Analysis III für Studierende der Ingenieurwissenschaften Blatt 2, Präsenzaufgaben

Aufgabe 1:

Gegeben sind die Abbildungen $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}$.

$$f(x,y) := 3x - 5y,$$
 $g(x,y) := \frac{1}{5}(x^2 + y^2) + 1.$

- a) Berechnen Sie die Gradienten von f und g.
- b) Zeichnen Sie für f die Höhenlinien $f^{-1}(C) := \{(x,y)^T : f(x,y) = C\}$ zu den Funktionswerten $C_1 = 5$, $C_2 = 0$ und $C_3 = -10$. Heften Sie in den Punkten $P_1 = \binom{0}{-1}$, $P_2 = \binom{5}{3}$ und $P_3 = \binom{-5}{-1}$ jeweils die Richtung des Gradienten an.
- c) Zeichnen Sie für g die Höhenlinien $g^{-1}(C) := \{(x,y)^T : g(x,y) = C\}$ zu den Funktionswerten $C_4 = \frac{6}{5}$, $C_5 = \frac{21}{5}$ und $C_6 = 6$. Heften Sie in den Punkten $P_4 = \binom{0}{-1}$, $P_5 = \binom{4}{0}$ und $P_6 = \binom{3}{4}$ jeweils die Richtung des Gradienten an.
- d) Versuchen Sie anhand Ihrer Beobachtungen (d.h. ohne Beweis) eine Vermutung zu äußern, wie die Richtung des Gradienten in einem festen Punkt mit der Richtung der Höhenlinie durch diesen Punkt zusammenhängt.

Aufgabe 2:

Gegeben ist die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \cos(2x - 3y) + x^3 - y^3 + 2y^2.$$

- a) Berechnen Sie alle partiellen Ableitungen erster, zweiter und dritter Ordnung von f.
- b) Die Tangentialebene an den Graphen einer differenzierbaren Funktion $f: D_f \longrightarrow \mathbb{R}$ im Punkt $(x^0, y^0) \in D_f \subset \mathbb{R}^2$ ist gegeben durch

$$z = f(x^0, y^0) + f_x(x^0, y^0) (x - x^0) + f_y(x^0, y^0) (y - y^0).$$

Geben Sie die Gleichung der Tangentialebene von f im Punkt $(x^0, y^0) = (\frac{\pi}{4}, 0)$ an.

Bearbeitungstermine: 01.–05.11.21