

Buch Kap. 8.11 – Illustration zum Satz von GAUSS

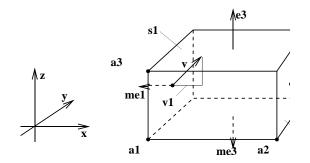


Abbildung 8.31: Fluss des Vektors v durch die Begrenzungsflächen S_1, S_2 des Quaders Q

Buch Kap. 8.11 - Illustration zum Satz von GAUSS

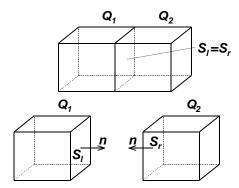


Abbildung 8.32: $Q = Q_1 \cup Q_2$, Flüsse über S_l und S_r heben sich auf.

Buch Kap. 8.11 - Satz 8.20 von Gauss

Sei *B* ein regulärer Bereich, die Normale n weise in den Randpunkten von *B* aus *B* heraus (man spricht hier auch von der äußeren Normalen). Dann gilt

$$\int_{B} \operatorname{div} v \, dV = \int_{\partial B} v \cdot dO = \int_{\partial B} (v \cdot n) \, dO.$$

Buch Kap. 8.11 - Greensche Formeln

Erste Greensche Formel

$$\int_{\partial B} \varphi \, \frac{\partial f}{\partial \mathbf{n}} \, d\mathbf{O} = \int_{B} [\varphi \, \Delta \, f + \operatorname{grad} \varphi \cdot \operatorname{grad} f] dV.$$

2te Greensche Formel

$$\int_{\partial B} \varphi \, \frac{\partial f}{\partial \mathbf{n}} - f \, \frac{\partial \varphi}{\partial \mathbf{n}} \, d\mathbf{O} = \int_{B} [\varphi \, \Delta \, f - f \, \Delta \, \varphi] \, dV.$$