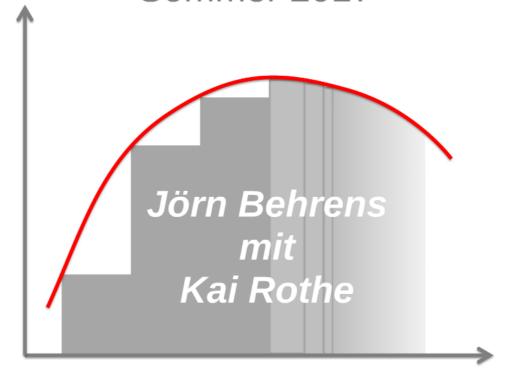
Analysis II

Sommer 2017



Fourier-Reihe

Buch Kapitel 3.8-3.9

Erinnerung Sinus/Cosiuns

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z}{k}$$

die komplexe Exponentialfunktion. Die Reihe konvergiert für alle $z\in\mathbb{C}$, also ist eine Funktion $\exp\colon\mathbb{C}\to\mathbb{C}$ definiert.

Eigenschaften der komplexen Exponentialfunktion: Es gib für $z,z_1,z_2\in\mathbb{C}$

- $\bullet \ \operatorname{exp}(x_1+x_2) = \operatorname{exp}(x_1) \operatorname{exp}(x_2)$
- $\bullet \; \exp(x) \neq 0$
- $\exp(-z) = \frac{1}{\cos(z)}$
- $a^{\circ} = \exp(x \ln(a))$ for $0 < a \in \mathbb{R}$

Bemerkung (Taylorreihe für die Sinusfunktion) Aus dem Satz von Taylor folgt:

$$\sin x = \sum_{k=0}^{2k+2} \frac{\sin^{(k)}(0)}{k!} x^k + R_{2k+2}(x)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots + R_{2k+2}(x)$$

wobei
$$R_{2k+2}(x)=\frac{\sin^{(2n+3)}(\xi)}{(2n+3)!}x^{2n+3}$$
 mit $\xi\in[0,x].$ Analoges gilt für \cos .

Definition: (Sinus und Cosinus)

Auf ganz R sind folgende Reihen konvergent:

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

Die so erklärten Funktionen heißen Sinus- und Cosinus Funktion.

Periodizität von cos und sin

$$\cos\left(\frac{\pi}{2}\right)=0\quad\text{and}\quad 0<\frac{\pi}{2}<2.$$

Satz (Periodizität der trigonometrischen Funktionen) Die Funktionen

$$\cos(x) = \sum_{i=1}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \quad \text{and} \quad \sin(x) = \sum_{i=1}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

sind periodisch und es gilt für alle $z\in\mathbb{R}$

$$\cos(x+2\pi) = \cos(x)$$
 and $\sin(x+2\pi) = \sin(x)$.

Komplexe Exponentialfunktion: Für $z \in \mathbb{C}$ sei

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

die komplexe Exponentialfunktion. Die Reihe konvergiert für alle $z \in \mathbb{C}$, also ist eine Funktion $\exp : \mathbb{C} \to \mathbb{C}$ definiert.

Eigenschaften der komplexen Exponentialfunktion: Es gilt für $z,z_1,z_2\in\mathbb{C}$

- $\exp(z_1 + z_2) = \exp(z_1) \exp(z_2)$
- $\exp(z) \neq 0$
- $\exp(-z) = \frac{1}{\exp(z)}$
- $a^z = \exp(z \ln(a))$ für $0 < a \in \mathbb{R}$
- $\bullet \ e^z = \exp(z)$

Definition: (Sinus und Cosinus)

Auf ganz \mathbb{R} sind folgende Reihen konvergent:

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

Die so erklärten Funktionen heißen Sinus- und Cosinus Funktion.

Eigenschaften: (Sinus und Cosinus)

Aus den Reihendefinitionen für die Cosinus- und Sinusfunktion, sowie dem Additionstheorem für exp ergeben sich die folgenden Eigenschaften:

- $e^{ix} = \cos x + i \sin x$ (Eulersche Formel) und $e^{-ix} = \cos x i \sin x$
- $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ und $\sin x = \frac{e^{ix} e^{-ix}}{2i}$
- $\cos 0 = 1$ und $\sin 0 = 0$
- $\cos(-x) = \cos(x)$ (gerade Fkt.) und $\sin(-x) = -\sin(x)$ (ungerade Fkt.)
- $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ (Additionsformel für \cos)
- $\sin(x \pm y) = \cos x \sin y \pm \sin x \sin y$ (Additionsformel für \sin)
- $\bullet \cos(x+y) \cos(x-y) = -2\sin x \sin y$
- $\cos x_2 \cos x_1 = -2\sin \frac{x_1 + x_2}{2}\sin \frac{x_2 x_1}{2}$
- $\bullet \cos^2 x + \sin^2 x = 1$
- $\cos 2x = \cos^2 x \sin^2 x = 2\cos^2 1$ und $\sin 2x = 2\cos x \sin x$

Periodizität von \cos und \sin

Definition (Zahl π)

Die Zahl π ist die eindeutig bestimmte reelle Zahl, für die gilt:

$$\cos\left(\frac{\pi}{2}\right) = 0 \quad \text{und} \quad 0 < \frac{\pi}{2} < 2.$$

Satz (Periodizität der trigonometrischen Funktionen) Die Funktionen

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \quad \text{und} \quad \sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

sind periodisch und es gilt für alle $x \in \mathbb{R}$

$$cos(x + 2\pi) = cos(x)$$
 und $sin(x + 2\pi) = sin(x)$.

Bemerkung (Taylorreihe für die Sinusfunktion) Aus dem Satz von Taylor folgt:

$$\sin x = \sum_{k=0}^{2k+2} \frac{\sin^{(k)}(0)}{k!} x^k + R_{2k+2}(x)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots + R_{2k+2}(x)$$

wobei $R_{2k+2}(x) = \frac{\sin^{(2n+3)}(\xi)}{(2n+3)!} x^{2n+3}$ mit $\xi \in [0,x]$. Analoges gilt für cos.

Konstruktion von Funktionenreihen

Konstruktion durch gliedweise Addition: (cosh)

Es gilt $\cosh x = \frac{1}{2}(e^x + e^{-x})$. Mit den Reihen für e^x bzw. e^{-x} folgt

$$\begin{array}{rcl} \cosh x & = & \frac{1}{2} \left[1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \right] \\ & + & \frac{1}{2} \left[1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots \right] \\ & = & 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \\ & = & \sum_{k=0}^{\infty} \frac{x^{2k}}{2k!}. \end{array}$$

Bemerkung: diese Reihe ist – wie die Exponentialreihe – beständig konvergent

Konstruktion mittels Cauchy-Produkt: $(e^{-x} \sin x)$

Mit Hilfe des Cauchy-Produktes konstruiert man eine Reihe für $e^{-x}\sin x$:

$$\begin{array}{ll} e^{-t} \sin x & \left(\sum_{k=0}^{\infty} \frac{(-x)^k}{k!}\right) \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}\right) \\ & = \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) \left(x - \frac{x^3}{3!} - \frac{x^5}{5!} - \cdots\right) \\ & = x - x^2 + \frac{x^3}{3} - \cdots \end{array}$$

Konstruktion durch Integration: $(\arctan x)$

Durch Integration von $\frac{1}{1+x^2}$ ergibt sich (beachte $\arctan 0 = 0$):

$$\arctan x = \int_0^x \frac{d\xi}{1+\xi^2} = \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1}.$$

Bemerkung: wieder ist die Konvergenz nur für -1 < x < 1 gewährleistet.

Konstruktion durch gliedweises Differenzieren: $(\frac{1}{(1-\alpha)^2})$

Die geometrische Reihe $\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k$ lässt sich gliedweise Differenzieren zu:

$$\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)'$$

$$= \sum_{k=0}^{\infty} (x^k)'$$

$$= \sum_{k=0}^{\infty} kx^{k-1} = 1 - 2x + 3x^2 + \cdots$$

Bemerkung: Die so konstruierte Reihe konvergiert nur für |x|<1, da die geometrische Reihe nur dann konvergiert!

Konstruktion durch Substitution: $(\frac{1}{1+y^2})$

Ausgehend von der geometrischen Reihe $\frac{1}{1-x}=\sum_{k=0}^\infty x^k$ lässt sich durch Substitution $y=-x^2$ konstruicren:

$$\begin{array}{rcl} 1 & - & \sum_{k=0}^{\infty} y^k \\ & -1 & - & \sum_{k=0}^{\infty} (-1)^k x^{2k} \end{array}$$

$$\Rightarrow & \frac{1}{1+x^2} & - & \sum_{k=0}^{\infty} (-1)^k x^{2k} \end{array}$$

Bemerkung: gilt wieder für |x| < 1.

Konstruktion durch gliedweise Addition: (cosh)

Es gilt $\cosh x = \frac{1}{2}(e^x + e^{-x})$. Mit den Reihen für e^x bzw. e^{-x} folgt:

$$\cos x = \frac{1}{2} \left[1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \right]
 + \frac{1}{2} \left[1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots \right]
 = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots
 = \sum_{k=0}^{\infty} \frac{x^{2k}}{2k!}.$$

Bemerkung: diese Reihe ist – wie die Exponentialreihe – beständig konvergent.

Konstruktion mittels Cauchy-Produkt: $(e^{-x} \sin x)$

Mit Hilfe des Cauchy-Produktes konstruiert man eine Reihe für $e^{-x} \sin x$:

$$e^{-x} \sin x = \left(\sum_{k=0}^{\infty} \frac{(-x)^k}{k!}\right) \left(\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}\right)$$

$$= \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$$

$$= x - x^2 + \frac{x^3}{3} - \cdots$$

Konstruktion durch gliedweises Differenzieren: $(\frac{1}{(1-x)^2})$

Die geometrische Reihe $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$ lässt sich gliedweise Differenzieren zu:

$$\frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)'$$

$$= \sum_{k=0}^{\infty} (x^k)'$$

$$= \sum_{k=0}^{\infty} kx^{k-1} = 1 + 2x + 3x^2 + \cdots$$

Bemerkung: Die so konstruierte Reihe konvergiert nur für |x| < 1, da die geometrische Reihe nur dann konvergiert!

Konstruktion durch Substitution: $(\frac{1}{1+x^2})$

Ausgehend von der geometrischen Reihe $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$ lässt sich durch Substitution $u = -x^2$ konstruieren:

$$\frac{1}{1-u} = \sum_{k=0}^{\infty} u^k$$

$$\Rightarrow \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$

Bemerkung: gilt wieder für |x| < 1.

Konstruktion durch Integration: $(\arctan x)$

Durch Integration von $\frac{1}{1+x^2}$ ergibt sich (beachte $\arctan 0 = 0$):

$$\arctan x = \int_0^x \frac{d\xi}{1+\xi^2} = \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{2k+1}.$$

Bemerkung: wieder ist die Konvergenz nur für -1 < x < 1 gewährleistet.

Erinnerung Taylorreihe

Konstruktion durch Taylorreihe:

Jede auf $I\subset\mathbb{R}$ (n+1)-mal stetig differenzierbare Funktion f lässt sich darstellen (Satz von Taylor):

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x, x_0),$$

wobei $x,x_0\in I$ und $R_n(x,x_0)=rac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ das Lagrange Restglied mit ξ zwischen x und x_0 .

Folgerung: (Taylorreihe)

Falls auf dem offenen Intervall $I\subset \mathbb{R}$ die Funktion f beliebig oft differenzierbar ist und für das Restglied gilt:

$$\lim_{n\to\infty} R_n(x,x_0)=0,$$

so lässt sich f in einer Potenzreihe entwickeln:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

wobei $x,x_0\in I$. Diese Reihe heißt Taylorreihe. Ist $x_0=0$, so heißt die Reihe auch McLaurin-Reihe

Frage: Wann gilt $\lim_{n\to\infty} R_n(x,x_0) = 0$?

- Für elementare Funktionen mit Definitionsbereich D und $x,x_0\in I\subset D$ immer!
- $\bullet~$ Für x aus dem Konvergenzintervall der Reihe.
- ullet Falls $|f^{(k)}(x_0)| \le M$ für M>0 unabhängig von k.

Konstruktion durch Taylorreihe:

Jede auf $I \subset \mathbb{R}$ (n+1)-mal stetig differenzierbare Funktion f lässt sich darstellen (Satz von Taylor):

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x, x_0),$$

wobei $x, x_0 \in I$ und $R_n(x, x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ das Lagrange Restglied mit ξ zwischen x und x_0 .

Folgerung: (Taylorreihe)

Falls auf dem offenen Intervall $I \subset \mathbb{R}$ die Funktion f beliebig oft differenzierbar ist und für das Restglied gilt:

$$\lim_{n \to \infty} R_n(x, x_0) = 0,$$

so lässt sich f in einer Potenzreihe entwickeln:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

wobei $x, x_0 \in I$. Diese Reihe heißt Taylorreihe. Ist $x_0 = 0$, so heißt die Reihe auch McLaurin-Reihe.

Frage: Wann gilt $\lim_{n\to\infty} R_n(x,x_0) = 0$?

- \bullet Für elementare Funktionen mit Definitionsbereich D und $x,x_0\in I\subset D$ immer!
- Für x aus dem Konvergenzintervall der Reihe.
- Falls $|f^{(k)}(x_0)| \leq M$ für M > 0 unabhängig von k.

Periodische Funktionen

Definition: (Periodische Funktion) Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ welche

$$f(x+L) = f(x) \quad \forall x \in \mathbb{R}$$

erfüllt (L>0 konstant), heißt periodische Funktion.

Das kleinste L, für welches die Gleichung gilt, heißt Minimalperiode oder primitive Periode von f.

Jedes n-fache der Minimalperiode ist wieder Periode ($n\in\mathbb{N}$). f heißt auch L-periodische Funktion.

Beispiel: $f(x) = \sin x$

- Minimalperiode: 2π
- 2π-periodische Funktion
- \bullet Perioden $2\pi, 4\pi, 6\pi, \dots$

Graphisches Beispiel:

Definition: (Trigonometrisches Funktionssystem)

Die Funktionen $1, \sin(nx), \cos(nx)$ für $n \in \mathbb{N}$ bilden das trigonometrische Funktionensystem $\{1, \sin(nx), \cos(nx)\}$.

Ziel

Periodische Funktionen mit Hilfe des trigonometrischen Funktionensystems darstellen!

Bemerkung: Jede L-periodische Funktion f lässt sich durch die Transformation

$$\hat{f}(t) = f(t \frac{L}{2\pi})$$

in eine 2π -periodische Funktion \hat{f} umwandeln. (Betrachte also 2π -periodische Funktionen).

Konkret: Sei $f:\mathbb{R}\to\mathbb{R}$ eine 2π -periodische Funktion. Dann ist das Ziel, eine Darstellung

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

für geeignete $a_0,a_1,\ldots,b_1,b_2,\ldots\in\mathbb{R}$ zu finden.

Die Partialsummen (s_m) werden durch die trigonometrischen Polynome

$$s_m = \frac{a_0}{2} + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)), \quad m = 0, 1, ...$$

definiert

Definition: (Periodische Funktion)

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ welche

$$f(x+L) = f(x) \quad \forall x \in \mathbb{R}$$

erfüllt (L > 0 konstant), heißt periodische Funktion.

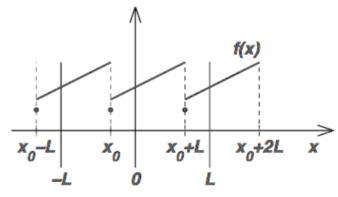
Das kleinste L, für welches die Gleichung gilt, heißt Minimalperiode oder primitive Periode von f.

Jedes n-fache der Minimalperiode ist wieder Periode ($n \in \mathbb{N}$). f heißt auch L-periodische Funktion.

Beispiel: $f(x) = \sin x$

- Minimalperiode: 2π
- 2π -periodische Funktion
- Perioden $2\pi, 4\pi, 6\pi, \ldots$

Graphisches Beispiel:



Definition: (Trigonometrisches Funktionssystem) Die Funktionen $1, \sin(nx), \cos(nx)$ für $n \in \mathbb{N}$ bilden das trigonometrische Funktionensystem $\{1, \sin(nx), \cos(nx)\}$.

Ziel:

Periodische Funktionen mit Hilfe des trigonometrischen Funktionensystems darstellen!

Bemerkung: Jede L-periodische Funktion f lässt sich durch die Transformation

$$\hat{f}(t) = f(t\frac{L}{2\pi})$$

in eine 2π -periodische Funktion \hat{f} umwandeln. (Betrachte also 2π -periodische Funktionen).

Konkret: Sei $f: \mathbb{R} \to \mathbb{R}$ eine 2π -periodische Funktion. Dann ist das Ziel, eine Darstellung

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

für geeignete $a_0, a_1, \ldots, b_1, b_2, \ldots \in \mathbb{R}$ zu finden.

Die Partialsummen (s_m) werden durch die trigonometrischen Polynome

$$s_m = \frac{a_0}{2} + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)), \quad m = 0, 1, \dots$$

definiert.

Fourier Reihe

Frage: Lässt sich ein f(x) durch geeignete Wahl von a_n,b_n darstellen als

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$
$$= \lim_{m \to \infty} \left[\frac{a_0}{2} + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)) \right]?$$

Berechnungsformel: (Fourier Analyse) Unter der Voraussetzung, dass es eine Darstellung $f(x)=\frac{ay}{2}+\sum_{n=1}^{\infty}(a_n\cos(nx)+b_n\sin(nx))$ gibt die gleichmäßig konvergiert, lassen sich die Fourier-Koeffizienten a_n, b_n berechnen durch die Fourier-Analyse:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad n = 0, 1, 2, \dots,$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \quad n = 1, 2, \dots.$

Jean Baptiste Joseph Fourier

Frage: Lässt sich ein f(x) durch geeignete Wahl von a_n, b_n darstellen als

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

$$= \lim_{m \to \infty} \left[\frac{a_0}{2} + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)) \right]?$$

Berechnungsformel: (Fourier Analyse)

Unter der Voraussetzung, dass es eine Darstellung $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ gibt die gleichmäßig konvergiert, lassen sich die Fourier-Koeffizienten a_n, b_n berechnen durch die Fourier-Analyse:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad n = 0, 1, 2, \dots,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \quad n = 1, 2, \dots$$

Jean Baptiste Joseph Fourier *1768 Auxerre †1830 Paris

Erinnerung Taylorreihe

Former Control 1

Former Contr

Periodische **Funktionen**

Different City or principal by the control of the company of the control of the c

| Section 1 | Section 1 | Section 2 | Sect

Denote by $f(x) = \frac{n_0^2}{2} + \sum_{i=1}^{\infty} a_{i+1} \cos(x) + b_i \sin(x)$ To produce $a_i, a_{i+1} = b_i$ and b_i does The Problement $(a_{i+1}, \dots, a_{i+1})$ and a_{i+1} does The Problement (a_{i+1}) and a_{i+1} and a_{i+1} does $\label{eq:alpha_sum} a_{ij} = \frac{a_{ij}}{2} + \sum_{i=1}^{23} \left[a_{ij} \sin[a_{ij}] + i a_{ij} \sin[a_{ij}] \right], \quad m = 1, i, i$

Konstruktion von Funktionenreihen

forming the service debates per a finite of a region of the service and the service of the servi

 $\begin{aligned} & \text{ is defined as } f(x) = \text{ is defined } f(y), \\ & \text{ where } f(x) = \text{ is defined as } f$

Fourier Reihe

 Frage: Lässt sich ein f(z) durch gesignete Wahl von a_0,b_0 darsteller als $f(x) = -\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) =$ $= \lim_{n\to\infty} \left[\frac{u_0}{2} + \sum_{r=1}^{\infty} (c_r, cos(nx) + \delta_r sin(nx)) \right]$

For the applicability of $X \setminus Y$). However, the property of the property of the $X \setminus Y$ is the property of the property of $X \setminus Y$ is the property of $X \setminus Y$ is the property of $X \setminus Y$ is the property of $X \setminus Y$. $\mathbf{x}_i = \int_{\mathbb{R}} \int_{\mathbb{R}} p_i \mathbf{x}_i \cdot \mathbf{x}_i \cdot \mathbf{x}_i = \mathbf{x}_i \mathbf{x}_i \dots$ $\mathbf{x}_i = \int_{\mathbb{R}} p_i \mathbf{x}_i \mathbf{x}_i \mathbf{x}_i \cdot \mathbf{x}_i = \mathbf{x}_i \mathbf{x}_i \dots$

Erinnerung Sinus/Cosiuns

 $dist = -\sum_{k=0}^{2k+1} \frac{(dx^{2k})(k)}{k!} x^k + P_{2k+2}(x)$

 $\frac{d\omega}{d\omega} = \frac{\sum_{i=1}^{N} \frac{(i-1)^{i}}{(i-1)^{i}} + (i-1)^{i}}{(i-1)^{i}} + (i-1)^{i}} + (i-1)^{i}$ $= -\frac{1}{N} \frac{(i-1)^{i}}{(i-1)^{i}} + (i-1$