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Content of the course Analysis IlI.

© Partial derivatives, differential operators.

@ Vector fields, total differential, directional derivative.

© Mean value theorems, Taylor's theorem.

Extrem values, implicit function theorem.

Implicit rapresentaion of curves and surfces.

Extrem values under equality constraints.

Newton—method, non-linear equations and the least squares method.
Multiple integrals, Fubini's theorem, transformation theorem.

Potentials, Green's theorem, GaufB}'s theorem.
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Green's formulas, Stokes's theorem.
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Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let
f(x1,...,xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

RT
P = P(V,t)zv
RT
p
pV
T = T(Pa\/):?
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1.1. Partial derivatives

Definition: Let D C R" be open, f : D — R, x9 e D.

@ fis called partially differentiable in x° with respect to x; if the limit

O o) o i FOOH 1) = )
8x,- | t—0 t
— im O, xP . x0) — (P, X0 x0)
t—0 t

exists. e; denotes the /—th unit vector. The limit is called partial derivative of
f with respect to x; at x°.

@ If at every point x° the partial derivatives with respect to every variable
xj, I =1,...,n exist and if the partial derivatives are continuous functions

then we call f continuous partial differentiable or a C*—function.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 4/43



Examples.

@ Consider the function
f(x1,x) = x12 4 x22

At any point x° € R? there exist both partial derivatives and both
partial derivatives are continuous:

of

Of oy _
8Xl(x) 2x1,

Of oy _
8x2(x) 2x7

Thus f is a C1—function.

@ The function
f(x1,x2) = x1 + |x2]

at x® = (0,0)7 is partial differentiable with respect to x, but the
partial derivative with respect to x, does not exist!
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An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by
p(x, t) = Asin(ax — wt)

The partial derivative

op
X aAcos(ax — wt)

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

@
ot

describes for a fixed position x the temporal rate of change of the acoustic

= —wAcos(ax — wt)

pressure.
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Rules for differentiation

@ Let 7, g be differentiable with respect to x; and «, 8 € R, then we have the

rules
o (af(9+ 8809) = g (9+ 65500
o (F00-809) = T09-800+ 76 FE(0)
of og
9 <f(><)) _ A e for g(x) # 0
o \ &6 50

@ An alternative notation for the partial derivatives of f with respect to x; at
x0 is given by
D;f (x°) oder £ (x°)
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Gradient and nabla—operator.

Definition: Let D C R"” be an open set and f : D — R partial
differentiable.

@ We denote the row vector

rad £) i= (e b0 5 (9))

as gradient of f at x°.
@ We denote the symbolic vector

V= <(;)X1"“’8?<,,>T

as nabla—operator.
@ Thus we obtain the column vector

)
V() = (g)fl( ). ..,g;(x°)>
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More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (af + 8g) = «-gradf+ [ -gradg

grad(f-g) = g-gradf+f-gradg

f 1
grad (g) = ?(g.gradf—f-gradg), g#0

Examples:
@ Let f(x,y) = €*-siny. Then:
grad f(x,y) = (&* -siny, " - cosy) = e*(siny,cosy)

@ For r(x) := |[x]l2 = /*Z + - + x2 we have

X X ..
gradr(x) = — = —— fiir x # 0,
r(x) [xll2
where x = (xi, . .., Xx,) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R> — R defined as

Xy

m for (x,y) #0

fxy) =
0 . for (x,y) =0

The function is partial differntiable on the entire R?> and we have

£(0,0) = f£,(0,0)=0
of 2
g(xm) ~ 4)—/y2)2 — 4(x2):—};/2)3’ (x,y) # (0,0)
of ~ 5% X2
@(X,Y) N Yy _4(X2+y2)3’ (x,y) # (0,0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

t-0 0
of f(t,0) — (0,0 24+ 022
o 0,0) = lim (BO-FOO_ (20 ~_,
Ox t—0 t t
0-t 0
of f(0,t) — £(0,0 2422
9 0,00 = tim QOO0 _(@+8)?
dy t—0 t t
But: At (0,0) the function is not continuous since
11 toL -
(Y- b d
S N S S

and thus we have

lim  f(x, f(0,0) =0
ww%mm(AH# (0,0)
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f.

Theorem: Let D C R" be an open set. Let f : D — R be partial

differentiable in a neighborhood of xX° € D and let the partial derivatives

of
ox;'

i=1,...,n, be bounded. Then f is continuous in x°.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

of N y X2y .
&(Xa}/) - (X2 —1—}/2)2 o 4(X2 +y2)3 fur (Xv)/) 7é (0, O)
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Proof of the theorem.

For |Ix — X%l < &, € > 0 sufficiently small we write:

f(x) — f(xo) = (F(X1y- ey Xno1,Xn)—F (X1, . .. 7x,,_l,x,?))
+ (F(xs e X1, X0) = F(X1y e vy X2, X201, x9))
+ (f(xhxg,‘..,x,?)—f(xf,...,x,?))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xn) —g(x,(,)) = (X1, ey Xn—1,Xn) — F(X1, - .. 7x,,_l,xr?)

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g:

g(xn) — g(X,(,)) = g'(&n)(xn — X:?)

for an appropriate &, between x, and x°.
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

of
f(X)— f‘(XO) = Ix (Xla"wxnflagn)'(xn_xg)
of
+ m(xl, ... ,X,,_2,§n_1,x,?) - (Xp—1 — X,?_l)
of
+ Tﬁ(fl,xg,...,xg)wxlfxf)

Using the boundedness of the partial derivatives
() = F) < Glxa = x|+ + Calxa — xp
for ||x — x°|| o < €, we obtain the continuity of f at x° since

f(x) = F(xX°)  fiir [x =x%)eoc = 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D C R". If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

Pf 9 (of
Oxj0x; ~ Ox; \ Ox;

Example: Second order partial derivatives of a function f(x, y):

Pr_ o (or\ o _o (o) #r o
ox2  Ox \ Ox dydx Oy \ Ox Ox0y’  Oy2

Let i1,...,ik € {1,...,n}. Then we define recursively

ok f 0 ok1f
8x,-k8x,-k_1 cee 6X,'1 o 8X,'k 8x,-k_18x,-k_2 oo aX,'l
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Higher order derivatives.

Definition: The function f is called k—times partial differentiable, if all
derivatives of order k,

o f

P e ————— forallil... I'kE 1,....n
8x,-k(*)x,-k_1...6x,-1 ’ ’ { ’ ’ }7

exist on D.
Alternative notation:

k
Ok f _ 55

— Ik—1 *
aX,'kaX,'k71 o o .8X,'1

Dyf = f .

If all the derivatives of k—th order are continuous the function f is called k—times
continuous partial differentiable or called a CkK~function on D. Continuous
functions f are called C%—functions.

Example: For the function f(xq,...,x,) = H x! we have axa fﬁn =7

i=1
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general

not arbitrarely exchangeable!

Example: For the function

X2 — 2
XY 2
foy) =4 TY
0
we calculate
15)
fy(0,0) = 8y(
0
f;’X(O?O) = ax <

ie. fX}’(OaO) 7£ fyx(ovo)'
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Theorem of Schwarz on exchangeablity.

Satz: Let D C R” be open and let f : D — R be a C?>-function. Then it
holds
O*f ( ) O*f
—(x1,...,Xp) = ———
OxjOx; Lo Ox;0x;

forall i,j € {1,...,n}.

(X1, Xn)

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a Ck—function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!
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Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order f,,, for the function
f(x,y,z) = y*zsin(x®) + (cosh y + 17eX2)z2
The order of execution is exchangealbe since f € C3.

@ Differentiate first with respect to z:

? = y?sin(x®) + 2z(cosh y + 17¢*)
V4

o Differentiate then f, with respect to x (then cosh y disappears):

fox

82 (y2 sin(x*) 4 2z(cosh y + 17eX2))
X

= 3x%y?cos(x®) + 68xze™
@ For the partial derivative of f,, with respect to y we obtain

fyz = 6x°y cos(x?)
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The Laplace operator.

The Laplace—operator or Laplacian is defined as

n
A -
' Ox?
i=1 o
For a scalar function u(x) = u(x, ..., x,) we have
n
?u
Au = 8X2 = Uxx +oet U xn

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

Au——uy = 0 (wave equation)
€
1 .
Au— Zu = 0 (heat equation)
Au = 0 (Laplace—equation or equation for the potential)
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Vector valued functions.

Definition: Let D C R"” be open and let f : D — R™ be a vector valued
function.

The function f is called partial differentiable on x° € D, if for all
i=1,...,n the limits

0 N\ f(y0
ﬁ(xo) — im f(x” + te;) — f(x”)

ox; t—0 t

exist. The calculation is done componentwise
o
ox;
.F 1

g_(xo): : fori=1,...,n

i ofyy
8X,'
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Vectorfields.

Definition: If m = n the function f : D — R” is called a vectorfield on D.
If every (coordinate-) function fi(x) of f = (f1,...,f,)" is a Ck—function,
then f is called Ck—vectorfield.

Examples of vectorfields:

e velocity fields of liquids or gases;
e elektromagnetic fields;
e temperature gradients in solid states.

Definition: Let f : D — R" be a partial differentiable vector field. The
divergence on x € D is defined as

divf(x°) := gfi (x°)
X

i=1

or

divf(x) = V7f(x) = (V,f(x))
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Rules of computation and the rotation.

The following rules hold true:
div(af+8g) = adivf+gdivg forf,g: D — R"

div(p-f) = (Ve,f)+edivf foro:D—Rf:D—R"
Remark: Let f : D — R be a C2—function, then for the Laplacian we have
Af =div(Vr)

Definition: Let D C R3 open and f : D — R3 a partial differentiable
vector field. We define the rotation as

o 8X2 8X37 8X3 8x1’ 8X1 8X2

x0
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Alternative notations and additional rules.

e] e €3

rot f(x) = V x f(x) = 6%1 3%2 6%3

h h f

Remark: The following rules hold true:
rot(af+/5g) = arotf+ frotg

rot(p-f) = (Vo) xf+protf

Remark: Let D C R3 and ¢ : D — R be a C?~function. Then
rot (Vo) =0,

using the exchangeability theorem of Schwarz. l.e. gradient fileds are rotation-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D C R” open, x’ € D and f : D — R™. The function f(x)
is called differentiable in x° (or totally differentiable in xg), if there exists a

linear map
I(x,x%) := A - (x — x0)

with a matrix A € R™*" which satisfies the following approximation
property
f(x) = f(x°) + A - (x = x%) + o(|[x — X°|))

m f(x) — f(x°) — A - (x — x0)

x5 [ =

=0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map | the differential or the total differential
of f(x) at the point x°. We denote | by df(x?).

The related matrix A is called Jacobi-matrix of f(x) at the point x° and is
denoted by Jf(x?) (or Df(x?) or f'(x°)).

Remark: For m = n = 1 we obtain the well known relation
f(x) = f(x0) + f'(x0)(x = x0) + o(|x — o)
for the derivative f/(xo) at the point xp.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x — x°) a scalar product (a”,x — x%).
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Total and partial differentiability.

Theorem: Let f : D - R™ x° e D c R", D open.

a) If f(x) is differentiable in x°, then f(x) is continuous in x°.

0

b) If f(x) is differentiable in x°, then the (total) differential and thus the
Jacobi—matrix are uniquely determined and we have

of , o
87X1(X )
JF(x) = 5
Ofm
Ax1

(%)

0fy (0 DFf (x)
B, (x7)

of

B %) Dfin(x%)

c) If f(x) is a C—function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x°, then by definition

im f(x) — f(x%) — A - (x — x°)

=0
o x>

Thus we conclude

lim IF(x) = f(x°) = A- (x=xO)|| =0

X—>X

and we obtain

IF6) = FO - < IFG) = F°) = A= (x =) + [|A - (x = x°)|

— 0 as x — x0

Therefore the function f is continuous at x°.
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Proof of b).

Let x =x? + te;, [t| <&, i € {1,...,n}. Since f in differentiable at x°, we

have

lim
x—x0

We write

f(x) — f(x%) — A - (x — x0)

f(x) — f(x%) — A - (x — x°)

[ = x°|oq

Thus

f(x0 + te;) — f(xo)

< =Xl

=0

f(x° + te;) — f(x°)  tAe,

t]

t]

t] t

— 0 ast— 0

lim
t—0

Ingenuin Gasser (Mathematik, UniHH)
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Examples.

@ Consider the scalar function f(x;,x2) = x;e®?. Then the Jacobian is given
by:
Jf(x1,x0) = Df(x1, x0) = €2(1,2xq)

@ Consider the function f : R® — R? defined by

£ ) X1X2X3
X1, X2,X3) =
sin(x1 + 2x2 + 3x3)

The Jacobian is given by

(9X1 8)@ 8X3 X2 X3 X1X3 X1X0
Jf(X17X27X3) = =

o Ofh  Oh cos(s) 2cos(s) 3cos(s)

6x1 8X2 8X3

with s = x1 + 2x + 3x3.
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Further examples.

o Let f(x) = Ax, A€ R™*" and x € R". Then
Jf(x) =A for all x € R"

o Let f(x) =x"Ax = (x,Ax), A € R™" and x € R".
Then we have

f
gx,- = (ej, Ax) + (x, Ae;)
= e/ Ax+x"Ae;
= x"(AT 4+ Ae;

We conclude
Jf(x) = gradf(x) = x" (AT +A)
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Rules for the differentiation.

Theorem:

a) Linearitdt: LET f,g: D — R™ be differentiable in x° € D, D open. Then
af(x®) + Bg(x?), and a, B € R are differentiable in x° and we have

d(of + 8g)(x°) = adf(x’)+ Bdg(x°)
Jaf +8g)(X°) = aJf(X®)+ 8Jg(x°)
b) Chain rule: Let f : D — R™ be differentiable in x% € D, D open. Let

g : E — RX be differentiable in y® = f(x°) € E C R™, E open. Then gof is

differentiable in x°.

For the differentials it holds

d(g o f)(x°) = dg(y°) o df(x’)

and analoglously for the Jacobian matrix
J(g o)) = Jg(y°) - JF(x°)
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Examples for the chain rule.

Let / C R be an intervall. Let h : /| — R" be a curve, differentiable in
to € I with values in D C R"”, D open. Let f : D — R be a scalar function,
differentiable in x° = h(tp).

Then the composition
(foh)(t) = f(hi(t),..., ha(t))
is differentiable in tg and we have for the derivative:
(foh)(to) = Jf(h(to)) - Jh(to)
= gradf(h(t)) - h'(to)

= Y S hlto) - il
k=1
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Directional derivative.

Definition: Let f : D — R, D C R" open, x° € D, and v € R\ {0} a
vector. Then

f 0 —f 0
Dy F(x°) 1= fim X V) = FOC)
t—0 t
is called the directional derivative (Gateaux—derivative) of f(x) in the
direction of v.

Example: Let f(x,y) = x>+ y2 and v = (1,1)". Then the directional
derivative in the direction of v is given by:

2 2 2 2
D,f(x,y) = lim X+t +r+t) —x"—y

t—0 t

_ 2xt + t2 4 2yt + t2
= l|lim
t—0 t

= 2(x+y)
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Remarks.

@ For v = e; the directional derivative in the direction of v is given by the
partial derivative with respect to x;:

D F() = 57 ()

@ If v is a unit vector, i.e. |[v|]| = 1, then the directional derivative D, f(x°)
describes the slope of f(x) in the direction of v.

@ If f(x) is differentiable in x°, then all directional derivatives of f(x) in x°

exist. With h(t) = x° + tv we have

D, f(x%) = %(fo h)|i—o = grad f(x°) - v

This follows directely applying the chain rule.
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Properties of the gradient.

Theorem: Let D C R” open, f : D — R differentiable in xX° € D. Then we have

a) The gradient vector grad f(x°) € R is orthogonal in the level set
Ny = {x € D|f(x) = f(x°)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f(x°) gives the direction of the steepest slope of f(x) in
0
x°.

Idea of the proof:
a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy-Schwarz inequality
D, £(x°)| = |(grad £(x°),v)| < |lgrad F(x°)]2
Equality is obtained for v = grad f(x°)/||grad f(x°)]|..

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 36 /43



Curvilinear coordinates.

Definition: Let U,V C R" be open and ® : U — V be a C'-map, for
which the Jacobimatrix J&(u®) is regular (invertible) at every u® € U.

In addition there exists the inverse map ®~!: V — U and the inverse map
is also a C'-map.

Then x = ®(u) defines a coodinate transformation from the coordinates u
to x.

Example: Consider for n = 2 the polar coordinates u = (r, ) with r > 0
and —7 < ¢ < 7 and set

X = rcosy
y = rsingp

with the cartesian coordinates x = (x, y).
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Calculation of the partial derivatives.

For all u € U with x = ®(u) the following relations hold
o Hd(u) = u
Jo7Hx)-Jo(u) = I, (chain rule)
Jo7i(x) = (o)™t
Let f: V > R bea given function. Set
f(u) := F(®(u))

the by using the chain rule we obtain

n

of 00; - Of
_. 9"
8u, Z 6xj ou; ;g 0x;

GLY
8U,‘ ’
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Notations.

We use the short notation
b, .0
_— = uv_—_
ou; Zg 0x;
Jj=1

Analogously we can express the partial derivatives with respect to x; by the
partial derivatives with respect to u;

0 “ 0
o = 285y
j=1

where )
(g5) = (&)t =(o) T =o YT
We obtain these relations by applying the chain rule on 1.
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Example: polar coordinates.

We consider polar coordinates
x=®(u) = ( reosy )
rsin g

Jo(u) = < cosp —rsing )

We calculate

sinp  rcosyp
and thus

1.
cosy  siny Cos ¢ — sin @

(g") = (g5) =

—rsing rcosg sin ¢ lcosgp
P
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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

g = cos g = 1sin i
ox Por r (p&p
9 _ sin 0 1cos 0
ay — M"¥or Y0

Example: Calculation of the Laplacian—operator in polar coordinates

éi = cos?yp iz _sin(2¢p) 0? sin%ai sin(2¢)i+ Sin2gpﬁ
Ox?2 Yor r  Ordp 2 92 2 g PR
872 = 5in2 @8724_ S'n(2§0) 82 COS2(p872 _ s|n(2<p)£+ COSz(pg
oy® or? ro 0Ordp r2  0¢? r2 dp r Or

A = i2+372_872+i872+12
O 0x2 0y2 0r2  r20p?  r Or
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Example: spherical coordinates.

We consider spherical coordinates
r cos ¢ cos 0
x=®(u)=| rsinpcosd

rsinf

The Jacobian—matrix is given by:

cospcos —rsingpcos —rcosywsinb
J®(u)=| sinpcosf rcospcosf —rsingsinf

sind 0 rcos@
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Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

9 _ cos cosHa —Sinii—lcos sin@g
ox X Or rcosf 0p r X 00
0 0 cosp O 0
ay sm«pcos@ar+rCOSQ%—fsmgosmGag
0 o 1 0
5 = sm@a——i-fcoseﬁ

Example: calculation of the Laplace—operator in spherical coordinates

H? 1 0?2 1 62 20 tanf O

Azi —_ _—
or? * r2 cos? 0 0p? u r2 0602 * r or r2 96
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