Satz 2.36: (Rechenregeln der Integralrechnung)

Seien f und g integrierbare Funktionen auf dem Intervall [a, b], a < c < b und $c_1, c_2 \in \mathbb{R}$, dann gilt

$$\int_{a}^{b} (c_{1}f + c_{2}g) dx = c_{1} \int_{a}^{b} f dx + c_{2} \int_{a}^{b} g dx, \quad \int_{a}^{c} f + c_{3} dx = \int_{a}^{c} f dx + \int_{a}^{c} f dx$$

$$\left| \int_{a}^{b} f dx \right| \leq \int_{a}^{b} |f| dx, \quad \int_{a}^{c} f dx = c \int_{a}^{c} f dx$$

•
$$f \ge 0$$
 auf $[a, b] \Longrightarrow \int_a^b f \, dx \ge 0$,

• ist f auf [a, b] stetig und nichtnegativ, sowie $\int_a^b f dx = 0$, so folgt $f \equiv 0$.

Definition 2.33: (Stammfunktion)

Sei $f: I \to \mathbb{R}$ eine auf dem Intervall I definierte reellwertige Funktion.

Die differenzierbare Funktion $F:I\to\mathbb{R}$ mit der Eigenschaft

$$F' = f$$

heißt Stammfunktion von f.

Stammfunktionen sind nur bis auf Konstanten festgelegt, d.h. mit F ist auch F + C für $C \in \mathbb{R}$ Stammfunktion zu f.

Prop:
$$f(x) = x$$
 $f(x) = \frac{1}{2}x^2$ is $f(x) = \frac{1}{2}x^2 + c$ and $f(x) = \frac{1}{2}x$

Hauptsätze der Differential-und Integralrechung 2.13

Satz 2.37: (erster Hauptsatz der Differential-und Integralrechnung)

Ist $f: I \to \mathbb{R}$ auf dem Intervall I stetig, dann ist die Funktion F, definiert durch

$$F(x) := \int_a^x f(t) dt, \qquad (x, a \in I),$$

eine Stammfunktion von f.

Satz 2.37: (zweiter Hauptsatz der Differential-und Integralrechnung)

Ist F Stammfunktion einer auf einem Intervall I stetigen oder R-integrierbaren Funktion $f:I\to\mathbb{R}$, so gilt für beliebige $a,b\in I$

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}.$$

Analysis I April 10, 2018 27 / 39

Hauptsätze der Differential-und Integralrechnung

Buch Kap. 2.13

Stammfunktion

Ist $F: I \to \mathbb{R}$ eine Stammfunktion von $f: I \to \mathbb{R}$, so schreiben wir

$$\int f(t) dt = F(x) + C.$$

Hierbei heißt $C \in \mathbb{R}$ Integrationskonstante.

28 / 39

alysis I April 10, 2018

Stammfunktionen

Beispiele

$$\int \frac{1}{\sin^2(x)} dx = -\cot(x) + C \qquad \text{für } x \neq k\pi \text{ mit } k \in \mathbb{Z}$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin(x) + C \qquad \text{für } |x| < 1$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \log\left(x + \sqrt{1 + x^2}\right) + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \log\left|x + \sqrt{x^2 - 1}\right| + C \qquad \text{für } |x| > 1$$

$$\int \frac{1}{1 + x^2} dx = \arctan x + C$$

$$\int \frac{1}{1 - x^2} dx = \frac{1}{2} \log\left|\frac{1 + x}{1 - x}\right| + C \qquad \text{für } |x| \neq 1.$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C \qquad \text{für } a \neq 0.$$

Stammfunktionen

noch mehr Beispiele

Polynome

$$\int P(x) dx = \frac{a_n}{n_1} \times \frac{h+1}{n} + \frac{a_{n-1}}{n} \times \frac{h+1}{n} + \frac{a_n}{n-1} \times \frac{a_n}{n} \times \frac{a_n}{n$$

ysis I April 10

Buch Kap. 2.13

Satz 2.29: (Substitutionsregel)

Sei f stetig auf dem Intervall J und φ stetig differenzierbar auf dem Intervall I, wobei $\varphi(I) \subset J$ gilt und die Umkehrfunktion φ^{-1} existiert. Dann gilt

$$\int f(\varphi(x))\varphi'(x)\,dx = \int f(t)\,dt \text{ mit } t = \varphi(x)$$

Analysis I April 10, 2018 32 / 39

Buch Kap. 2.13

Substitutionsregel 1

- 1) $\varphi(x)$ wird durch t ersetzt (substituiert),
- 2) wegen $\frac{dt}{dx} = \varphi'(x)$ bzw. $dt = \varphi'(x) dx$ wird $\varphi'(x) dx$ durch dt ersetzt,
- 3) das Integral $\int f(t) dt$ wird berechnet (das sollte einfacher als die Berechnung des Integrals $\int f(\varphi(x))\varphi'(x) dx$ sein, sonst wäre die Mühe umsonst!),
- 4) t wird durch $\varphi(x)$ ersetzt (Rücksubstitution).

33 / 39

nalysis I April 10, 2018

Beispiel

$$\int e^{\sqrt{x}} dx$$

$$\int e^{+} 2\sqrt{x} dt$$

$$= \int dx = 2\sqrt{x} dx$$

$$= \int dx = 2\sqrt{x} dx$$

$$= \int dx = 2\sqrt{x} dx$$

=
$$\int 2 t e^{t} dt$$
 $\int 6 t = \sqrt{x}$
= $2 \int 6 e^{t} dt = 2(6-n) e^{t} = 2(\sqrt{x}-n) e^{\sqrt{x}}$

Buch Kap. 2.13

Substitutionsregel 2

- 1) x wird durch $\varphi(t)$ ersetzt (substituiert),
- 2) wegen $\frac{dx}{dt} = \varphi'(t)$ bzw. $dx = \varphi'(t) dt$ wird dx durch $\varphi'(t) dt$ ersetzt,
- 3) das Integral $\int f(\varphi(t))\varphi'(t) dt$ wird berechnet,
- 4) t wird durch $\varphi^{-1}(x)$ ersetzt (Rücksubstitution).

Analysis I April 10

Buch Kap. 2.13

Beispiel

$$\int_{0}^{\infty} \sqrt{1-x^{2}} dx = \frac{1}{2}$$

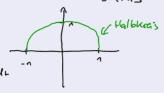
$$\int_{-\infty}^{\infty} dx = -\sin(t) dt$$

$$\int_{-\infty}^{\infty} dx = -\int_{-\infty}^{\infty} |h - \cos^2(t)| \sin(t) dt$$

$$= -\int_{-\infty}^{\infty} \sqrt{1 - \cos^2(t)|} \sin(t) dt = -\int_{-\infty}^{\infty} \sin(t) dt = -\int_{-\infty}^{\infty} \sin(t) dt$$

$$= -\int_{0}^{\pi} \sin^{2}(t) dt = I$$

$$\widehat{U} \text{ belosung}: \quad X^2 + f(x)^2 = \Lambda$$



36/39

Analysis I April 10, 2018

Partielle Integration

Buch Kap. 2.13

Partielle Integration

Für zwei auf einem Intervall I stetig differenzierbare Funktionen u und v ist $u \cdot v$ eine Stammfunktion von $(u \cdot v)' = u'v + uv'$ und es gilt

$$u(x)v(x) = \int (u'(x)v(x) + u(x)v'(x)) dx \quad \text{bzw. nach Satz 2.28}$$
$$\int u'(x)v(x) dx = u(x)v(x) - \int u(x)v'(x) dx.$$

Analysis I April 10, 2018 37

Partielle Integration

Buch Kap. 2.13

Beispiel

$$\int \frac{x}{x} e^{x} dx = \frac{1}{2}x^{2} e^{x} - \int \frac{1}{2}x^{2} e^{x} dx \quad filter sum x$$

$$\int_{\frac{\pi}{V}}^{\kappa} \frac{e^{\kappa}}{a!} d\kappa = \kappa e^{\kappa} - \int_{\frac{\pi}{V}}^{\kappa} e^{\kappa} . \Lambda d\kappa = \kappa e^{\kappa} - e^{\kappa} + C$$

$$= (\kappa - \Lambda) e^{\kappa}$$

38 / 39

Analysis I April 10, 2018

Partielle Integration

Buch Kap. 2.13

Beispiel

e)
$$\int \sin^2 t dt = \int \frac{\sin(t)}{u} \frac{\sin(t) dt}{v} = -\cos(t) \sin(t) + \int \cos^2(t) dt$$

$$= -\cos(t) \sin(t) + \int 1 - \sin^2(t) dt$$

$$= -\cos(t) \sin(t) + \int 1 dt - \int \sin^2(t) dt$$

$$= -\cos(t) \sin(t) + \int 1 dt - \int \sin^2(t) dt$$

$$= \int \sin^2(t) dt = \frac{1}{2} \left(-\cos(t) \sin(t) + t \right) + C$$

$$= \int \sin^2(t) dt = \frac{1}{2}$$

$$= \int \sin^2(t) dt = \frac{1}{2}$$

39 / 39

Analysis I April 10, 2018