Prof. Dr. R. Lauterbach

Dr. K. Rothe

Analysis III für Studierende der Ingenieurwissenschaften

Blatt 5

Aufgabe 17:

Zur Bestimmung der Extrema der Funktion

$$f(x,y) := e^{-x^2 - y^2} (5x + 2(y+1))$$

soll das Newton-Verfahren auf die Funktion $\mathbf{F}(x,y) = \nabla f(x,y)$ angewendet werden.

- a) Man berechne $\mathbf{F}(x,y)$ und die Jacobi-Matrix $\mathbf{J} \mathbf{F}(x,y)$.
- b) Man stelle das Newton-Verfahren auf.
- c) Man schreibe ein MATLAB-Programm zur numerischen Durchführung des Newton-Verfahrens unter Verwendung der MATLAB-Routine 'linsolve'.
- d) Ausgehend von den Startvektoren $(x_0, y_0) = (0.5, 0.5)$ und $(\tilde{x}_0, \tilde{y}_0) = (-0.5, -0.5)$ berechne man damit Lösungen auf zehn Stellen genau.
- e) Man klassifiziere die berechneten stationären Punkte und erstelle einen Flächenplot und einen Höhenlinienplot von f mit Hilfe der MATLAB-Routinen 'ezsurf' und 'ezcontour'.

Aufgabe 18:

Für die Funktion

$$f: Q \to \mathbb{R}$$
, $f(x,y) = 6 - 2x + 4y$

mit $Q := [0,3] \times [0,2]$ berechne man

a) Riemannsche Unter- und Obersumme zu folgender äquidistanter Zerlegung $\,Z\,$ von $\,Q\,$

$$Q_{i,j} = [x_{i-1}, x_i] \times [y_{j-1}, y_j], \quad i, j = 1, \dots, n$$

wobei
$$x_i = \frac{3i}{n}$$
 und $y_j = \frac{2j}{n}$ gelte

b) und das Integral von $\,f\,$ über $\,Q\,$ nach dem Satz von Fubini.

Aufgabe 19:

Man berechne die folgenden Integrale:

a)
$$\int_{-1}^{3} \int_{0}^{2} xy - x^{2} + y \, dx \, dy$$
,

b)
$$\int_0^4 \int_0^1 \frac{x}{(x+y)^2} \, dy \, dx$$
,

c)
$$\int_{R} \frac{\cos y}{x^2 + 4} d(x, y) \text{ mit } R = [0, 2] \times [0, \frac{\pi}{2}],$$

d)
$$\int_W \sqrt{x+y+z} d(x,y,z)$$
 mit $W = [0,1] \times [0,1] \times [0,1]$.

Aufgabe 20:

Man zeichne folgende Mengen und beschreibe sie durch Normalbereiche:

- a) den durch die Funktionen f(x) = 2x und $g(x) = 24 2x^2$ eingeschlossenen Bereich P,
- b) den durch die Höhenline |x|+|y|=5 eingeschlossenen Bereich Q,
- c) den durch $x \le 0, y \le 0, z \ge 0$ und $x^2 + y^2 + z^2 = 9$ eingeschlossenen Bereich K.

Abgabetermin: 16.12. - 20.12.2013 (zu Beginn der Übung)