y?sin(x3) + 2z(cosh y + 17¢*)
z

o Differentiate then f, with respect to x (then cosh y disappears):

fox

82 (y2 sin(x*) 4 2z(cosh y + 17eX2))
X

= 3x%y?cos(x®) + 68xze™”
@ For the partial derivative of f,, with respect to y we obtain

fyz = 6x°y cos(x?)
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The Laplace operator.

The Laplace—operator or Laplacian is defined as

n
A -
' Ox?
i=1 o
For a scalar function u(x) = u(x, ..., x,) we have
n
?u
Au = 8X2 = Uxx +oet U xn

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

Au——ux = 0 (wave equation)
€
1 .
Au— Zu = 0 (heat equation)
Au = 0 (Laplace—equation or equation for the potential)
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Vector valued functions.

Definition: Let D C R"” be open and let f : D — R™ be a vector valued
function.

The function f is called partial differentiable on x° € D, if for all
i=1,...,n the limits

0 N\ f(y0
ﬁ(xo) — im f(x” + te;) — f(x”)

ox; t—0 t

exist. The calculation is done componentwise
o
ox;
f 1

g_(xo): : fori=1,...,n

i of,y
8X,'
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Vectorfields.

Definition: If m = n the function f : D — R” is called a vectorfield on D.
If every (coordinate-) function fi(x) of f = (f1,...,f,)" is a Ck—function,
then f is called Ck—vectorfield.

Examples of vectorfields:

e velocity fields of liquids or gases;
e elektromagnetic fields;
e temperature gradients in solid states.

Definition: Let f : D — R" be a partial differentiable vector field. The
divergence on x € D is defined as

divf(x°) := gfi (x°)
X

i=1

or

divf(x) = V7f(x) = (V,f(x))
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Rules of computation and the rotation.

The following rules hold true:
div(af+8g) = adivf+gdivg forf,g: D — R"

div(p-f) = (Ve,f)+edivf foro: D —R,f: D —R"
Remark: Let f : D — R be a C2—function, then for the Laplacian we have
Af =div(Vf)

Definition: Let D C R3 open and f : D — R3 a partial differentiable
vector field. We define the rotation as

o 8X2 8X37 8X3 8x1’ 8X1 8X2

x0
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Alternative notations and additional rules.

e] e €3

rot f(x) = V x f(x) = 6%1 3%2 6%3

h h f

Remark: The following rules hold true:
rot(af+5g) = arotf+ Grotg

rot(p-f) = (Vo) xf+protf

Remark: Let D € R3 and ¢ : D — R be a C?~function. Then
rot (Vo) =0,

using the exchangeability theorem of Schwarz. l.e. gradient fileds are rotation-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D C R” open, x’ € D and f : D — R™. The function f(x)
is called differentiable in x° (or totally differentiable in xg), if there exists a

linear map
I(x,x%) := A - (x — x%)

with a matrix A € R™*" which satisfies the following approximation
property
f(x) = f(x°) + A - (x = x%) + o(|[x — X°|))

im f(x) — f(x%) — A - (x — x0)

x5 [ =

=0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map | the differential or the total differential
of f(x) at the point x°. We denote | by df(x?).

The related matrix A is called Jacobi—-matrix of f(x) at the point x° and is
denoted by Jf(x?) (or Df(x?) or f'(x°)).

Remark: For m = n = 1 we obtain the well known relation
f(x) = f(x0) + f'(x0)(x = x0) + o(|x — o)
for the derivative f/(xp) at the point xp.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x — x°) a scalar product (a”,x —x%).
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Total and partial differentiability.

Theorem: Let f : D - R™ x° e D c R", D open.

a) If f(x) is differentiable in x°, then f(x) is continuous in x°.

0

b) If f(x) is differentiable in x°, then the (total) differential and thus the
Jacobi—matrix are uniquely determined and we have

of , o
87X1(X )
JF(<) = 5
Ofm
Ax1

(%)

Ofy (0 Df (x)
B, (x7)

of

B %) Dfin(x%)

c) If f(x) is a C1function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x°, then by definition

im f(x) — f(x%) — A - (x — x°0)

=0
o x>

Thus we conclude

lim IF(x) = f(x°) = A- (x=xO)|| =0

X—>X

and we obtain

IFG) = FOON < IFG) = F(°) = A= (x =) + [|A - (x = x°)|

— 0 as x — x0

Therefore the function f is continuous at x°.
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Proof of b).

Let x = x? + te;, [t| <&, i € {1,...,n}. Since f in differentiable at x°, we

have

lim
x—x0

We write

f(x) — f(x%) — A - (x — x0)

f(x) — f(x%) — A - (x — x?)

[ = x°|og

Thus

f(x0 + te;) — f(xo)

< =Xl

=0

f(x° + te;) — f(x°)  tAe,

2]

t]

t] t

ast— 0

= /\e;

lim
t—0
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Examples.

@ Consider the scalar function f(x;,x2) = x;e*?. Then the Jacobian is given
by:
Jf(x1, %) = Df(x1, x2) = €¥2(1,2x)

@ Consider the function f : R® — R? defined by

£ ) X1X2X3
X1, X2,X3) =
sin(x1 + 2x2 + 3x3)

The Jacobian is given by

(9X1 8)@ 8X3 X2 X3 X1X3 X1X0
Jf(X17X27X3) = =

o Ofh  Of cos(s) 2cos(s) 3cos(s)

6x1 8X2 8X3

with s = x1 + 2x + 3x3.
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Further examples.

o Let f(x) = Ax, A€ R™*" and x € R". Then
Jf(x) =A for all x € R"

o Let f(x) = x"Ax = (x,Ax), A € R™" and x € R".
Then we have

f
gx,- = (e, AX) + (x, Ae;)
= e/ Ax+x"Ae;
= x"(AT 4+ Ae;

We conclude
Jf(x) = gradf(x) = x" (AT +A)
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Rules for the differentiation.

Theorem:

a) Linearitdt: LET f,g: D — R™ be differentiable in x° € D, D open. Then
af(x?) + Bg(x°), and a, B € R are differentiable in x° and we have

d(of + 8g)(x°) = adf(x’) + Bdg(x°)
Jaf +8g)(X°) = aJf(X®)+ B Jg(x°)
b) Chain rule: Let f : D — R™ be differentiable in x% € D, D open. Let

g : E — RX be differentiable in y® = f(x°) € E C R™, E open. Then gof is

differentiable in x°.

For the differentials it holds
d(g o f)(x°) = dg(y°) o df (x°)
and analoglously for the Jacobian matrix

J(g o f)(x°) = Jg(y°) - JF(x°)
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Examples for the chain rule.

Let / C R be an intervall. Let h : /| — R" be a curve, differentiable in
to € | with values in D C R"”, D open. Let f : D — R be a scalar function,
differentiable in x° = h(t).

Then the composition
(foh)(t) = f(hi(t),..., ha(t))
is differentiable in tg and we have for the derivative:
(foh)(to) = Jf(h(to)) - Jh(to)
= gradf(h(t)) - h'(to)
= 3 g (00D ()
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Directional derivative.

Definition: Let f : D — R, D C R" open, x° € D, and v € R\ {0} a
vector. Then

f 0 —f 0
Dy F(x°) = fim X F V) = FOC)
t—0 t
is called the directional derivative (Gateaux—derivative) of f(x) in the
direction of v.

Example: Let f(x,y) = x>+ y2 and v = (1,1)". Then the directional
derivative in the direction of v is given by:

2 2 2 2
D,f(x,y) = lim X+t +r+t) —x"—y

t—0 t

_ 2xt + t2 4 2yt + t2
= l|lim
t—0 t

= 2(x+y)
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Remarks.

@ For v = e; the directional derivative in the direction of v is given by the
partial derivative with respect to x;:

D F() = 57 ()

@ If v is a unit vector, i.e. |[v|]| = 1, then the directional derivative D, f(x°)
describes the slope of f(x) in the direction of v.

@ If f(x) is differentiable in x°, then all directional derivatives of f(x) in x°

exist. With h(t) = x° + tv we have

D, f(x%) = %(fo h)|i=o = grad f(x°) - v

This follows directely applying the chain rule.
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Properties of the gradient.

Theorem: Let D C R” open, f : D — R differentiable in xX° € D. Then we have

a) The gradient vector grad f(x°) € R is orthogonal in the level set
Ny = {x € D|f(x) = f(x°)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f(x°) gives the direction of the steepest slope of f(x) in
0
x0.

Idea of the proof:
a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy—Schwarz inequality
D, £(x°)| = |(grad £(x°),v)| < |lgrad F(x°)]l2
Equality is obtained for v = grad f(x°)/||grad f(x°)]|..
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Curvilinear coordinates.

Definition: Let U,V C R" be open and ® : U — V be a C'-map, for
which the Jacobimatrix J®(u®) is regular (invertible) at every u® € U.

In addition there exists the inverse map @1 : V — U and the inverse map

is also a C'-map.

Then x = ®(u) defines a coodinate transformation from the coordinates u

to x.

Example: Consider for n = 2 the polar coordinates u = (r, ) with r > 0
e

and —m < ¢ < 7 and set

X = rcosy
A

| .
| e y = rsing
7\4;»(

with the cartesian coordinates x = (x, y).
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Calculation of the partial derivatives.

For all u € U with x = ®(u) the following relations hold
“HO() = wu
Jo7Hx)-Jo(u) = I, (chain rule)
Joix) = (Jd(u)™?
Let f: V >R bea given function. Set

f(u) := F(®(u))

the by using the chain rule we obtain

o 6&20@71 -0

6= (g) = o)
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Notations.

We use the short notation

0 < ;0 [
= y | ‘u _ | \
au’. Zg 8XJ | 1&/‘ }
Jj=1
&U-\,
Analogously we can express the partial derivatives with respect to x; by the

partial derivatives with respect to u;

0 “ 0 ,

—_— = i = (’ o J‘

oo ey % {97,
(3de7)”

=) T =T

where )
(g5) == (g")"

We obtain these relations by applying the chain rule on 1.
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Example: polar coordinates.

We consider polar coordinates

x = d(u) = ( reosy )

rsin g
We calculate

Jo(u) = < cosp  —rsing )

sinp  rcosyp

and thus CJQ}[/’U‘F”T: 4,{” ‘ff{ ;j“‘{j = ~
T = sy
\3 7{1}"/1 ,’jl J

CoSs sin

cosy ——singp
r

—rsingp rcosy sin ¢ lcoscp
; r
‘} ): ‘VX = (3

35 &
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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

ox Por r (P&p
g = sin g 1COS g
ay — M"¥or a0

Example: Calculation of the Laplacian—operator in polar coordinates

iz = cos?p iz _sin(2¢p) 0? sinzgoai2 sin(2gp)i+ sin2gag
Ox>2 Yor r  Ordp 2 92 2 og PR
872 = sin2 @8724_ 5'”(2§0) 82 COSz(pﬁ _ s|n(2<p)£+ COSz(pg
3}/2 or? r 8r8go r2 &pz 2 890 T or

A = ﬁ+ﬁ—i2+ii2+lg
0x2 0y2 0r2  r29p?  r Or
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o A Q
X 5\?1{ de a
‘él D 5 > -
Dt < fan ”47;_3 °>(®%a¢ ﬂ(%f (>_6¥
e
g = | Mm@ -
N
@‘7 = Koéloszl + A JV?SLH?o~ -1 ﬁv{&f b_@
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Example: spherical coordinates.

We consider spherical coordinates \(9 /
r cos ¢ cos 0
x=®(u)=| rsinpcosd
rsin 6

The Jacobian—matrix is given by:

cospcos —rsingpcos —rcosywsinb
J®(u)=| sinpcosf rcospcosf —rsingsinf

sin 6 0 rcos@
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Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

9 _ cos cosHa —Sinii—lcos sin@g
ox X Or rcosf 0p r X 00
0 0 cosp O 0
ay sm<pcos€ar+rCOSQ%—fsm(psmGag
0 o 1 0
5 = sm@a——i-fcosG%

Example: calculation of the Laplace—operator in spherical coordinates

H? 1 0?2 1 62 20 tanf 0

Azi —_ _—
or? * r2 cos? 0 0p? u r2 0602 * r or r?2 96
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Kapitel 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem):/Let f : D — R \be a scalar differentiable
function on an open set D ' R")Let a,b € D be points in D such that the
connecting|line segment

[a,b] := {a + t(b—a) |t € [0,1]}

lies entirely in D. Then there exits a number 6 € (0,1) with

f(b) — f(a) =gradf(a+6(b—a)) - (b—a)

Proof: We set
h(t) := f(a+ t(b —a))
with the mean value theorem for a single variable and the chain rules we conclude
Ad 1monsijal MCon Wlng Floga o
f(b) ~ f(a) = h(1)—h(0) £ K (6)-(1-0)
 Chai, anhe
gradf(a+0(b—a))-(b—a)
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Definition and example.

Definition: If the condition [a,b] C D holds true for all points a,b € D,
then the set D is called convex.

Example for the mean value theorem: Given a scalar function
f(x,y):=cosx +siny

Iti
; f(0,0) = f(n/2,7/2)=1 = f(x/2,7/2)—f(0,0)=0

Applying the mean value theorem there exists a 6 € (0,1) with

(o)) ()

Indeed this is true for § = 3.
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Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true
for scalar functions but in general not for vector—valued functions!

Examples: Consider the vector—valued Function ’h_ T
— 2

g [~ cos
f@):@,r) 0= (Gt ). /2

It is o - _
em-o(5)-()-( 3)
e (pT 7% S T —sin(aw/ﬁ -
G ()2
BUT: the vectors on the right hand side have lenght v/2 and 7/2 !

and
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A mean value estimate for vector—valued functions.

Theorem: Let f : D —{R") be differentiable on an open set D 'R’ Let
a, b bei points in D with [a, bLC D. Then there exists a 6 € (0, 1) with

I(b) — F@)ll2 < [14(a+ 6(b —a)) - (b — a)]|.

Idea of the proof: Application of the mean value theorem to the scalar function
g(x) definid as

g(x) := (f(b) — f(a)) "f(x) (scalar product!)

Remark: Another (weaker) for of&e mean value estimate is

IIf(b)—f(a)Hg sup [[JF(E))I - [I(b—a)l

£€la,b]

where || - || denotes an arbitrary vector norm with related matrix norm.
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Taylor series: notations.

We define the multi-index o € N as

a = (ai,
Let

C Q)

™
Z,
S

la| ==a14+ -+ an

al = oq!-

D® = D2 pg2 ... pgn
where D" = Dj ... D;. We write

oc—mal

Ox ... Oxp"

olelf

XOé

R0 % I e %) Qp
=X Xy - Xp
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for x = (xq, .

., xn) € R".

(m]

=

!
Let £ : D — R be || times continuous differentiable. Then we set



The Taylor theorem.

Theorem: (Taylor)

Let D C R"be open and convex. Let f : D — R)be a C™*1—function and

xo € D. Then the Taylor—expansion holds true in x € D

f(x) = Tm(xx0)+ Rm(x;%o)
DA f(Xo)
Tm(x;x0) = r X —x0)*

Roxixe) = Z @f(xo(x—xo) (x—x0)°

|o|=m+1

for an appropriate 6 € (0, 1).

Notation: In the Taylor—expansion we denote T,(x;xo) Taylor—polynom of

degree m and R,(x; %) Lagrange-remainder.
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Derivation of the Taylor expansion.

We define a scalar function in one single variable t € [0, 1] as
g(t) = f(xo + t(x — xp))
and calculate the (univariate) Taylor—expansion at t = 0. It is
1
g(1) = g(0) +&'(0) - (1-0) + 5g"(¢) - (1 - 0)* forag e (0,1).
The calculation of g’(0) is given by the chain rule

d
g'(0) = Ef(x?—Ft(Xl—X{)),Xg—‘rt(XQ—XQO),...,XS—Ft(Xn—XS))

t=0

= Dif(xo) - (xa —Xf) + ...+ Dpf(x0) - (Xn —x,?)

_ Z D*f(xo) (X = x0)°

a!

|ee|=1
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Continuation of the derivation.

Calculation of g”(0) gives

2

g'(0) = Tf(ro+ tlx— o))

d n
T D D (< + t(x = x°)) (e — x¢)

t=0
k=1

= Duf(xo)(x1 — x0)* + Darf(x0)(x1 — x7)(x2 — x3)
o4 D (x0) (i — X)) (x5 — X)) + ...+
+Dn—1,nf(X0)(Xn—1 - ngl)(xn - Xr?) + Dinf (x0)(xn — X’?)z)

D>f
= Z %(x —X0)“ (exchange theorem of Schwarz!)
|a|=2 ’

Continuation: Proof of the Taylor—formula by (mathematical) induction!
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Proof of the Taylor theorem.

The function
g(t) = 7"(x0 + t(x — xo))

is (m + 1)—times continuous differentiable and we have

$-60) | " 0)

g(1) = k! (m+1)!

fora 6 € [0,1].
k=0

In addition we have (by induction over k)

£90) _ 5~ D°()

k! ol

(x— XO)O‘

|a|=k

and

g(mt1)(9) _ Z Df(x% 4 0(x — x°))

(m+1) al b=

|a|=m+1
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Examples for the Taylor—expansion.

© Calculate the Taylor—polynom T,(x; xg) of degree 2 of the function
f(x,y,z) =xy?sinz

@ The calculation of T,(x;xg) requires the partial derivatives up to
order 2.

© These derivatives have to be evaluated at (x,y, z) = (1,2,0).

© The result is Ta(x;xp) in the form
Ta(x;x0) =4z(x +y — 2)

@ Details on extra slide.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 53 /54



Remarks to the remainder of a Taylor—expansion.

Remark: The remainder of a Taylor—expansion contains all partial
derivatives of order (m + 1):

Rm(ix0) = ) Do —:!Q(X —x0)) (x — x0)®

|a|=m+1

If all these derivative are bounded by aconstant C in a neighborhood of xg then
the estimate for the remainder hold true

m—+1

m Cllx— X0||omo+1

|Rm(x;%0)| <

We conlude for the quality of the approximation of a C™t1—function by the
Taylor—polynom
f(x) = Tm(x;x0) + O (||x — x0||m+1)

Special case m = 1: For a C°>—function f(x) we obtain
f(x) = £(x°) + grad £(x°) - (x — x°) + O(||x — x°||?).
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