13 Numerische Quadratur

Ausgangssituation: Zu berechnen sei ein bestimmtes Integral

$$I = I[f] = \int_{0}^{b} f(x) dx$$

mit einem numerischen Algorithmus.

Verwenden Numerische Quadratur (Quadraturformel) der Form

$$I[f] \approx I_n[f] = \sum_{i=0}^n g_i f(x_i)$$

mit

- Knoten $x_i \in [a, b]$, für i = 0, 1, ..., n;
- Gewichten q_i für i = 0, 1, ..., n.

176

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

13.1 Newton-Cotes Formeln

Grundidee: Verwende Interpolationspolynom p_n zu Daten

$$(x_i, f(x_i))$$
 $i = 0, 1, \dots, n$

und integriere die Interpolante

$$p_n(x) = \sum_{i=0}^n L_i(x) f(x_i) \qquad \text{mit } L_i(x) = \prod_{j=0 \atop j \neq i}^n \frac{x - x_j}{x_i - x_j}$$

Ergebnis: Quadraturformel

$$I_n[f] = \int_a^b p_n(x) dx = \sum_{i=0}^n g_i f(x_i)$$

mit Gewichten

$$g_{\mathfrak{i}} = \int_{\mathfrak{a}}^{\mathfrak{b}} L_{\mathfrak{i}}(x) \, dx \qquad \text{für } 0 \leq \mathfrak{i} \leq \mathfrak{n}.$$

Konstruktion der Newton-Cotes Formeln.

Vereinfachung: Verwenden äquidistante Knoten

$$x_i = a + ih,$$
 $0 \le i \le n,$ wobei $h = (b - a)/n.$

Ergebnis: Newton-Cotes-Quadraturformel

$$I_n[f] = \int_a^b p_n(x) dx = (b - a) \sum_{i=0}^n \alpha_{in} f(x_i)$$

mit Gewichten

$$\alpha_{in} = \frac{1}{b-a} \int_a^b \prod_{\stackrel{j=0}{j\neq i}}^n \frac{x-x_j}{x_i-x_j} dx = \frac{1}{n} \int_0^n \prod_{\stackrel{j=0}{j\neq i}}^n \frac{s-j}{i-j} ds \qquad \text{für } 0 \leq i \leq n,$$

unter Verwendung der Substitution $s=(x-\alpha)/h$.

178

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

Die Trapezregel.

Wähle n=1 und somit $x_0=a$ und $x_1=b$. Damit gilt

$$p_1(x) = \frac{x - a}{b - a} \cdot f(b) + \frac{b - x}{b - a} \cdot f(a)$$

und somit bekommt man die beiden Gewichte

$$\alpha_{01} = \int_0^1 (1-x) dx = \frac{1}{2}$$

 $\alpha_{11} = \int_0^1 x dx = \frac{1}{2}$

Daraus folgt die Trapezregel

$$I[f] \approx I_1[f] = (b-a) \cdot \frac{f(a) + f(b)}{2}.$$

Die Simpsonregel.

Wähle n = 2 und somit

$$x_0 = a$$
, $x_1 = \frac{b+a}{2}$, $x_2 = b$.

Damit bekommt man die drei Gewichte

$$\alpha_{02} = \frac{1}{4} \int_0^2 (x-1)(x-2) dx = \frac{1}{6}$$

$$\alpha_{12} = \frac{1}{2} \int_0^2 x(2-x) dx = \frac{2}{3}$$

$$\alpha_{22} = \frac{1}{4} \int_0^2 x(x-1) dx = \frac{1}{6}$$

Daraus folgt die Simpsonregel

$$I[f] \approx I_2[f] = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right).$$

180

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

Zwei weitere Newton-Cotes-Formeln.

• 3/8-Regel.

$$I_3[f] = \frac{b-a}{8} \left(f(a) + 3f\left(a + \frac{b-a}{3}\right) + 3f\left(a + 2\frac{(b-a)}{3}\right) + f(b) \right)$$

• Milne-Regel.

$$I_{4}[f] = \frac{b-a}{90} \left[7f(a) + 32f\left(a + \frac{b-a}{4}\right) + 12f\left(a + \frac{b-a}{2}\right) + 32f\left(a + 3\frac{(b-a)}{4}\right) + 7f(b) \right]$$

Übersicht: Gewichte der Newton-Cotes Formeln.

n			α_{in}			
1	1/2	1/2				Trapezregel
2	<u>1</u>	$\frac{4}{6}$	<u>1</u>			Simpson-Regel
3	<u>1</u> 8	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$		3/8-Regel
4	7 90	<u>32</u> 90	<u>12</u> 90	<u>32</u> 90	7 90	Milne-Regel

Satz:

Die Newton-Cotes-Formel $I_n[f]$ integriert Polynome vom Grad $\leq n$ exakt.

Beweis: Das Interpolationspolynom $p_n \in \mathcal{P}_n$ zu den n+1 Daten $(x_i, f(x_i))$, $0 \leq i \leq n$, rekonstruiert $f \in \mathcal{P}_n$ exakt, d.h. $f \equiv p_n$, und daher gilt

$$I[f] = I[p_n] = \int_0^b p_n(x) dx = I_n[f]$$
 für alle $f \in \mathcal{P}_n$.

182

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

Quadraturfehler der Newton-Cotes Formeln.

 $R_n[f] := I_n[f] - I[f] \text{ heißt } \underline{\textbf{Quadraturfehler}} \text{ der Quadraturformel } I_n(f).$

Erinnerung: Darstellung für den Interpolationsfehler:

$$f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \cdot \prod_{i=0}^{n} (x - x_i)$$

Beispiel: Für den Quadraturfehler der Trapezregel (n = 1) gilt

$$R_{1}[f] = \int_{a}^{b} (p_{1}(x) - f(x)) dx = -\int_{a}^{b} \frac{f^{(2)}(\xi)}{2!} (x - a)(x - b) dx$$
$$= -\frac{f^{(2)}(\tilde{\xi})}{2} \int_{a}^{b} (x - a)(x - b) dx = \frac{1}{12} f^{(2)}(\tilde{\xi})(b - a)^{3}$$

und somit gilt für $h=b-\alpha$ die Fehlerabschätzung

$$|R_1[f]| = |I_1[f] - I[f]| \le \frac{1}{12} ||f^{(2)}||_{\infty} \cdot h^3.$$

Quadraturfehler der Newton-Cotes Formeln.

n	$R_n[f]$	
1	$h^3 \frac{1}{12} f^{(2)}(\xi)$	
2	$h^5 \tfrac{1}{90} f^{(4)}(\xi)$	Simpson-Regel
3	$h^5 \frac{3}{80} f^{(4)}(\xi)$	
4	$h^7 \frac{8}{945} f^{(6)}(\xi)$	Milne-Regel

wobei jeweils

$$h = \frac{b - a}{n}.$$

184

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

Zusammengesetzte Newton-Cotes Formeln.

Ziel: Höhere Genauigkeit durch Unterteilung des Intervalls [a, b].

Gegeben sei die äquidistante Unterteilung mit den Knoten

$$t_i=a+ih \qquad i=0,1,\ldots,N, \quad h=\frac{b-a}{N}.$$

Verwende auf jedem Teilintervall $[t_i,t_{i+1}]$ Quadraturformel der Ordnung n.

Beispiel: Zusammengesetzte Trapezregel

$$\begin{split} T(h) &= \sum_{i=0}^{N-1} \frac{h}{2} \Big(f(t_i) + f(t_{i+1}) \Big) \\ &= h \left(\frac{f(\alpha)}{2} + f(\alpha+h) + \dots + f(b-h) + \frac{f(b)}{2} \right). \end{split}$$

Fehlerabschätzung zusammengesetzte Trapezregel.

Satz: Für die zusammengesetzte Trapezregel gilt die Fehlerabschätzung

$$\left| \int_{a}^{b} f(x) dx - T(h) \right| \leq \frac{h^{2}}{12} (b - a) \|f^{(2)}\|_{\infty}.$$

Beweis:

$$\begin{split} \left| \int_{a}^{b} f(x) \, dx - T(h) \right| &= \left| \sum_{j=0}^{N-1} \left(\int_{t_{j}}^{t_{j+1}} f(x) \, dx - I_{1}^{(j)}[f] \right) \right| \\ &\leq \left| \sum_{j=0}^{N-1} \left| \int_{t_{j}}^{t_{j+1}} f(x) \, dx - I_{1}^{(j)}[f] \right| \\ &\leq \left| \sum_{j=0}^{N-1} \frac{(t_{j+1} - t_{j})^{3}}{12} \|f^{(2)}\|_{\infty} \\ &\leq \frac{N}{12} h^{3} \|f^{(2)}\|_{\infty} = \frac{h^{2}}{12} (b - a) \|f^{(2)}\|_{\infty} \end{split}$$

186

Kapitel 13: Numerische Quadratur

13 NUMERISCHE QUADRATUR

Die zusammengesetzte Simpson-Regel.

Wende die Simpson-Regel auf die Teilintervalle $[t_{2i},t_{2i+2}]$ an, mit Knoten

$$t_{2i}, \quad t_{2i+1}, \quad t_{2i+2} \qquad \text{ für } 0 \leq i \leq N/2 - 1,$$

wobei N gerade. Dann bekommt man die zusammengesetzte Simpson-Regel

$$S(h) = \frac{h}{3} \sum_{i=0}^{N/2-1} (f(t_{2i}) + 4f(t_{2i+1}) + f(t_{2i+2}))$$
$$= \frac{h}{3} (f(a) + 4f(a+h) + 2f(a+2h) + \dots + 4f(b-h) + f(b))$$

Satz: Für die zusammengesetzte Simpson-Regel gilt die Fehlerabschätzung

$$\left| \int_{a}^{b} f(x) \, dx - S(h) \right| \le \frac{h^4}{180} (b - a) \|f^{(4)}\|_{\infty}$$

Beweis: analog wie bei der zusammengesetzten Trapezregel.