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Exercise 1: (3+1 points)

A local minimum of the function

f : R2 → R , f(x, y) := x2 + 4y2 − 6x + 24y + 6 .

subject to the constraint

g(x, y) := cos(
x− 3

2
) + sin(y + 1) − 1 = 0

is sought.

P0 = (3, −1)T is an admissible point for which the regularity condition is satis-
fied. This information may be used without proof.

a) Show that P0 is a stationary point of the corresponding Lagrangian func-
tion for a suitable multiplier.

b) Show that P0 = (3,−1)T is a local minimum of the function f subject
to the constraint g = 0 by investigating the sufficient condition of second
order.
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Exercise 2: (3+3 points)

Consider the function

f : R2 → R, f(x, y) := y cos(x) + x sin(y) + 2.

a) Determine the second-degree Taylor polynomial T2 of f at the point
(x0, y0) = (0, 0) .

b) Show that

|f(x, y)− T2(x, y)| ≤ 4

100

for all (x, y) ∈ D := [−0.3, 0.3]× [−0.3, 0.3] .
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Exercise 3: (5+1+3+1 points)

Consider the half ball K :=


xy
z

 ∈ R3 : x2 + y2 + z2 ≤ 4 , z ≤ 0


and the vector field f (x, y, z) =

xz + x
yz + y
x2 + y2

 .

a) Compute the integral

∫
K

div f (x, y, z) d(x, y, z) .

Hint: 2 sin(α) cos(α) = sin(2α) .

b) The solid K is bounded by a flat surface D and a non-flat surface M .
State a parametrization of the flat surface D .

c) Compute the flux (flow) of f through the flat surface D .

d) According to a) and c), what is the flux (flow) of f through the non-flat
surface M ?
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