Fachbereich Mathematik der Universität Hamburg

Prof. Dr. J. Behrens

Dr. K. Rothe

Analysis III für Studierende der Ingenieurwissenschaften

Blatt 1

Aufgabe 1:

Man untersuche die angegebenen Folgen auf Konvergenz

a)
$$\boldsymbol{x}_n = \left(\frac{3n}{3^n}, \sin\left(\frac{n\pi}{2}\right), \frac{(-1)^n(n+1)}{n^2+1}\right)^T, n \in \mathbb{N},$$

b)
$$\boldsymbol{x}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, $\boldsymbol{x}_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{x_n \cos y_n}{\sqrt{2}} \\ \frac{3y_n \cos x_n}{4} \end{pmatrix}$, $n \in \mathbb{N}_0$.

Hinweis: Eine geeignete Norm erleichtert das Leben.

Aufgabe 2:

Man zeichne die folgenden Mengen und prüfe, ob sie offen, abgeschlossen, beschränkt oder kompakt sind:

a)
$$P = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid 2x < y \le 24 - 2x^2 \right\}$$
,

b)
$$E = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x^2 + 4y^2 < 16 \right\},$$

c)
$$R = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| 0 \le z \le 5 \land 4 \le x^2 + y^2 \le 9 \right\}$$
,

d)
$$K = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| 0 < z \le 1 - \sqrt{x^2 + y^2} \right\}$$
.

Aufgabe 3:

Gegeben sei die Kurve $\mathbf{c}:[0,8\pi]\to\mathbb{R}^3$ mit

$$\mathbf{c}(t) = \begin{pmatrix} 3\cos t \\ 3\sin t \\ 4t \end{pmatrix}.$$

- a) Man zeichne die Kurve \mathbf{c} .
- b) Man berechne für ${\bf c}$ die Bogenlänge und gebe die Tangentengleichung im Punkt $t=4\pi$ an.
- c) Man berechne für ${\bf c}$ den Tangenteneinheitsvektor, Hauptnormalenvektor und Binormalenvektor.
- d) Im Punkt $t=4\pi$ gebe man die Parameterform der Schmiegebene an und berechne dort den Krümmungsvektor und die Krümmung.

Aufgabe 4:

Für die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $(x, y) \to f(x, y)$

zeichne man den Funktionsgraphen und die Höhenlinien, dies sind Linien konstanter Höhe, d.h. von der Form $\{(x,y)\in\mathbb{R}^2\mid f(x,y)=c\}$ für $c\in\mathbb{R}$. Man überprüfe, ob f stetig ist oder in eventuell vorhandenen Definitionslücken stetig ergänzt werden kann.

- a) f(x,y) = y + 3,
- b) $f(x,y) = x^2 + y^2$,
- c) $f(x,y) = x^2 y^2$,
- d) $f(x,y) = \frac{xy}{x^2 + y^2}$,
- e) $f(x,y) = \frac{x^3}{x^2 + y^2}$.

Abgabetermin: 23.10. - 27.10.2017 (zu Beginn der Übung)