Fachbereich Mathematik der Universität Hamburg

Prof. Dr. J. Behrens

Dr. K. Rothe

Analysis III für Studierende der Ingenieurwissenschaften

Blatt 2

Aufgabe 5:

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = 2x^2 - y^2$.

- a) Man zeichne den Funktionsgraphen und einen Höhenlinienplot von f im Definitionsbereich $[-2, 2] \times [-3, 3]$.
- b) Man berechne von f alle partiellen Ableitungen bis zur 3. Ordnung.
- c) Man berechne den Anstieg von f im Punkt $(x_0, y_0) = (1, 0)$ in x-Richtung und in y-Richtung und zeichne die Funktionsgraphen der Funktionen f(x, 0) in [-2, 2] und f(1, y) in [-3, 3].
- d) Man gebe eine Parameterdarstellung der Höhenlinie von f an, die durch den Punkt (1,0) läuft.
- e) Man berechne den Winkel α zwischen grad f(1,0) und der Tangentialrichtung der Höhenlinie von f im Punkt (1,0).

Aufgabe 6:

Man berechne die Jacobi-Matrizen und, falls dies möglich ist, die Hessematrizen der folgenden Funktionen mit den Abbildungsvorschriften

- a) $f(x, y, z) = e^{y+z} + \sqrt{z}\sin(x+y)$ und $x, y \in \mathbb{R}$, $z \in \mathbb{R}^+$,
- b) $\mathbf{g}(t) = (\cos t, \sin t)^T$ und $t \in \mathbb{R}$,
- c) $h(x,y) = (x + y^2, 3x^2 + 4y)^T \text{ und } x, y \in \mathbb{R},$
- d) $\boldsymbol{u}(t, x, y, z) = (x e^{y-t}, 3z xt^2, t + 5x + y^2 + 4z)^T$ und $t, x, y, z \in \mathbb{R}$.

Aufgabe 7:

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}.$$

- a) Man zeichne die Funktion im Bereich $[-1,1] \times [-1,1]$.
- b) Man zeige, dass f in $(x_0, y_0) = (0, 0)$ stetig ist.
- c) Man berechne die Jacobi-Matrix für f.
- d) Sind die partiellen Ableitungen im Punkt $(x_0, y_0) = (0, 0)$ stetig?

Aufgabe 8:

Man berechne für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit f(x,y) = xy im Punkt (x_0,y_0) die Ableitung in Richtung $\boldsymbol{h} = (h_1,h_2)^T$. Welchen Anstieg besitzt die Funktion im Punkt $(x_0,y_0) = (1,-1)$ in den durch die Gerade 3y-5x=7 gegebenen Richtungen.

Abgabetermin: 6.11. - 10.11.2017 (zu Beginn der Übung)