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Exercise 1: (5 points)

Let
f : R2 → R , f(x, y) := x4 − 4xy3 + 12y + 1 .

a) Compute the gradient and the Hessian matrix of f .

b) Compute the stationary points of f and classify them.

Solution:

a) (2 points)

grad f(x, y) = fx(x, y), fy(x, y)) .

fx(x, y) = 4x3 − 4y3 ,

fy(x, y) = −12xy2 + 12 .

Hessian matrix: Hf(x, y) =

(
12x2 −12y2

−12y2 −24xy

)
.

b) (3 points)

Stationary points: fx = fy = 0 .

fx(x, y) = 4x3 − 4y3 = 0 ⇐⇒ x = y ,

fy(x, y) = −12xy2 + 12 = 0 and x = y ⇐⇒ y3 = 1

So there is exactly one stationary point, namely P :=

(
1
1

)
.

For the Hessian matrix Hf(P ) = Hf(1, 1) one obtains

det Hf(1, 1) =

(
12 −12
−12 −24

)
= −12 · 24− 12 · 12 < 0.

The matrix has one positive eigenvalue and one negative eigenvalue. So it
is a saddle point.
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Exercise 2: (4 points)

The equation

f(x, y) := x2 − x2y +
y3

3
− 1 = 0.

is an implicit definition of a curve in R2 .
Show that the implicit function theorem gives us a function g , such that in the

neighbourhood of P0 :=

(
2
3

)
the following equivalence holds

f(x, y) = 0 ⇐⇒ y = g(x), g(2) = 3 .

Compute the Taylor polynomial of the first degree (the tangent) of g centered
at the point x0 = 2 .

Solution 2:

f(2, 3) := 22 − 22 · 3 +
33

3
− 1 = 0

fy(x, y) = −x2 + y2, fy(2, 3) = −22 + 32 6= 0

By the implicit function theorem, with a suitable function g locally:

f(x, y) = 0 ⇐⇒ y = g(x), g(2) = 3 , g′(x) = − fx
fy
.

fx(x, y) = 2x− 2xy, fx(2, 3) = 4− 12 = −8 .

For the linearization one computes g′(2) = − 4− 4 · 3
−22 + 32

=
8

5
.

So we obtain T1(x) = g(2) + g′(2)(x− 2) = 3 +
8

5
(x− 2) .
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Exercise 3: (5+2 points)

a) Given

D :=

{(
x
y

)
∈ R2 : 0 ≤ x2 + y2 ≤ 25, x ≥ 0, y ≥ 0

}
and a vector field

f : R2 → R2, f (x, y) =

(
−x2y + etan(x)

xy2 + tan(ey)

)
,

compute curl f(x, y) and the integral

∫
∂D

f (x, y) d(x, y) , where ∂D

denotes positively oriented boundary of D .

b) Let f be a vector field

f : R3 → R3, f (x, y, z) =

y2 + z2 + 2xz
x2 + z2 − 2yz
x2 + y2 − 2xy

 .

Compute div f (x, y, z) and the flux (flow) of f through the surface of
the sphere

K :=


xy
z

 ∈ R3 : 0 ≤ (x− 1)2 + (y − 2)2 + (z + 3)2 ≤ 1

 .

Solution sketch

a) (5 points)

rot f (x, y) = (f2)x − (f1)y = y2 + x2. (1 point)

From Green’s theorem we have:∫
∂D

f (x, y) d(x, y) =

∫
D

rotf(x, y) d(x, y) (Ansatz: 1 point)

and with x = r cosφ, y = r sinφ, 0 ≤ r ≤ 5, 0 ≤ φ ≤ π
2

we obtain

rot f (x, y) = (f2)x − (f1)y = y2 + x2 = r2 (2 points)

∫ 5

0

∫ π
2

0

r2 · r dφ dr =
π

2

∫ 5

0

r3 dr =
π

2
· 54

4
(1 point)

b) (2 points)
div f (x, y, z) = 2z − 2z + 0 = 0

From Gauss’ theorem it follows that the flux through the surface of the
specified sphere is zero.
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Exercise 4: (4 points)

Given a function

f : R3 → R3, f (x, y, z) = (−xy , x2 , z)T

und the curve

c : [0 , 2π]→ R3, c (t) = (2 cos(t), 2 sin(t), t)T .

Compute the line integral ∫
c

f (x, y, z)

Solution sketch:

(4 points)∫
c

f(x, y, z)d(x, y, z) =

∫ 2π

0

< f(c(t)), ċ(t) > dt

=

∫ 2π

0

<

−4 sin(t) cos(t)
4 cos2(t)

t

 ,

−2 sin(t)
2 cos(t)

1

 > dt (2 points)

=

∫ 2π

0

8 sin2(t) cos(t) + 8 cos2(t) cos(t) + t dt

=

∫ 2π

0

t + 8 cos(t)
(
cos2(t) + sin2(t)

)
dt

=

∫ 2π

0

t + 8 cos(t) dt

=

[
t2

2
− 8 sin(t)

]2π
0

= 2π2 .(2 Punkte)


