Dr. Hanna Peywand Kiani

Vorlesungsvertretung Analysis III für Studierende der Ingenieurwissenschaften

Vorlesung 6/7: Extrema unter Nebenbedingungen, Lagrange Multiplikatoren

21/28.11.2014

Optimierung mit Gleichungsnebenbedingungen

$$m{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $m{g}: \, m{x} \mapsto m{g}(m{x}) = egin{pmatrix} g_1(m{x}) \ g_2(m{x}) \ dots \ g_m(m{x}) \end{pmatrix} \in \mathbb{R}^m$, $f: \, m{x} \mapsto f(m{x}) \in$, \mathbb{R}

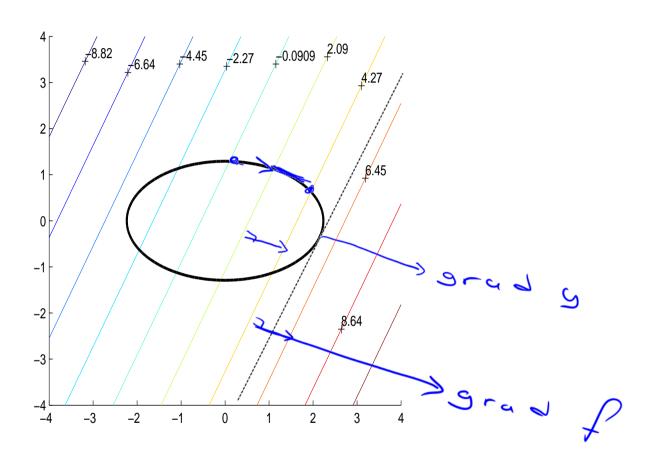
Problem:

unter der(den) **Nebenbedigung(en)**

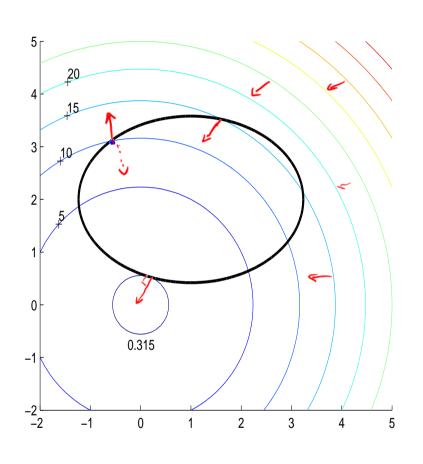
$$g(\boldsymbol{x}) = 0$$

Folien 90-91: Minimale Oberfläche einer zylindrischen Dose bei vorgegebenem Volumen (vgl. Anleitung 1)

Beispiel: $f(x,y):=1+2x-y\stackrel{!}{=}\max$ unter der Nebenbedingung $g(x,y)=x^2+3y^2-4=0$.



Beispiel: $f(x,y):=x^2+y^2\stackrel{!}{=}\min$ unter der Nebenbedingung $g(x,y)=(x-1)^2+2(y-2)^2-4=0.$



Beobachtung: Im Min/Max x_0 muss gelten $\operatorname{grad} f(\widehat{x}_0) + \lambda \operatorname{grad} g(\widehat{x}_0) = 0$

Im allgemeinen Fall (m Nebenbdingungen) erhalten wir unten

$$\operatorname{\mathbf{grad}} f(\boldsymbol{x}_0) + \sum_{k=1}^m \lambda_k \operatorname{\mathbf{grad}} g_k(\boldsymbol{x}_0) = 0.$$

ور می
$$(f + \sum \lambda_k)$$
 یا $g_k(x)$ Oder mit $F(x) := f(x) + \sum_{k=1}^m \lambda_k \, g_k(x)$:

$$\operatorname{grad} F(x_0) = 0, \qquad g_k(x_0) = 0 \text{ für } k = 1, 2, \dots, m$$

Allgemeine Formulierung des Problems.

Bestimme die Extremwerte der Funktion $f:\mathbb{R}^n \to \mathbb{R}$ unter den Nebenbedingungen

$$\mathbf{g}(\mathbf{x}) = 0,$$

wobei $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$.

Die Nebenbedingungen lauten also

$$g_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$g_m(x_1, \dots, x_n) = 0$$

Alternativ: Bestimme die Extremwerte der Funktion f(x) auf der Menge

$$G := \{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{g}(\mathbf{x}) = \mathbf{0} \}.$$

Die Lagrange-Funktion und das Lagrange-Lemma.

Wir definieren die Lagrange-Funktion

$$F(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

Lagrange-Funktion
$$F = f + \lambda^{T} \frac{1}{3}$$

$$F(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$$
 für $\mathbf{x} \in D$
$$(\lambda_{A}, \lambda_{A}, \lambda_{$$

und suchen die Extremwerte von $F(\mathbf{x})$ für festes $\lambda = (\lambda_1, \dots, \lambda_m)^T$. = $\lambda_1 + \dots + \lambda_m \leq_m$

Die Zahlen λ_i , i = 1, ..., m nennt man Lagrange-Multiplikatoren.

Satz: (Lagrange-Lemma): Minimiert (bzw. maximiert) $\mathbf{x}^0 \in D$ die Lagrange-Funktion $F(\mathbf{x})$ (für ein festes λ) über D und gilt $\mathbf{g}(\mathbf{x}^0) = 0$, so liefert \mathbf{x}^0 das Minimum (bzw. Maximum) von $f(\mathbf{x})$ über $G := \{\mathbf{x} \in D \mid \mathbf{g}(\mathbf{x}) = \mathbf{0}\}.$

Beweis: Für ein beliebiges $x \in D$ gilt nach Voraussetzung

$$F(\mathbf{x}^{0}) = f(\mathbf{x}^{0}) + \lambda^{T} \mathbf{g}(\mathbf{x}^{0}) \leq f(\mathbf{x}) + \lambda^{T} \mathbf{g}(\mathbf{x}) = F(\mathbf{x})$$

Wählt man speziell $\mathbf{x} \in G$, so ist $\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x}^0) = \mathbf{0}$, also auch $f(\mathbf{x}^0) \leq f(\mathbf{x})$.

Eine notwendige Bedingung für lokale Extrema.

Sind f und g_i , i = 1, ..., m, C^1 -Funktionen, so ist eine notwendige Bedingung für eine Extremstelle \mathbf{x}^0 von $F(\mathbf{x})$ gegeben durch

$$\operatorname{grad}(F)(\mathbf{x}) = \operatorname{grad}(f)(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} \operatorname{grad}(g_{i})(\mathbf{x}) = \mathbf{0}.$$

Zusammen mit den Nebenbedingungen $\mathbf{g}(\mathbf{x}) = 0$ ergibt sich ein (nichtlineares) Gleichungssystem mit (n+m) Gleichungen und (n+m) Unbekannten \mathbf{x} und λ .

Die Lösungen $(\mathbf{x}^0, \lambda^0)$ sind geeignete Kandidaten für die gesuchten Extremstellen, denn diese erfüllen die o.g. notwendige Bedingung.

91=0

Alternativ: Definiere eine Lagrange-Funktion

$$G(\mathbf{x}, \lambda) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

und suche die Extremstellen von $G(\mathbf{x}, \lambda)$ bezüglich \mathbf{x} und λ .

Bemerkung.

Man kann auch eine **hinreichende** Bedingung aufstellen:

Sind die Funktionen f und \mathbf{g} C^2 -Funktionen und ist die Hesse-Matrix $\mathbf{H}_F(\mathbf{x}^0)$ der Lagrange-Funktion positiv (bzw. negativ) definit, so ist \mathbf{x}^0 tatsächlich ein strenges lokales Minimum (bzw. Maximum) von $f(\mathbf{x})$ auf G.

In den meisten Anwendungen ist die hinreichende Bedingung allerdings **nicht** erfüllt, obwohl \mathbf{x}^0 ein strenges lokales Extremum ist.

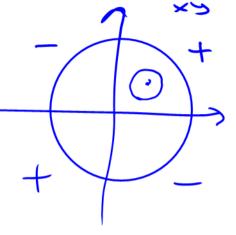
Insbesondere kann man aus der Indefinitheit der Hesse-Matrix $\mathbf{H}_{F}(\mathbf{x}^{0})$ nicht schließen, dass \mathbf{x}^{0} kein Extremwert ist.

Ähnlich problematisch ist die hinreichende Bedingung, die man aus der Hesse-Matrix für die Lagrange-Funktion $G(\mathbf{x}, \lambda)$ bezüglich \mathbf{x} und λ erhält.

Beispiel.

Gesucht seien die Extrema von f(x,y) := xy auf der Kreisscheibe

$$K := \{(x, y)^T | x^2 + y^2 \le 1\}$$



Da die Funktion f stetig und $K \subset \mathbb{R}^2$ kompakt ist, folgt die Existenz von globalen Maxima und Minima von f auf K.

Wir betrachten zunächst das Innere K⁰ von K, also die *offene* Menge

$$K^0 := \{(x, y)^T \mid x^2 + y^2 < 1\}.$$

Die notwendige Bedingung für einen Extremwert lautet nun

$$grad(f) = (y, x) = \mathbf{0}.$$

Somit ist der Ursprung $\mathbf{x}^0 = \mathbf{0}$ Kandidaten für ein (lokales) Extremum.

Fortsetzung des Beispiels.

fx = 3

Ht = (trx tra)

Die Hesse-Matrix **H**_f im Ursprung, gegeben durch

$$\mathbf{H}_{\mathbf{f}}(\mathbf{0}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\mathbf{H}_{f}(\mathbf{0}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \begin{array}{c} \lambda \lambda \lambda & \lambda \chi(5) = -\lambda < 0 \\ \lambda^{2} - \lambda = 0 & \lambda = \pm \lambda \end{array}$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

ist indefinit. Daher ist x⁰ ein Sattelpunkt.

Die Extrema der Funktion müssen also auf dem Rand liegen, der eine

Gleichungsnebenbedingung darstellt:

$$g(x,y) = x^2 + y^2 - 1 = 0$$

Wir suchen also die Extremwerte von f(x,y) = xy unter der Nebenbedingung g(x,y) = 0. Die zugehörige Lagrange-Funktion lautet

$$F(x,y) = xy + \lambda(x^2 + y^2 - 1).$$

$$f + \lambda \cdot g$$

Komplettierung des Beispiels.

Damit ergibt sich das (nichtlineare) Gleichungssystem

$$F_{x} = 0$$

$$y + 2\lambda x = 0$$

$$x + 2\lambda y = 0$$

$$y = 0$$

$$x^{2} + y^{2} = 1$$

mit den vier Lösungen

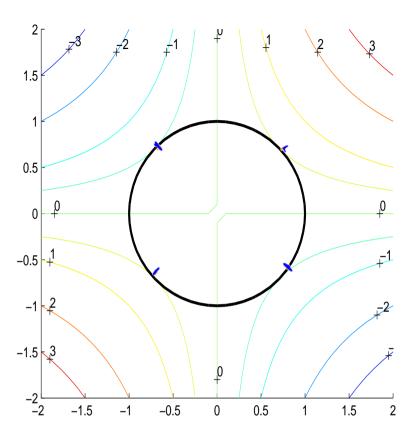
$$\lambda = \frac{1}{2}$$
 : $\mathbf{x}^{(1)} = (\sqrt{1/2}, -\sqrt{1/2})^{\mathsf{T}}$ $\mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^{\mathsf{T}}$

$$\boldsymbol{\lambda} = -\frac{1}{2} \quad : \quad \mathbf{x}^{(3)} = (\sqrt{1/2}, \sqrt{1/2})^\mathsf{T} \qquad \mathbf{x}^{(4)} = (-\sqrt{1/2}, -\sqrt{1/2})^\mathsf{T}$$

Minima und Maxima lassen sich nun einfach aus den Funktionswerten ablesen:

$$f(\mathbf{x}^{(1)}) = f(\mathbf{x}^{(2)}) = -1/2$$
 $f(\mathbf{x}^{(3)}) = f(\mathbf{x}^{(4)}) = 1/2$

d.h. Minima sind $\mathbf{x}^{(1)}$ und $\mathbf{x}^{(2)}$, Maxima sind $\mathbf{x}^{(3)}$ und $\mathbf{x}^{(4)}$.



Die Lagrange-Multiplikatoren-Regel.

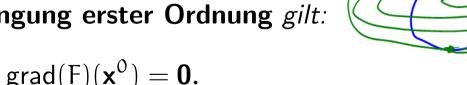
Satz: Seien $f, g_1, \ldots, g_m : D \to \mathbb{R}$ jeweils C^1 -Funktionen, und sei $\mathbf{x}^0 \in D$ ein lokales Extremum von $f(\mathbf{x})$ unter der Nebenbedingung $\mathbf{g}(\mathbf{x}) = \mathbf{0}$. Weiterhin gelte die Regularitätsbedingung

rang
$$(\mathbf{J}\mathbf{g}(\mathbf{x}^0)) = \mathbf{m}$$
.

Dann existieren Lagrange-Multiplikatoren $\lambda_1, \ldots, \lambda_m$, so dass für die Lagrange-Funktion

$$F(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

die folgende notwendige Bedingung erster Ordnung gilt:



$$Bsp: f(x) = x^{3} = min$$

$$S(x) = x^{2} + 5^{2} - 1 = 0$$

$$99) = (2 \times ... \times 9)$$

$$E = f + \gamma 2 = \times 3 + \gamma (\times 2 + 2 - 1)$$

$$3\times^2 + \lambda.2\times = 9$$

$$3x^{2} + \lambda \cdot 2x = 0$$

$$2\lambda y = 0 \iff (\lambda = 0 \ \forall \ y = 0)$$

$$\times = \pm \Lambda$$

$$P_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad 5 = -3/2$$

$$P_{y} = (-1)^{3/2}$$
 $F_{y} = 23y$

$$F_{\times} = 3 \times^2 + 2 \lambda \times$$

$$HF = \begin{pmatrix} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{pmatrix} = \begin{pmatrix} 6x + 25 \\ 0 & 25 \end{pmatrix}$$

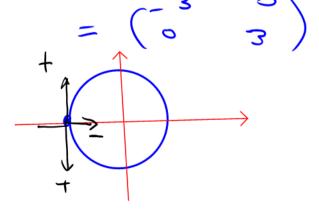
$$H(P_4) = \begin{pmatrix} -6+3 \\ 0 \end{pmatrix}$$

$$P_{1,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$P_{4} : H(P_{4}) = \begin{pmatrix} -6+3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$P_{4} : H(P_{4}) = \begin{pmatrix} -6+3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$P_{4} : H(P_{4}) = \begin{pmatrix} -6+3 & 0 \\ 0 & 3 \end{pmatrix}$$



Notwendige Bedingung zweiter Ordnung.

Satz: Ist $\mathbf{x}^0 \in D$ ein lokales Minimum von $f(\mathbf{x})$ unter der Nebenbedingung $\mathbf{g}(\mathbf{x}) = 0$, ist die Regularitätsbedingung erfüllt und sind $\lambda_1, \ldots, \lambda_m$ zugehörige Lagrange-Multiplikatoren, so ist die Hesse-Matrix $\mathbf{H}_F(\mathbf{x}^0)$ der Lagrange-Funktion positiv semidefinit auf dem Tangentialraum

$$\textbf{T}G(\textbf{x}^0) := \{\textbf{y} \in \mathbb{R}^n \, | \, \text{grad}(g_i)(\textbf{x}^0) \cdot \textbf{y} = 0 \, \text{ für } i = 1, \dots, m \}$$

d.h., es gilt

$$\mathbf{y}^{\mathsf{T}} \; \mathbf{H}_{\mathsf{F}}(\mathbf{x}^{\mathsf{O}}) \; \mathbf{y} \geq 0$$
 für alle $\mathbf{y} \in \mathbf{T} G(\mathbf{x}^{\mathsf{O}})$.

Hinreichende Bedingung.

Satz: Ist für einen Punkt $\mathbf{x}^0 \in G$ die Regularitätsbedingung erfüllt, existieren Lagrange-Multiplikatoren $\lambda_1, \ldots, \lambda_m$, so dass \mathbf{x}^0 ein stationärer Punkt der zugehörigen Lagrange-Funktion ist, und ist die Hesse-Matrix $\mathbf{H}_F(\mathbf{x}^0)$ positiv definit auf dem Tangentialraum

$$\mathbf{T}G(\mathbf{x}^0) = {\mathbf{y} \in \mathbb{R}^n | \operatorname{grad}(g_i)(\mathbf{x}^0) \cdot \mathbf{y} = 0 \text{ für } i = 1, \dots, m}$$

d.h., es gilt

$$\mathbf{y}^{\mathsf{T}} \; \mathbf{H}_{\mathsf{F}}(\mathbf{x}^{\mathsf{O}}) \; \mathbf{y} \bigcirc \mathbf{0}$$
 für alle $\mathbf{y} \in \mathbf{T} \mathrm{G}(\mathbf{x}^{\mathsf{O}}) \setminus \{\mathbf{0}\},$

so ist \mathbf{x}^0 ein strenges lokales Minimum von $f(\mathbf{x})$ unter der Nebenbedingung $\mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Beispiel.

Man bestimme das globale Maximum der Funktion

$$f(x,y) = -x^2 + 8x - y^2 + 9$$

unter der Nebenbedingung

$$g(x,y) = x^2 + y^2 - 1 = 0$$

Die Lagrange-Funktion ist gegeben durch

$$F(x) = -x^2 + 8x - y^2 + 9 + \lambda(x^2 + y^2 - 1)$$

Aus der notwendigen Bedingung ergibt sich das nichtlineare System

$$-2x + 8 = -2\lambda x$$
$$-2y = -2\lambda y$$
$$x^{2} + y^{2} = 1$$

Fortsetzung des Beispiels.

Aus der notwendigen Bedingung ergibt sich das nichtlineare System

$$-2x + 8 = -2\lambda x$$
$$-2y = -2\lambda y$$
$$x^2 + y^2 = 1$$

Aus der ersten Gleichung folgt $\lambda \neq 1$. Verwendet man dies in der zweiten Gleichung, so gilt y=0. Aus der dritten Gleichung erkennt man sofort $x=\pm 1$.

Demnach sind nur die beiden Punkte (x,y)=(1,0) und (x,y)=(-1,0) Kandidaten für das globale Maximum. Wegen

$$f(1,0) = 16$$
 und $f(-1,0) = 0$

wird das globale Maximum von f(x,y) unter der Nebenbedingung g(x,y)=0 im Punkt (x,y)=(1,0) angenommen.

Noch ein Beispiel.

Bestimme die lokalen Extremwerte der Funktion

$$f(x, y, z) = 2x + 3y + 2z$$

auf dem Schnitt des Zylinders

$$Z := \{(x, y, z)^T \in \mathbb{R}^3 : x^2 + y^2 = 2\}$$

mit der Ebene

$$E := \{(x, y, z)^T \in \mathbb{R}^3 : x + z = 1\}$$

Umformulierung: Bestimme die Extremwerte der Funktion f(x, y, z) unter den Nebenbedingungen

$$g_1(x, y, z) := x^2 + y^2 - 2 = 0$$

$$g_2(x, y, z) := x + z - 1 = 0$$

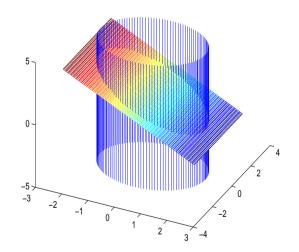
$$f(x, y, z) = 2x + 3y + 2z$$

auf dem Schnitt der Zylinderoberfläche

$$g_1(x, y, z) = x^2 + y^2 - 2 = 0$$

mit der Ebene

$$g_2(x, y, z) = x + z - 1 = 0.$$



$$S_{1}: \times^{2} + S^{2} - 2$$

$$S_{2} = \times + t - 1$$

Fortsetzung des Beispiels. $\binom{2\times}{1y} + \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \binom{0}{0} \xrightarrow{3} = 0$ $2 \times 10^{11} = 0$

Die Jacobi-Matrix

$$\mathbf{Jg}(\mathbf{x}) = \begin{bmatrix} 2x & 2y & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{pmatrix} 3x & 3 & 3x \\ 3x & 3 & 3x \end{pmatrix}$$

hat den maximalen Rang 2, d.h. wir können über die Lagrange-Funktion Extremwerte bestimmen:

Hmys ≥nlesijn ≠ant or

$$F(x, y, z) = \underbrace{2x + 3y + 2z + \lambda_1(x^2 + y^2 - 2) + \lambda_2(x + z - 1)}_{f}$$

Die notwendige Bedingung ergibt das nichtlineare Gleichungssystem

$$F_{x} = 0$$
 $F_{y} = 0$
 $F_{z} = 0$
 $S_{1} = 0$
 $S_{2} = 0$

$$2 + 2\lambda_1 x + \lambda_2 = 0$$

$$3 + 2\lambda_1 y = 0$$

$$2 + \lambda_2 = 0$$

Weitere Fortsetzung des Beispiels.

$$2 + 2\lambda_1 x + \lambda_2 = 0$$

$$3 + 2\lambda_1 y = 0$$

$$2 + \lambda_2 = 0$$

$$x^2 + y^2 = 2$$

$$x + z = 1$$

$$y = \pm \sqrt{2}$$

$$\lambda_1 = -\frac{3}{2}$$

$$\lambda_2 = 0$$

Aus der ersten und dritten Gleichung folgt

$$2\lambda_1 x = 0$$

Aus der zweiten Gleichung folgt $\lambda_1 \neq 0$, also x = 0.

Damit ergeben sich die möglichen Extremwerte als

$$(x,y,z) = (0,\sqrt{2},1)$$
 und $(x,y,z) = (0,-\sqrt{2},1)$.

Komplettierung des Beispiels.

Die möglichen Extremwerte sind also

$$(x, y, z) = (0, \sqrt{2}, 1)$$
 und $(x, y, z) = (0, -\sqrt{2}, 1)$.

Man berechnet nun die zugehörigen Funktionswerte

$$f(0, \sqrt{2}, 1) = 3\sqrt{2} + 2$$

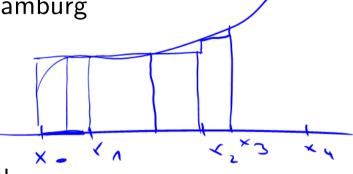
 $f(0, -\sqrt{2}, 1) = -3\sqrt{2} + 2$

Daher liegt im Punkt $(x,y,z)=(0,\sqrt{2},1)$ ein Maximum, im Punkt $(x,y,z)=(0,-\sqrt{2},1)$ ein Minimum.

Analysis III für Studierende der Ingenieurwissenschaften

Prof. Dr. Armin Iske

Fachbereich Mathematik, Universität Hamburg



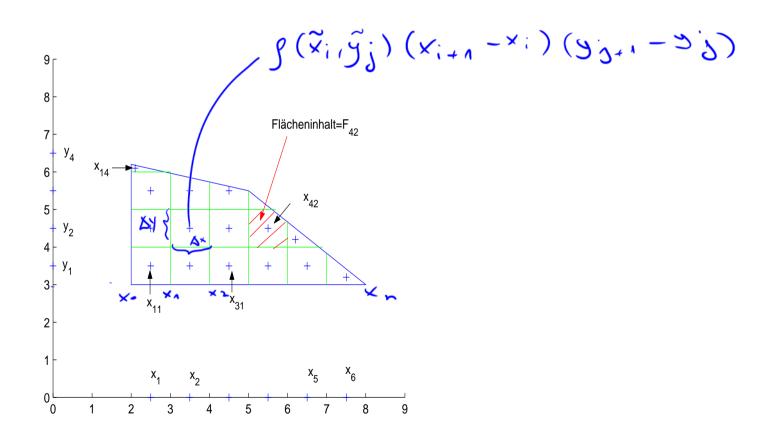
Technische Universität Hamburg-Harburg Wintersemester 2014/2015

Bereichsintegrale:

Beispiel: Gegeben Dichte $\rho(x,y)$. Gesucht Masse.

Näherung : dichte konstant auf jedem Kästchen \longrightarrow

$$M \approx \sum_{i} \sum_{j} \rho(x_i, y_j) F_{ij}$$



19 Integralrechnung mehrerer Variabler

19.1 Bereichsintegrale

Gegeben sei eine Funktion $f: D \to \mathbb{R}$ mit Definitionsbereich $D \subset \mathbb{R}^n$.

Ziel: Berechnung des Volumens unterhalb des Graphen von $f(\mathbf{x})$:

$$V = \int_{D} f(\mathbf{x}) \, d\mathbf{x}$$

Erinnerung Analysis II: Bestimmtes Riemann-Integral einer Funktion f(x) über einem Intervall [a, b]:

$$I = \int_{a}^{b} f(x) \, dx$$

Das Integral I war als Grenzwert von Riemannscher Ober- und Untersumme definiert, falls diese Grenzwerte jeweils existierten und übereinstimmten.

Konstruktionsprinzip für Bereichsintegrale.

Vorgehensweise: Analog dem eindimensionalen Fall.

Aber: der Definitionsbereich D ist komplizierter.

Startpunkt: Betrachten zunächst den Fall zweier Variabler, n=2, und einen

Definitionsbereich $D \subset \mathbb{R}^2$ der Form

$$D = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2,$$

d.h. D ist ein kompakter Quader (Rechteck).

Weiterhin sei $f: D \to \mathbb{R}$ eine beschränkte Funktion.

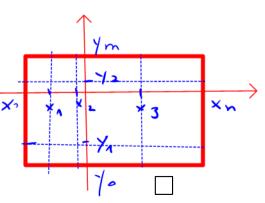
Definition: Man nennt $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ eine

Zerlegung des Quaders $D = [a_1, b_1] \times [a_2, b_2]$, falls gilt

$$a_1 = x_0 < x_1 < \ldots < x_n = b_1$$

$$a_2 = y_0 < y_1 < ... < y_m = b_2$$

Mit **Z**(D) wird die Menge der Zerlegungen von D bezeichnet.



012

Zerlegungen und Riemannsche Summen.

Definition:

• Die Feinheit einer Zerlegung $Z \in \mathbf{Z}(D)$ ist gegeben durch

$$\|Z\| := \max_{i,j} \{ |x_{i+1} - x_i|, |y_{j+1} - y_j| \}$$

• Für eine vorgegebene Zerlegung Z nennt man die Mengen

$$Q_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

die Teilquader der Zerlegung Z. Das Volumen des Teilquaders Q_{ij} ist

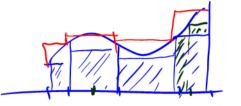
$$vol(Q_{ij}) := (x_{i+1} - x_i) \cdot (y_{j+1} - y_j)$$

ullet Für beliebige Punkte $x_{ij} \in Q_{ij}$ der jeweiligen Teilquader nennt man

$$R_f(Z) := \sum_{i,j} f(\mathbf{x}_{ij}) \cdot vol(Q_{ij})$$

eine Riemannsche Summe zur Zerlegung Z.

Riemannsche Ober- und Untersummen.



Definition: Analog zum Integral einer Variablen heißen für eine Zerlegung Z

$$U_f(Z) \ := \ \sum_{\mathfrak{i},\mathfrak{j}} \inf_{\mathbf{x} \in Q_{\mathfrak{i}\mathfrak{j}}} f(\mathbf{x}) \cdot \mathsf{vol}(Q_{\mathfrak{i}\mathfrak{j}})$$

$$O_f(Z) := \sum_{i,j} \sup_{\mathbf{x} \in Q_{ij}} f(\mathbf{x}) \cdot \text{vol}(Q_{ij})$$

die Riemannsche Untersumme bzw. Riemannsche Obersumme von f(x).

Bemerkung: Eine Riemannsche Summe zur Zerlegung Z liegt stets zwischen der Unter- und Obersumme dieser Zerlegung, d.h. es gilt

$$U_f(Z) \le R_f(Z) \le O_f(Z)$$

Bemerkung.

Ensteht eine Zerlegung Z_2 aus der Zerlegung Z_1 durch Hinzunahme weiterer Zwischenpunkte x_i und/oder y_i , so gilt

$$U_f(Z_2) \ge U_f(Z_1)$$
 und $O_f(Z_2) \le O_f(Z_1)$

Für zwei beliebige Zerlegungen Z₁ und Z₂ gilt stets

$$U_f(Z_1) \leq O_f(Z_2)$$

Frage: Was passiert mit den Unter- und Obersummen im Grenzwert $\|Z\| \to 0$:

$$U_f \ := \ \sup\{U_f(Z): Z \in \boldsymbol{Z}(D)\}$$

$$O_f \ := \ \inf\{O_f(Z): Z \in \boldsymbol{Z}(D)\}$$

Beobachtung: Die beiden Werte U_f und O_f existieren, da Unter- und Obersumme monoton und beschränkt sind.

Riemannsche Ober- und Unterintegrale.

Definition:

• Riemannsches Unterintegral bzw. Riemannsches Oberintegral der Funktion $f(\mathbf{x})$ über D ist gegeben durch

$$\begin{split} &\int_{\underline{D}} f(\mathbf{x}) d\mathbf{x} &:= \sup\{U_f(Z) \,|\, Z \in \boldsymbol{Z}(D)\} \\ &\int_{\overline{D}} f(\mathbf{x}) d\mathbf{x} &:= \inf\{O_f(Z) \,:\, Z \in \boldsymbol{Z}(D)\} \end{split}$$

 Die Funktion f(x) nennt man Riemann-integrierbar über D, falls Unterund Oberintegral übereinstimmen. Das Riemann-Integral von f(x) über D ist dann gegeben durch

$$\int_{D} f(\mathbf{x}) d\mathbf{x} := \int_{\underline{D}} f(\mathbf{x}) d\mathbf{x} = \int_{\overline{D}} f(\mathbf{x}) d\mathbf{x}.$$

Bemerkung.

Wir haben bis jetzt "nur" den Fall von zwei Variablen betrachtet:

$$f: D \to \mathbb{R}, \qquad D \subset \mathbb{R}^2.$$

In höheren Dimensionen, n > 2, ist die Vorgehensweise analog.

Schreibweise: für n = 2 und n = 3

$$\int_{D} f(x,y) dxdy \qquad \text{bzw.} \qquad \int_{D} f(x,y,z) dxdydz$$

$$J(x,y) \qquad J(x,y,z)$$

oder auch

$$\iint_{D} f(x,y) dx dy \qquad \text{bzw.} \qquad \iiint_{D} f(x,y,z) dx dy dz$$

Elementare Eigenschaften des Integrals.

Satz:

• Linearität

$$\int_{D} (\alpha f(\mathbf{x}) + \beta g(\mathbf{x})) d\mathbf{x} = \alpha \int_{D} f(\mathbf{x}) d\mathbf{x} + \beta \int_{D} g(\mathbf{x}) d\mathbf{x}$$

Monotonie

Gilt $f(\mathbf{x}) \leq g(\mathbf{x})$ für alle $\mathbf{x} \in D$, so folgt

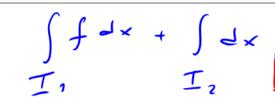
$$\int_{D} f(\mathbf{x}) \, d\mathbf{x} \le \int_{D} g(\mathbf{x}) \, d\mathbf{x}$$

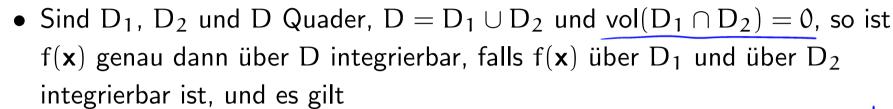
• Positivität

Gilt für alle $\mathbf{x} \in D$ die Beziehung $f(\mathbf{x}) \geq 0$, d.h. $f(\mathbf{x})$ ist nichtnegativ, so folgt

$$\int_{D} f(\mathbf{x}) \, d\mathbf{x} \ge 0$$

Weitere Eigenschaften des Integrals.





$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{D_1} f(\mathbf{x}) d\mathbf{x} + \int_{D_2} f(\mathbf{x}) d\mathbf{x}.$$

$$\left| \int_{D} f(\mathbf{x}) d\mathbf{x} \right| \leq \sup_{\mathbf{x} \in D} |f(\mathbf{x})| \cdot \mathsf{vol}(D)$$

- Riemannsches Kriterium
 - $f(\mathbf{x})$ ist genau dann über D integrierbar, falls gilt:

$$\forall\, \epsilon>0 \quad \exists\, Z\in \boldsymbol{Z}(D) \quad : \quad O_f(Z)-U_f(Z)<\epsilon.$$

Der Satz von Fubini.

Satz (Satz von Fubini): Ist $f: D \to \mathbb{R}$ integrierbar, $D = [a_1, b_1] \times [a_2, b_2]$ ein Quader, und existieren die Integrale

$$F(x) = \int_{a_2}^{b_2} f(x, y) dy$$
 und $G(y) = \int_{a_1}^{b_1} f(x, y) dx$

für alle $x \in [a_1, b_1]$ bzw. für alle $y \in [a_2, b_2]$, so gelten

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dy dx$$

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x, y) dx dy$$

Bedeutung:

Der Satz von Fubini ermöglicht Reduktion auf eindimensionale Integration. \Box

$$Bsp: D = [o,\pi] \times [-1,3] \qquad f(x,y) = sin(x) \cdot y^{2}$$

$$\int_{0}^{\pi} \int_{0}^{3} f(x,y) \qquad dy \qquad dx = \int_{0}^{\pi} \int_{0}^{3} \sin(x)y^{2}dy dx$$

$$= \int_{0}^{\pi} \sin(x) \int_{0}^{3} \int_{0}^{3} dx$$

$$= \int_{0}^{\pi} \sin(x) \int_{0}^{2\pi} \frac{1}{3} \int_{0}^{3} dx$$

$$= \int_{0}^{\pi} \sin(x) \int_{0}^{2\pi} \frac{1}{3} \int_{0}^{3} dx$$

$$= \int_{0}^{\pi} \sin(x) \int_{0}^{2\pi} \frac{1}{3} \int_{0}^{3\pi} dx$$

$$= \int_{0}^{\pi} \sin(x) \int_{0}^{\pi} \frac{1}{3} \int_{0}^{\pi} dx$$

$$\int_{-1}^{2} 5 \, ds = \frac{3}{5} \, ds \Big|_{3}^{-1} = \frac{3}{56}$$

Beweis des Satzes von Fubini: Sei $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ eine beliebige Zerlegung von D, so gelten für beliebige $y \in [y_j, y_{j+1}]$ und $\xi_i \in [x_i, x_{i+1}]$ die Abschätzungen

$$\inf_{\boldsymbol{x} \in Q_{\mathfrak{i}\mathfrak{j}}} f(\boldsymbol{x}) \leq f(\xi_{\mathfrak{i}}, y) \leq \sup_{\boldsymbol{x} \in Q_{\mathfrak{i}\mathfrak{j}}} f(\boldsymbol{x}),$$

und somit (per Integration über $[y_j, y_{j+1}]$)

$$\inf_{\mathbf{x} \in Q_{ij}} f(\mathbf{x})(y_{j+1} - y_j) \le \int_{y_j}^{y_{j+1}} f(\xi_i, y) \, dy \le \sup_{\mathbf{x} \in Q_{ij}} f(\mathbf{x})(y_{j+1} - y_j).$$

Durch Multiplikation mit $(x_{i+1} - x_i)$ und anschließender Summation folgt

$$U_f(Z) \leq \sum_{i=0}^{n-1} \left(\int_{a_2}^{b_2} f(\xi_i, y) \, dy \right) (x_{i+1} - x_i) \leq O_f(Z).$$

Mit dieser Riemannschen Summe von F(x) zu $Z_x = \{x_0, \dots, x_n\}$ bekommt man

$$U_f(Z) \leq U_F(Z_x) \leq O_F(Z_x) \leq O_f(Z).$$

Für $||Z|| \rightarrow 0$ folgt die erste Behauptung, die zweite zeigt man analog.

Beispiel.

Gegeben sei der Quader $D = [0, 1] \times [0, 2]$ sowie die Funktion

$$f(x,y) = 2 - xy$$

Stetige Funktionen sind – wie wir gleich zeigen werden – über Quadern integrierbar. Daher können wir den Satz von Fubini anwenden:

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{0}^{2} \int_{0}^{1} f(x, y) dxdy = \int_{0}^{2} \left[2x - \frac{x^{2}y}{2} \right]_{x=0}^{x=1} dy$$

$$= \int_{0}^{2} \left(2 - \frac{y}{2} \right) dy = \left[2y - \frac{y^{2}}{4} \right]_{y=0}^{y=2} = 3$$

Bemerkung: Der Satz von Fubini verlangt als Voraussetzung die Integrierbarkeit von $f(\mathbf{x})$. Die Existenz der beiden Integrale F(x) und G(y) alleine garantiert die Integrierbarkeit von $f(\mathbf{x})$ nicht!

Die charakteristische Funktion.

Definition: Für $D \subset \mathbb{R}^n$ kompakt und $f: D \to \mathbb{R}$ beschränkt setzen wir

$$f^*(\mathbf{x}) := \begin{cases} f(\mathbf{x}) & : & \textit{falls } \mathbf{x} \in D \\ 0 & : & \textit{falls } \mathbf{x} \in \mathbb{R}^n \setminus D \end{cases}$$

Speziell für $f(\mathbf{x}) \equiv 1$ heißt $f^*(\mathbf{x})$ die charakteristische Funktion von D. Die charakteristische Funktion von D wird mit $\chi_D(\mathbf{x})$ bezeichnet.

Sei nun Q der kleinste Quader mit $D \subset Q$. Dann heißt die Funktion $f(\mathbf{x})$ integrierbar über D, falls $f^*(\mathbf{x})$ über Q integrierbar ist, und wir setzen

$$\int_{D} f(\mathbf{x}) d\mathbf{x} := \int_{Q} f^{*}(\mathbf{x}) d\mathbf{x}.$$

Messbarkeit und Nullmengen.

Definition: Die kompakte Menge $D \subset \mathbb{R}^n$ heißt messbar, falls das Integral

$$vol(D) := \int_{D} 1 d\mathbf{x} = \int_{Q} \chi_{D}(\mathbf{x}) d\mathbf{x}$$

existiert. Man nennt dann vol(D) das Volumen von D im \mathbb{R}^n .

Die kompakte Menge D heißt Nullmenge, falls D messbar ist mit vol(D) = 0.

Bemerkungen:

ullet Ist die Menge D selbst ein Quader, so folgt Q=D, und somit gilt

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{Q} f^{*}(\mathbf{x}) d\mathbf{x} = \int_{Q} f(\mathbf{x}) d\mathbf{x}$$

d.h. die eingeführten Integrationsbegriffe stimmen überein.

- Quader sind messbare Mengen.
- vol(D) ist in diesem Fall das tatsächliche Volumen des Quaders D im \mathbb{R}^n . \square

Drei wichtige Eigenschaften der Integration.

Satz: Sei $D \subset \mathbb{R}^n$ kompakt. Dann ist D genau dann messbar, falls der Rand ∂D von D eine Nullmenge ist.

Satz: Sei $D \subset \mathbb{R}^n$ kompakt und messbar und sei $f : D \to \mathbb{R}$ stetig. Dann ist $f(\mathbf{x})$ integrierbar über D.

Satz (Mittelwertsatz): Ist $D \subset \mathbb{R}^n$ kompakt, zusammenhängend und messbar, und ist $f: D \to \mathbb{R}$ stetig, so gibt es einen Punkt $\xi \in D$ mit

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = f(\xi) \cdot \text{vol}(D).$$