

Analysis II für Studierende der Ingenieurwissenschaften

Prof. Dr. Armin Iske
Fachbereich Mathematik, Universität Hamburg

Technische Universität Hamburg-Harburg Sommersemester 2014

Literaturquellen.

PRIMÄR:

- R. Ansorge, H.J. Oberle, K. Rothe, Th. Sonar:
 Mathematik für Ingenieure 1,
 4., erweiterte Auflage. WILEY-VCH, Berlin, September 2010.
- R. Ansorge, H.J. Oberle, K. Rothe, Th. Sonar:
 Aufgaben und Lösungen zu Mathematik für Ingenieure 1,
 4., erweiterte Auflage. WILEY-VCH, Berlin, September 2010.

SEKUNDÄR:

- K. Meyberg, P. Vachenauer: Höhere Mathematik, Bände 1 und 2. Springer, Berlin.
- K. Burg, H. Haf, F. Wille: Höhere Mathematik für Ingenieure, Band 1: Analysis. B.G. Teubner, Stuttgart, 1992.

Inhalte Analysis II.

- Fixpunkt-Iteration.
- Gleichmäßige Konvergenz.
- Potenzreihen.
- Elementare Funktionen.
- Interpolation.
- Integration.
- Kurven und Kurvenintegrale.
- Numerische Quadratur.
- Extrapolation.
- Periodische Funktionen, Fourier-Reihen.
- Schnelle Fourier-Transformation (FFT).

7 Fixpunkt-Iteration

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Möglichkeiten:

- Bisektionsverfahren (Intervallhalbierung)
- Newton-Verfahren,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 für $k = 0, 1, 2, ...,$

Iteratives Verfahren: Fixpunkt-Iteration mit stetiger Verfahrensfunktion Φ und Startwert x_0 , so dass

$$x_{k+1} = \Phi(x_k) \qquad \text{ für } k = 0, 1, 2, \dots$$

mit Grenzwert

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} \Phi(x_k) = \Phi\left(\lim_{k \to \infty} x_k\right) = \Phi(x^*).$$

Grundidee der Fixpunkt-Iteration.

Löse statt f(x) = 0 das Fixpunkt-Problem

$$x = \Phi(x)$$

mit der Fixpunkt-Iteration

$$x_{k+1} = \Phi(x_k)$$
 für $k = 0, 1, 2, ...$

Beispiel: Newton-Iteration. Hierbei ist

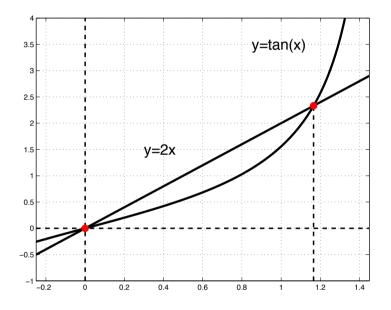
$$\Phi(\mathbf{x}) = \mathbf{x} - \frac{\mathbf{f}(\mathbf{x})}{\mathbf{f}'(\mathbf{x})}.$$

ABER: Verfahrensfunktion Φ ist im Allgemeinen nicht eindeutig!

Beispiel.

Suche im Intervall $(0, \pi/2)$ die (eindeutige) Nullstelle von

$$f(x) = 2x - \tan(x).$$



Lösungsmöglichkeiten:

- Iteration mit $x = \frac{1}{2} \tan x = \Phi_1(x)$
- Iteration mit $x = \arctan(2x) = \Phi_2(x)$

Ergebnisse der beiden Fixpunkt-Iterationen.

Betrachte Iterationen

$$x_{k+1} = \frac{1}{2} \tan(x_k)$$
 und $y_{k+1} = \arctan(2y_k)$

Wähle als Anfangsnäherung in beiden Iterationen

$$x_0 = 1.2$$
 und $y_0 = 1.2$

ullet Beide Iterationen konvergieren im Grenzwert für $k \to \infty$, aber

$$\lim_{k\to\infty} x_k = 0 \quad \text{ und } \quad \lim_{k\to\infty} y_k = 1.165561185$$

Berechne die Iterationen mittels eines Computerprogramms

Bemerkung: Die Konvergenzgeschwindigkeit hängt ab vom Abstand

$$|x_{k+1}-x_k|$$

zweier benachbarter Folgenglieder.

Definition: Sei $(V, \|\cdot\|)$ ein normierter Vektorraum. Eine Abbildung $\Phi: D \to V$, $D \subset V$, heißt Lipschitz-stetig auf D, falls eine Konstante L existiert, so dass

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in D$.

Die Konstante L nennt man Lipschitz-Konstante.

Definition: Eine Abbildung $\Phi: D \to V$, $D \subset V$, heißt kontrahierend, falls Φ Lipschitz-stetig mit Lipschitz-Konstante L < 1. Man nennt in diesem Fall L die Kontraktionskonstante von Φ .

Bemerkungen:

- Jede Lipschitz-stetige Funktion ist stetig.
- Falls die Abschätzung

$$\|\Phi(x) - \Phi(y)\| < \|x - y\|$$
 für alle $x \neq y$

gilt, so ist Φ nicht notwendigerweise kontrahierend.

Beispiel: Die Betragsfunktion $|\cdot|: \mathbb{R} \to \mathbb{R}$ ist Lipschitz-stetig auf \mathbb{R} mit L = 1.

Satz: Jede C^1 -Funktion $\Phi: [\mathfrak{a},\mathfrak{b}] \to \mathbb{R}$ ist Lipschitz-stetig auf $[\mathfrak{a},\mathfrak{b}]$ mit der Lipschitz-Konstanten

$$L = \sup\{|\Phi'(x)| : \alpha \le x \le b\}.$$

Beweis: Aus dem Mittelwertsatz folgt

$$|\Phi(x) - \Phi(y)| = |\Phi'(\xi)| |x - y| \le L|x - y| \qquad \text{für alle } x, y \in [a, b].$$

Beispiele:

- Die Sinusfunktion sin(x) ist Lipschitz-stetig auf \mathbb{R} mit L=1.
- Der Logarithmus log(x) ist Lipschitz-stetig auf $[1, \infty)$ mit L = 1.
- Die Exponentialfunktion $\exp(x)$ ist Lipschitz-stetig auf $(-\infty, 0]$ mit L = 1.
- Die Exponentialfunktion $\exp(x)$ ist **nicht** Lipschitz-stetig auf $[0, \infty)$.

Satz (Banachscher Fixpunktsatz):

Sei $(V, \|\cdot\|)$ ein vollständiger normierter Raum (Banachraum). Weiterhin sei $D \subset V$, $D \neq \emptyset$, abgeschlossen und $\Phi : D \to D$ eine kontrahierende Abbildung mit Kontraktionskonstante L < 1. Dann gelten die folgenden Aussagen:

- (a) Es gibt genau einen Fixpunkt x^* von Φ in D, d.h. $\Phi(x^*) = x^*$;
- (b) Für jeden Startwert $x_0 \in D$ konvergiert die Fixpunkt-Iteration

$$x_{k+1} = \Phi(x_k)$$
 für $k = 0, 1, 2, ...$

gegen den Fixpunkt x^* ;

(c) Es gilt die a priori-Fehlerabschätzung

$$\|x_n - x^*\| \le \frac{L^n}{1 - I} \|x_1 - x_0\|;$$

und die a posteriori-Fehlerabschätzung

$$\|x_n - x^*\| \le \frac{L}{1 - L} \|x_n - x_{n-1}\|.$$

Beweis: **(b)**: Sei $x_0 \in D$ beliebig. Dann gilt $x_k = \Phi(x_{k-1}) \in D$ für alle $k \in \mathbb{N}$. Somit ist $\{x_k\}_{k \in \mathbb{N}_0}$ eine Folge in D, wobei gilt

$$\|x_{k+1} - x_k\| = \|\Phi(x_k) - \Phi(x_{k-1})\| \le L\|x_k - x_{k-1}\|.$$

und somit

$$||x_{k+1} - x_k|| \le L^{k+1-n} ||x_n - x_{n-1}||$$
 für $k \ge n$.

Für $m \ge n \ge k$ ergibt sich daraus

$$\begin{split} \|x_m - x_n\| &= \|(x_m - x_{m-1}) + (x_{m-1} - x_{m-2}) + \ldots + (x_{n+1} - x_n)\| \\ &\leq \sum_{k=n}^{m-1} \|x_{k+1} - x_k\| \leq \left(\sum_{k=n}^{m-1} L^{k+1-n}\right) \|x_n - x_{n-1}\| \\ &\leq \left(\sum_{j=1}^{\infty} L^j\right) \|x_n - x_{n-1}\| = \frac{L}{1-L} \|x_n - x_{n-1}\|. \end{split}$$

Weiterhin

$$\|x_m - x_n\| \le \frac{L}{1 - L} \|x_n - x_{n-1}\| \le \frac{L^n}{1 - L} \|x_1 - x_0\|.$$

womit

$$\lim_{n \to \infty} \|x_m - x_n\| = \lim_{n \to \infty} \frac{L^n}{1 - L} \|x_1 - x_0\| = 0.$$

 $\{x_k\}_{k\in\mathbb{N}_0}$ ist Cauchy-Folge mit Grenzwert $x^*\in D$, d.h. $\lim_{k\to\infty}x_k=x^*$.

Wegen der Stetigkeit von Φ und mit $x_{k+1} = \Phi(x_k)$ folgt daraus $x^* = \Phi(x^*)$.

(a): Angenommen, es gäbe einen weiteren Fixpunkt $x^{**} \in D$, mit $x^* \neq x^{**}$. Dann folgt der Widerspruch

$$\|\mathbf{x}^{**} - \mathbf{x}^{*}\| = \|\Phi(\mathbf{x}^{**}) - \Phi(\mathbf{x}^{*})\| \le \mathbf{L}\|\mathbf{x}^{**} - \mathbf{x}^{*}\| < \|\mathbf{x}^{**} - \mathbf{x}^{*}\|.$$

(c): Folgt sofort mit

$$\|x^* - x_n\| = \lim_{m \to \infty} \|x_m - x_n\| \le \frac{L}{1 - L} \|x_n - x_{n-1}\| \le \frac{L^n}{1 - L} \|x_1 - x_0\|.$$

Beispiel. Berechne Fixpunkt von $\Phi(x) = 0.1 \cdot \exp(x)$ auf D = [-1, 1].

Überprüfe zunächst die Voraussetzungen des Banachschen Fixpunktsatzes:

- D ist nichtleer und abgeschlossen;
- es gilt $0 < \Phi(x) \le 0.1 \cdot e < 1$ und somit $\Phi(D) \subset D$;
- es gilt $|\Phi'(x)| = \Phi(x) \le e/10 < 1$ für alle $x \in D$;
- somit ist Φ kontrahierend auf D mit L = e/10 < 1.

Damit sind alle Voraussetzungen des Banachschen Fixpunktsatzes erfüllt.

Berechne nun den Fixpunkt $x^* \in D$ von Φ mit der Iteration $x_{k+1} = \Phi(x_k)$.

Setze $x_0 = 1$. Dann bekommt man $x_1 = 0.2718281828...$, und es gilt

$$|x_n - x^*| \le \frac{L^n}{1 - L} |x_1 - x_0|.$$

Für $\varepsilon = 10^{-6}$ bekommt man damit

$$|x_n - x^*| < \varepsilon$$
 für $n \ge 11$.

8 Potenzreihen und elementare Funktionen

8.1 Gleichmäßige Konvergenz

Definition: Sei $(f_n)_{n \in \mathbb{N}_0}$, mit $f_n : D \to \mathbb{C}$ für $D \subset \mathbb{C}^m$, eine Funktionenfolge. Dann konvergiert die Folge $(f_n)_{n \in \mathbb{N}_0}$

• punktweise gegen $f: D \to \mathbb{C}$, falls gilt

$$\lim_{n\to\infty} f_n(z) = f(z),$$
 für alle $z \in D$.

• gleichmäßig gegen $f:D\to\mathbb{C}$, falls gilt

$$\lim_{n\to\infty} \|f_n - f\|_{\infty} = 0.$$

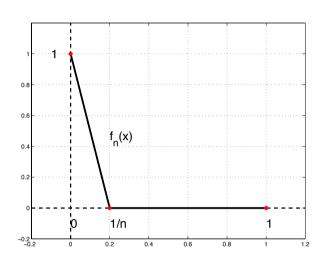
Bemerkung: Aus gleichmäßiger Konvergenz folgt punktweise Konvergenz. Die Umkehrung gilt im Allgemeinen nicht.

Gegenbeispiel. Betrachte die Folge $(f_n)_{n\in\mathbb{N}}$ stetiger Funktionen mit

$$f_n(x) = \begin{cases} 1 - nx & \text{für } 0 \le x \le 1/n, \\ 0 & \text{für } 1/n < x \le 1. \end{cases}$$

$$f "" 0 \le x \le 1/n,$$

für
$$1/n < x \le 1$$
.



Der Graph von $f_n(x)$.

Die Folge konvergiert *punktweise* gegen die *unstetige* Grenzfunktion

$$f(x) = \begin{cases} 1 & \text{für } x = 0, \\ 0 & \text{für } 0 < x \le 1. \end{cases}$$

Allerdings konvergiert $(f_n)_n$ nicht gleichmäßig gegen f, denn es gilt

$$\|f_n - f\|_{\infty} = 1$$
 für alle $n \in \mathbb{N}$.

für alle
$$\mathfrak{n} \in \mathbb{N}$$

Satz: Falls eine Folge $(f_n)_n$ stetiger Funktionen $f_n:D\to\mathbb{C}$, $D\subset\mathbb{C}^m$, gleichmäßig auf D gegen $f:D\to\mathbb{C}$ konvergiert, so ist f stetig auf D.

Beweis: Zeige die Stetigkeit von f in $z_0 \in D$. Sei dazu $\varepsilon > 0$ gegeben und n hinreichend groß, so dass

$$\|\mathbf{f}_{n} - \mathbf{f}\|_{\infty} < \varepsilon/3.$$

Wähle $\delta > 0$ hinreichend klein, so dass

$$|f_n(z) - f_n(z_0)| < \varepsilon/3$$
 für alle $||z - z_0|| < \delta$.

Dann gilt

$$|f(z) - f(z_0)| \le |f(z) - f_n(z)| + |f_n(z) - f_n(z_0)| + |f_n(z_0) - f(z_0)|$$

 $< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$

für alle $z \in D$ mit $||z - z_0|| < \delta$.

Das Majorantenkriterium von Weierstraß.

Satz: Sei $(f_n)_{n\in\mathbb{N}_0}$ eine Funktionenfolge mit $f_n:D\to\mathbb{C}$, $D\subset\mathbb{C}^m$, und gelte

$$|f_n(z)| \le b_n$$
 für alle $z \in D$ und $\sum_{n=0}^{\infty} b_n < \infty$

für eine reelle Folge $(b_n)_{n\in\mathbb{N}_0}$. Dann ist die Reihe

$$f(z) := \sum_{n=0}^{\infty} f_n(z), \qquad \text{für } z \in D,$$

gleichmäßig und absolut konvergent auf D.

Beweis: Punktweise und absolute Konvergenz folgen aus dem Majorantenkriterium für Reihen. Die gleichmäßige Konvergenz folgt mit

$$\left|\sum_{n=0}^{m} f_n(z) - f(z)\right| \leq \left|\sum_{n=m+1}^{\infty} f_n(z)\right| \leq \sum_{n=m+1}^{\infty} |f_n(z)| \leq \sum_{n=m+1}^$$

und dem Cauchy-Konvergenzkriterium für unendliche Reihen.

Folgerung: Sei $(f_n)_{n\in\mathbb{N}_0}$ eine Folge stetiger Funktionen mit $f_n:D\to\mathbb{C}$, $D\subset\mathbb{C}^m$, so dass

$$f(z) := \sum_{n=0}^{\infty} f_n(z),$$
 für $z \in D$,

gleichmässig konvergiert auf D. Dann ist f stetig auf D.

Vertauschbarkeit Differentiation und Summation.

Satz: Sei $(f_n)_n$ eine Folge differenzierbarer Funktionen $f_n:(a,b)\to\mathbb{R}$, so dass

$$f(x) := \sum_{n=0}^{\infty} f_n(x) \quad \text{ und } \quad g(x) := \sum_{n=0}^{\infty} f'_n(x), \qquad \text{ für } x \in (\mathfrak{a}, \mathfrak{b}),$$

gleichmäßig konvergent auf (a,b) sind. Dann ist die Funktion f differenzierbar auf (a,b), und es gilt f'=g, d.h.

$$\frac{d}{dx}\sum_{n=0}^{\infty}f_n(x)=\sum_{n=0}^{\infty}\frac{d}{dx}f_n(x) \qquad \textit{ für alle } x\in(a,b).$$

8.2 Potenzreihen

Definition: Eine Reihe der Form

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 mit $a_k, z_0, z \in \mathbb{C}$

heißt (komplexe) Potenzreihe zum Entwicklungspunkt $z_0 \in \mathbb{C}$.

Beispiel: Die (komplexe) Exponentialfunktion ist definiert durch die Potenzreihe

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 $z \in \mathbb{C}$.

Weiterhin: Elementare Funktionen sind über Potenzreihen definiert:

$$\log(z), \cos(z), \sin(z), \dots$$

Taylor-Reihenentwicklung.

Betrachte für $f: \mathbb{R} \to \mathbb{R}$, $f \in C^{\infty}$, die Taylor-Reihe

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 mit $x_0, x \in \mathbb{R}$.

Bemerkungen.

- Die Taylor-Reihe einer C^{∞} -Funktion ist im Allgemeinen **nicht konvergent**.
- Konvergiert die Taylor-Reihe T(x), so nicht notwendigerweise gegen f(x).
- Falls

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

so nennt man die Funktion f reell-analytisch.

Konvergenzradius einer Potenzreihe.

Satz: Zu jeder Potenzreihe

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k \qquad \text{mit } a_k, z_0, z \in \mathbb{C}$$

gibt es eine Zahl $r \ge 0$ mit den Eigenschaften

$$|z-z_0| < r \implies \sum_{k=0}^{\infty} a_k (z-z_0)^k$$
 absolut konvergent $|z-z_0| > r \implies \sum_{k=0}^{\infty} a_k (z-z_0)^k$ divergent

Die Zahl $r \ge 0$ heißt Konvergenzradius der Potenzreihe.

Die Potenzreihe konvergiert für alle ρ mit $0 \le \rho < r$ auf

$$\overline{\mathsf{K}_{\rho}(z_0)} = \{ z \in \mathbb{C} : |z - z_0| \le \rho \}$$

sogar gleichmäßig.

Beweis: Definiere

$$r := \sup \left\{ |w| : \sum_{k=0}^{\infty} a_k w^k \text{ konvergent} \right\}$$

- Dann gilt $0 \le r \le \infty$ und für $|z z_0| > r$ ist die Potenzreihe divergent.
- Gilt r = 0, so ist die Potenzreihe nur für $z = z_0$ (absolut) konvergent.
- Sei nun r > 0 und $0 < \rho < r$. Dann gibt es ein $w \in \mathbb{C}$ mit $|w| > \rho$, so dass

$$\sum_{k=0}^{\infty} a_k w^k$$

konvergiert. Insbesondere ist die Folge $(a_k w^k)_{k\geq 0}$ beschränkt, d.h. es gibt eine Schranke M>0 mit

$$\left|a_k w^k\right| \le M$$
 für alle $k \ge 0$.

Für $z \in \mathbb{C}$ mit $|z - z_0| \le \rho < |w|$ gilt somit

$$\left|a_k(z-z_0)^k\right| = \left|a_k w^k\right| \left|\frac{z-z_0}{w}\right|^k \le M \left|\frac{z-z_0}{w}\right|^k$$

und weiterhin

$$\left|\frac{z-z_0}{w}\right|^k \le \left|\frac{z-z_0}{w}\right| < 1$$
 für alle $k \ge 1$,

so dass die geometrische Reihe

$$\sum_{k=0}^{\infty} \left| \frac{z - z_0}{w} \right|^k$$

konvergiert. Mit dem Majorantenkriterium von Weierstraß konvergiert die Potenzreihe

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$

absolut und gleichmäßig für alle $z \in \mathbb{C}$ mit $|z - z_0| \leq \rho$.

Die Formel von Cauchy-Hadamard.

Satz: Den Konvergenzradius $r \ge 0$ einer Potenzreihe

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k \qquad \text{mit } a_k, z_0, z \in \mathbb{C}$$

kann man mit der Formel von Cauchy-Hadamard berechnen:

$$r = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}.$$

Beweis: Verwende hierzu das Wurzelkriterium, zusammen mit der Äquivalenz

$$\begin{aligned} \forall k \geq k_0 : \sqrt[k]{\left|a_k(z-z_0)^k\right|} \leq q < 1 &\iff \limsup_{k \to \infty} \sqrt[k]{\left|a_k(z-z_0)^k\right|} < 1 \\ &\iff \limsup_{k \to \infty} \sqrt[k]{\left|a_k\right|} \left|z-z_0\right| < 1 \\ &\iff \left|z-z_0\right| < \frac{1}{\limsup_{k \to \infty} \sqrt[k]{\left|a_k\right|}} \end{aligned} \blacksquare$$

Konvergenz von Potenzreihen.

Satz: Für eine Potenzreihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ gelten folgende Aussagen.

(a) Falls einer der beiden Grenzwerte

$$r = \lim_{k \to \infty} \frac{1}{\sqrt[k]{|a_k|}}$$
 oder $r = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$

existiert (oder falls $r = \infty$), so stimmt dieser Grenzwert mit dem Konvergenzradius der Potenzreihe überein.

(b) Differenziert man die Potenzreihe, so erhält man wiederum eine Potenzreihe,

$$f'(z) = \sum_{k=1}^{\infty} a_k k(z - z_0)^{k-1},$$

deren Konvergenzradius mit dem Konvergenzradius r der Ausgangsreihe übereinstimmt, auch im Fall r=0 oder $r=\infty$.

Beweis: Der erste Teil von (a) folgt aus der Formel von Cauchy-Hadamard.

Verwende für den zweiten Teil von (a) das Quotientenkriterium:

$$\left|\frac{a_{k+1}(z-z_0)^{k+1}}{a_k(z-z_0)^k}\right| < 1 \quad \Longleftrightarrow \quad |z-z_0| \left|\frac{a_{k+1}}{a_k}\right| < 1$$

und somit

$$\lim_{k\to\infty} \left| \frac{a_{k+1}(z-z_0)^{k+1}}{a_k(z-z_0)^k} \right| < 1 \quad \Longleftrightarrow \quad |z-z_0| < \lim_{k\to\infty} \left| \frac{a_k}{a_{k+1}} \right|$$

Zu Teil (b): Berechne den Konvergenzradius mit Cauchy-Hadamard, womit

$$\limsup_{k\to\infty} \sqrt[k]{k|\alpha_k|} = \limsup_{k\to\infty} \sqrt[k]{|\alpha_k|}$$

wegen $\sqrt[k]{k} \to 1$ für $k \to \infty$. Somit sind die Konvergenzradien der beiden Potenzreihen identisch.

Beispiele.

- Die Reihe $\sum_{k=0}^{\infty} k! z^k$ konvergiert nur für z=0, denn $(k! z^k)_{k\geq 0}$ ist für $z\neq 0$ keine Nullfolge. Der Konvergenzradius ist in diesem Fall r=0.
- Die geometrische Reihe $\sum\limits_{k=0}^{\infty}z^k$ hat den Konvergenzradius r=1.
- Die Exponentialreihe $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ hat den Konvergenzradius $r=\infty$.
- Aus der Differentiation der geometrischen Reihe $\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$ ergibt sich:

$$\frac{1}{(1-z)^2} = \sum_{k=1}^{\infty} kz^{k-1} = 1 + 2z + 3z^2 + 4z^3 + \dots \quad \text{für } |z| < 1$$

$$\frac{1}{(1-z)^3} = \frac{1}{2} \sum_{k=2}^{\infty} k(k-1)z^{k-2} = \frac{1}{2} \left(2 + 6z + 12z^2 + \dots\right) \quad \text{für } |z| < 1$$

Potenzreihenentwicklung des Logarithmus.

• Beachte: Die integrierte Potenzreihe

$$C + \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z-z_0)^{k+1}$$

besitzt den gleichen Konvergenzradius wie die Potenzreihe

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k.$$

• Anwendung: Die Integration der Potenzreihe

$$\frac{1}{1+z} = \sum_{k=0}^{\infty} (-1)^k z^k \qquad \text{für } |z| < 1.$$

liefert eine Potenzreihenentwicklung der Logarithmusfunktion

$$\log(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} \qquad \text{ für } -1 < x < 1.$$

Potenzreihenentwicklung von arctan.

• Weitere Anwendung: Integration der Potenzreihe

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k}$$
 für $-1 < x < 1$

liefert Potenzreihenentwicklung

$$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} \qquad \text{ für } -1 < x < 1.$$

Bemerkungen:

- Eine Potenzreihe ist innerhalb ihres Konvergenzkreises $K_r(z_0)$ stetig.
- Reelle Potenzreihen sind C^{∞} -Funktionen auf $(x_0 r, x_0 + r)$.
- Eine reelle Potenzreihe stimmt mit einer Taylor-Reihe überein:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \qquad \text{für } |x - x_0| < r$$

Identitätssatz und Abelscher Grenzwertsatz.

• Identitätssatz für Potenzreihen: Sind

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k \quad \text{ und } \quad \sum_{k=0}^{\infty} b_k (x - x_0)^k$$

reelle Potenzreihen, die in einem Intervall $(x_0 - \varepsilon, x_0 + \varepsilon)$ die gleiche Funktion darstellen, so gilt

$$a_k = b_k$$
 für alle $k \ge 0$.

• Abelscher Grenzwertsatz: Reelle Potenzreihen der Form

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

sind überall dort stetig, wo sie konvergieren, insbesondere in den Randpunkten ihres Konvergenzintervalls.

Beispiel.

Die Reihe

$$\log(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} \qquad \text{für } -1 < x < 1$$

konvergiert auch für x=+1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

$$\log(1+1) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} 1^{k+1}$$

gültig. Daraus folgt die Darstellung

$$\log(2) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}.$$

Rechenregeln für Potenzreihen.

Satz: Seien

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
 und $g(z) = \sum_{k=0}^{\infty} b_k z^k$

Potenzreihen mit den Konvergenzradien $r_1 > 0$ und $r_2 > 0$. Dann gilt:

(a)

$$f(z) + g(z) = \sum_{k=0}^{\infty} (a_k + b_k) z^k,$$
 für $|z| < \min(r_1, r_2);$

(b)

$$\lambda \cdot f(z) = \sum_{k=0}^{\infty} \lambda a_k z^k, \qquad ext{ für } |z| < r_1 ext{ und mit } \lambda \in \mathbb{C};$$

(c) Cauchy-Produkt für Potenzreihen

$$f(z) \cdot g(z) = \sum_{k=0}^{\infty} \left(\sum_{\ell=0}^{k} a_{\ell} b_{k-\ell}\right) z^{k}, \qquad \text{für } |z| < \min(r_1, r_2).$$

Weitere Rechenregeln für Potenzreihen.

Satz: Seien $f(z) = \sum_{k=0}^{\infty} a_k z^k$ und $g(z) = \sum_{k=0}^{\infty} b_k z^k$ Potenzreihen. Dann:

(d) Ist f(0) = 0, so läßt sich die Potenzreihe f(z) in die Potenzreihe g(z) einsetzen, d.h. es gibt ein $r_3 > 0$ und eindeutige Koeffizienten $c_k \in \mathbb{C}$ mit

$$(g \circ f)(z) = g(f(z)) = \sum_{k=0}^{\infty} c_k z^k, \qquad \text{für } |z| < r_3;$$

(e) Ist $f(0) \neq 0$, so besitzt die Funktion 1/f(z) eine Potenzreihenentwicklung, d.h. es gibt ein $r_4 > 0$ und eindeutige Koeffizienten $d_k \in \mathbb{C}$ mit

$$\frac{1}{f(z)} = \sum_{k=0}^{\infty} d_k z^k, \qquad \text{für } |z| < r_4;$$

die sich nach dem Cauchy-Produkt in (c) wie folgt rekursiv berechnen.

$$a_0 d_0 = 1, \qquad a_0 d_k = -\sum_{\ell=0}^{k-1} d_\ell a_{k-\ell}, \qquad \textit{für } k = 1, 2, \dots$$

Beispiele zu den Rechenregeln für Potenzreihen.

Beispiel 1. Wir definieren den cosinus hyperbolicus für $x \in \mathbb{R}$ mit

$$\cosh(x) = \frac{1}{2} \left(e^x + e^{-x} \right)$$

und ersetzen e^x durch die Potenzreihe $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. Dann gilt

$$\begin{aligned} \cosh(x) &= & \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{1}{k!} x^k + \sum_{k=0}^{\infty} \frac{1}{k!} (-x)^k \right) \\ &= & \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k} \qquad \text{für alle } x \in \mathbb{R}. \end{aligned}$$

Analog erhält für $x \in \mathbb{R}$ den sinus hyperbolicus mit

$$\sinh(x) = \frac{1}{2} \left(e^x - e^{-x} \right) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}, \qquad \text{für alle } x \in \mathbb{R}.$$

Beispiele zu den Rechenregeln für Potenzreihen.

Beispiel 2. Für

$$f(x) = \frac{\cos(x)}{1-x}, \qquad -1 < x < 1,$$

erhalten wir

$$\frac{\cos(x)}{1-x} = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}\right) \cdot \left(\sum_{\ell=0}^{\infty} x^{\ell}\right)
= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} \mp \dots\right) \cdot \left(1 + x + x^2 + \dots\right)
= 1 + x + \left(1 - \frac{1}{2!}\right) x^2 + \left(1 - \frac{1}{2!}\right) x^3
+ \left(1 - \frac{1}{2!} + \frac{1}{4!}\right) x^4 + \dots \qquad \text{für } -1 < x < 1.$$

Beispiele zu den Rechenregeln für Potenzreihen.

Beispiel 3. Wir setzen

$$g(x) = \frac{x}{e^x - 1}$$

Dabei lautet die Potenzreihe des Nenners

$$e^{x}-1=\sum_{k=0}^{\infty}\frac{1}{(k+1)!}\,x^{k+1},\qquad ext{für }x\in\mathbb{R}.$$

Zur Potenzreihenentwicklung von g(x) verwenden wir den Ansatz

$$g(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k,$$
 für $x \in R$,

und damit gilt

$$1 = \frac{e^{x} - 1}{x} \cdot g(x) = \left(\sum_{k=0}^{\infty} \frac{1}{(k+1)!} x^{k}\right) \cdot \left(\sum_{\ell=0}^{\infty} \frac{B_{\ell}}{\ell!} x^{\ell}\right)$$

Fortsetzung von Beispiel 3.

$$1 = \left(\sum_{k=0}^{\infty} \frac{1}{(k+1)!} x^k\right) \cdot \left(\sum_{\ell=0}^{\infty} \frac{B_{\ell}}{\ell!} x^{\ell}\right) = \sum_{k=0}^{\infty} \left(\sum_{\ell=0}^{k} \frac{B_{\ell}}{\ell!(k-\ell+1)!}\right) x^k.$$

Koeffizientenvergleich ergibt

$$\sum_{\ell=0}^k \frac{B_\ell}{\ell!(k-\ell+1)!} = \begin{cases} 1 & \text{für } k=0; \\ 0 & \text{für } k>0. \end{cases}$$

Damit bekommt man

$$B_0 = 1, \qquad B_k = -\sum_{\ell=0}^{k-1} \frac{k!}{\ell!(k-\ell+1)!} \ B_\ell \qquad \text{für } k = 1, 2, \dots.$$

Die Zahlen B_k nennt man Bernoullische Zahlen:

$$B_0 = 1$$
, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$, $B_5 = 0$, $B_6 = \frac{1}{42}$,...,

8.3 Elementare Funktionen

Die Exponentialfunktion ist für $z\in\mathbb{C}$ definiert durch

$$\exp(z) := \sum_{k=0}^{\infty} \frac{1}{k!} z^k,$$

hat Konvergenzradius $r = \infty$, und daher ist exp(z) für alle $z \in \mathbb{C}$ stetig.

Für reelle Argumente ist $\exp:\mathbb{R}\to\mathbb{R}$ unendlich oft differenzierbar mit

$$\frac{\mathrm{d}}{\mathrm{d}x} \exp(x) = \exp(x), \qquad \exp(0) = 1.$$

Anfangswertproblem für gewöhnliche Differentialgleichung.

Suche zu $a \in \mathbb{R}$ eine Funktion y(x) mit

$$y'(x) = a \cdot y(x), \quad y(x_0) = y_0$$

Die (eindeutige) Lösung dieses Anfangswertproblems ist gegeben durch

$$y(x) = y_0 \cdot \exp(\alpha \cdot (x - x_0)).$$

Eigenschaften der Exponentialfunktion.

Funktionalgleichung: Es gilt

$$\exp(z+w) = \exp(z) \cdot \exp(w)$$
 für alle $z, w \in \mathbb{C}$.

Folgerung: Für die Exponentialfunktion gilt:

- (a) $\exp(z) \neq 0$ für alle $z \in \mathbb{C}$;
- (b) $\exp(-z) = 1/\exp(z)$ für alle $z \in \mathbb{C}$;
- (c) $\exp(x) > 0$ für alle $x \in \mathbb{R}$;
- (d) Asymptotisches Verhalten für $x \to \pm \infty$:

$$\lim_{x \to +\infty} \exp(x) = \infty, \quad \text{und} \quad \lim_{x \to -\infty} \exp(x) = 0$$

Beweis: (a),(b): Mit Funktionalgleichung gilt $\exp(z) \cdot \exp(-z) = \exp(0) = 1$.

- (c): exp(x) ist stetig, hat keine Nullstelle, und es gilt exp(0) = 1.
- (d): Für x > 0 gilt $\exp(x) > 1 + x \to \infty$, $x \to \infty$.

Mit $\exp(x) \cdot \exp(-x) = 1$ folgt daraus $\lim_{x \to \infty} \exp(-x) = 0$.

Weitere Eigenschaften der Exponentialfunktion.

Satz: Für die Exponentialfunktion gilt weiterhin:

(e)

$$\lim_{x\to\infty} \frac{x^n}{\exp(x)} = 0 \qquad \text{ für alle } n \in \mathbb{N}.$$

- (f) $\exp : \mathbb{R} \to \mathbb{R}$ ist streng monoton wachsend mit $\exp(\mathbb{R}) = (0, \infty)$.
- (g) Für die Eulersche Zahl $e := \exp(1)$ gilt:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$e = 2.718281828459045235360287...$$

Die Eulersche Zahl e ist eine irrationale Zahl.

(h) Es gilt $\exp(q \cdot x) = (\exp(x))^q$ für alle $q \in \mathbb{Q}$ und $x \in \mathbb{R}$.

Beweise zu den weiteren Eigenschaften von exp.

Beweis: (e): Mit der Regel von l'Hospital gilt

$$\lim_{x\to\infty} \frac{x^n}{\exp(x)} = \lim_{x\to\infty} \frac{nx^{n-1}}{\exp(x)} = \dots = \lim_{x\to\infty} \frac{n!}{\exp(x)} = 0.$$

(f): folgt zusammen mit Eigenschaften (c),(d) aus

$$\frac{\mathrm{d}}{\mathrm{d}x}\exp(x) = \exp(x) > 0$$

(g): Folgt mit

$$\left(1 + \frac{1}{n}\right)^n = \exp\left(n \cdot \log\left(1 + \frac{1}{n}\right)\right)$$

und der Regel von l'Hospital für

$$\lim_{n\to\infty} n \cdot \log\left(1+\frac{1}{n}\right) = \lim_{x\searrow 0} \frac{\log(1+x)}{x} = \lim_{x\searrow 0} \frac{1}{1+x} = 1.$$

(h): Es gilt $\exp(nz) = (\exp(z))^n$ für $n \in \mathbb{N}$. Somit gilt $\exp(x/m) = \sqrt[m]{\exp(x)}$ für $m \in \mathbb{N}$ sowie $\exp(\frac{n}{m}x) = (\exp(x))^{n/m}$ für $n, m \in \mathbb{N}$.

Der natürliche Logarithmus.

Da die Exponentialfunktion auf \mathbb{R} streng monoton wachsend ist, besitzt

$$\exp: \mathbb{R} \to (0, \infty)$$

eine eindeutige Umkehrfunktion,

$$\log:(0,\infty)\to\mathbb{R}$$
.

Diese Umkehrfunktion nennt man den natürlichen Logarithmus.

Eigenschaften des natürlichen Logarithmus:

- (a) $\log : (0, \infty) \to \mathbb{R}$ ist streng monoton wachsend und stetig.
- (b) Es gilt: $\lim_{x\to 0+}\log(x)=-\infty$ und $\lim_{x\to \infty}\log(x)=\infty$.
- (c) Es gilt die Funktionalgleichung

$$\log(x \cdot y) = \log(x) + \log(y)$$
 für alle $x, y > 0$.

Weitere Eigenschaften des Logarithmus.

(d) Potenz:

Analysis II

$$\log(x^q) = q \cdot \log(x)$$
 für alle $x > 0$, $q \in \mathbb{Q}$.

(e) Spezielle Funktionswerte:

$$\log(1) = 0 \quad \text{und} \quad \log(e) = 1$$

(f) Der natürliche Logarithmus ist auf $(0, \infty)$ differenzierbar mit

$$\frac{\mathrm{d}}{\mathrm{d}x}\log(x) = \frac{1}{x}$$
 für alle $x > 0$.

(g) Es gilt die Potenzreihenentwicklung

$$\log(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} \qquad \text{ für } -1 < x < 1.$$

Die allgemeine Potenzfunktion.

Für $\alpha > 0$ und $q \in \mathbb{Q}$ hatten wir:

$$a^{q} = \exp(q \cdot \log(a))$$

Wir definieren daher allgemeine Potenzen wie folgt.

$$a^z := \exp(z \cdot \log(a))$$
 für $a > 0, z \in \mathbb{C}$.

Eigenschaften der allgemeinen Potenzfunktion.

- (a) Die Funktion $f(x) = a^x$ ist auf $\mathbb R$ streng monoton wachsend für a>1 und streng monoton fallend für $0<\alpha<1$.
- (b) Es gilt

$$a^{0} = 1, \quad a^{1} = a, \quad a^{-x} = \frac{1}{a^{x}},$$

sowie

$$a^x \cdot a^y = a^{x+y}, \quad (a^x)^y = a^{xy}.$$

Weitere Eigenschaften der allgemeinen Potenz.

(c) Für $\alpha \neq 1$ besitzt $y = \alpha^x$ eine Umkehrfunktion

$$y(x) = \log_{\alpha}(x)$$

den Logarithmus zur Basis a, wobei gilt

$$\log_{\alpha}(x) = \frac{\log(x)}{\log(\alpha)} \qquad \text{für } x > 0.$$

(d) Es gelten die Differentiationsregeln

$$\frac{\mathrm{d}}{\mathrm{d}x}(\alpha^x) = \log(\alpha) \cdot \alpha^x \qquad \text{für } x \in \mathbb{R}, \ \alpha > 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^{\mathrm{a}}) = \mathrm{a} \cdot x^{\mathrm{a}-1}$$
 für $\mathrm{a} \in \mathbb{R}, \, x > 0$

$$\frac{\mathrm{d}}{\mathrm{d}x}(\log_{\alpha}x) = \frac{1}{x \cdot \log(\alpha)} \quad \text{für } x, \alpha > 0.$$

Verallgemeinerung des binomischen Lehrsatzes.

Satz: Es gilt

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {a \choose k} x^k$$
 für $\alpha \in \mathbb{R}, -1 < x < 1,$

mit

$$\binom{a}{k} := \frac{1}{k!} \prod_{j=0}^{k-1} (a-j) \qquad \text{für } k \ge 0.$$

Beweisidee: Rechte Seite löst Differentialgleichung $(1 + x)g'(x) = a \cdot g(x)$.

Spezialfälle. Für -1 < x < 1 gelten die Entwicklungen

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 \pm \dots$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 \mp \dots$$

Die trigonometrischen Funktionen.

Wir setzen für $z \in \mathbb{C}$,

$$\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$

$$\cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

Die Funktionen sin und cos besitzen jeweils Konvergenzradius $r=\infty$, sind somit auf ganz $\mathbb C$ erklärt und dort stetig.

Eigenschaften:

(a) sin ist eine ungerade, cos eine gerade Funktion, d.h. es gilt

$$\sin(-z) = -\sin(z)$$
 und $\cos(-z) = \cos(z)$ für alle $z \in \mathbb{C}$.

(b) Weiterhin gilt: sin(0) = 0 und cos(0) = 1.

Eigenschaften der trigonometrischen Funktionen.

(c) Es gilt:

$$\begin{array}{rcl} e^{\mathrm{i}z} & = & \cos(z) + \mathrm{i}\sin(z) & \mathrm{und} & e^{-\mathrm{i}z} = \cos(z) - \mathrm{i}\sin(z) \\ & \sin(z) & = & \frac{1}{2\mathrm{i}} \left(e^{\mathrm{i}z} - e^{-\mathrm{i}z} \right) = \left(\sin(x) \cosh(y) \right) + \mathrm{i}(\cos(x) \sinh(y)) \\ & \cos(z) & = & \frac{1}{2} \left(e^{\mathrm{i}z} + e^{-\mathrm{i}z} \right) = \left(\cos(x) \cosh(y) \right) - \mathrm{i}(\sin(x) \sinh(y)) \\ & \sin^2(z) + \cos^2(z) & = & 1. \end{array}$$

(d) Es gelten die Funktionalgleichungen

$$\sin(u + v) = \sin(u)\cos(v) + \cos(u)\sin(v),$$

$$\cos(u + v) = \cos(u)\cos(v) - \sin(u)\sin(v).$$

(e) Für die *reellen* Ableitungen bekommt man

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(x) = \cos(x)$$
 und $\frac{\mathrm{d}}{\mathrm{d}x}\cos(x) = -\sin(x)$.

Tangens- und Kotangensfunktion.

Wir setzen für $z \in \mathbb{C}$,

$$an(z) := rac{\sin(z)}{\cos(z)} \qquad ext{für } z
eq rac{\pi}{2} + k\pi, k \in \mathbb{Z},$$
 $\cot(z) := rac{\cos(z)}{\sin(z)} \qquad ext{für } z
eq k\pi, k \in \mathbb{Z}.$

Eigenschaften:

- (a) tan und cot sind π -periodische, ungerade Funktionen.
- (b) Es gilt

$$\tan(z) = -\mathrm{i}\frac{e^{\mathrm{i}z} - e^{-\mathrm{i}z}}{e^{\mathrm{i}z} + e^{-\mathrm{i}z}} \qquad \text{für } z \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z},$$

$$\cot(z) = \mathrm{i}\frac{e^{\mathrm{i}z} + e^{-\mathrm{i}z}}{e^{\mathrm{i}z} - e^{-\mathrm{i}z}} \qquad \text{für } z \neq k\pi, k \in \mathbb{Z}.$$

Reihen-Entwicklung von Tangens und Kotangens.

Es gelten die Reihen-Entwicklungen

$$\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \frac{17}{315}z^7 + \dots$$

$$= \sum_{k=1}^{\infty} \frac{2^{2k}(2^{2k} - 1)}{(2k)!} |B_{2k}| z^{2k-1} \qquad \text{für } |z| < \frac{\pi}{2}$$

$$\cot(z) = \frac{1}{z} - \frac{z}{3} - \frac{1}{45}z^3 - \frac{2}{945}z^5 - \frac{1}{4725}z^7 - \dots$$

$$= \frac{1}{z} - \sum_{k=1}^{\infty} \frac{2^{2k}}{(2k)!} |B_{2k}| z^{2k-1} \qquad \text{für } 0 < |z| < \pi$$

mit den Bernoullischen Zahlen B_{2k}.

Reelle Ableitungen: Im jeweiligen Definitionsbereich gilt

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan(x) = \frac{1}{\cos^2(x)} \quad \text{und} \quad \frac{\mathrm{d}}{\mathrm{d}x}\cot(x) = -\frac{1}{\sin^2(x)}.$$

Hyperbolische Funktionen.

Für $z \in \mathbb{C}$ definieren wir

$$cosh(z) := \frac{1}{2} (e^z + e^{-z})$$

$$sinh(z) := \frac{1}{2} (e^z - e^{-z})$$

mit den entsprechenden Potenzreihenentwicklungen

$$\cosh(z) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} z^{2k} \quad \text{für } z \in \mathbb{C},$$

$$\sinh(z) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} z^{2k+1} \quad \text{für } z \in \mathbb{C}.$$

Eigenschaften der hyperbolischen Funktionen.

(a) Die Funktion cosh ist gerade und sinh ist ungerade, d.h. es gilt

$$\cosh(-z) = \cosh(z)$$
 und $\sinh(-z) = -\sinh(z)$ für alle $z \in \mathbb{C}$.

(b) Für die Ableitungen der hyperbolischen Funktionen gilt

$$\frac{d}{dx} \cosh(x) = \sinh(x)$$

$$\frac{d}{dx} \sinh(x) = \cosh(x)$$

(c) Es gelten die Funktionalgleichungen

$$sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)$$

 $cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)$

(d) Es gilt die algebraische Relation

$$\cosh^2(x) - \sinh^2(x) = 1. \qquad \Box$$

Inverse hyperbolische Funktionen, Areafunktionen.

Die Funktion sinh ist streng monoton wachsend auf \mathbb{R} , die Funktion cosh ist streng monoton wachsend auf $[0, \infty)$.

Die jeweiligen Umkehrfunktionen bezeichnen wir mit arcosh und arsinh.

Es gilt

$$\label{eq:arsinh} \begin{aligned} & \text{arsinh}(\mathbf{x}) &= & \log\left(x + \sqrt{x^2 + 1}\right) & \text{für } \mathbf{x} \in \mathbb{R} \\ & \text{arcosh}(\mathbf{x}) &= & \log\left(x + \sqrt{x^2 - 1}\right) & \text{für } \mathbf{1} \le x < \infty \end{aligned}$$

sowie

$$\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{arsinh}(x) = \frac{1}{\sqrt{x^2 + 1}} \qquad \text{für } x \in \mathbb{R}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \operatorname{arcosh}(x) = \frac{1}{\sqrt{x^2 - 1}} \qquad \text{für } 1 \le x < \infty$$

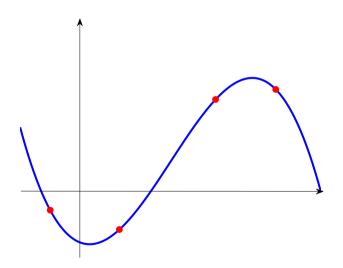
9 Interpolation

9.1 Problemstellung

Gegeben: Diskrete Werte einer Funktion $f : \mathbb{R} \to \mathbb{R}$ an n + 1 Stützstellen

$$x_0 < x_1 < ... < x_n$$
.

Eingabedaten: $(x_0, f_0), (x_1, f_1), \cdots, (x_n, f_n).$

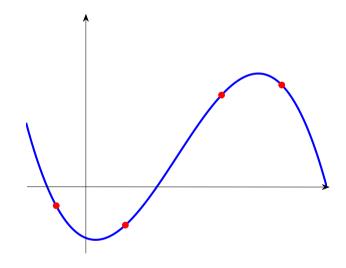


Gegebene Daten (x_j, f_j) .

Gesucht: Einfache Funktion $p : \mathbb{R} \to \mathbb{R}$, die die Daten interpoliert, d.h.

$$p(x_i) = f_i$$
 für alle $i = 0, 1, ..., n$,

z.B.: p Polynom, trigonometrisches Polynom, rationale Funktion.



Gegebene Daten (x_j, f_j) .

Fragen:

- Gibt es so ein p? Falls ja, ist p eindeutig?
- Wie sieht die Lösung p aus und wie berechnet man p?

Klassische Polynom-Interpolation.

Bestimme ein Polynom (höchstens) n-ten Grades

$$p_n(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n,$$

das die gegebenen Daten interpoliert, so dass $p_n(x_i) = f_i$, $0 \le i \le n$.

Erster Lösungsansatz: Die Interpolationsbedingungen ergeben lineares System

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \dots + a_{n}x_{0}^{n} = f_{0}$$

$$a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \dots + a_{n}x_{1}^{n} = f_{1}$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \dots + a_{n}x_{n}^{n} = f_{n}$$

Setze:

$$X = \{x_0, \dots, x_n\}, \ f\big|_X = (f_0, \dots, f_n)^\mathsf{T} \in \mathbb{R}^{n+1} \ \text{und} \ \mathfrak{a} = (\mathfrak{a}_0, \dots, \mathfrak{a}_n)^\mathsf{T} \in \mathbb{R}^{n+1}.$$

Vandermonde-Matrix.

Die Koeffizientenmatrix des linearen Systems

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix},$$

kurz

$$V \cdot a = f|_X$$

heißt Vandermonde-Matrix.

Satz: Für die Determinante der Vandermonde-Matrix $V \equiv V(x_0, \dots, x_n)$ gilt

$$\det(V) = \prod_{0 \le i < j \le n} (x_j - x_i).$$

Beweis: Durch vollständige Induktion über n.

Induktionsanfang: n = 1: $det(V(x_0, x_1)) = x_1 - x_0$.

Induktionsschritt: $n-1 \rightarrow n$.

$$\det (V(x_0,\ldots,x_n))$$

$$= \det \begin{bmatrix} 1 & x_0 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1 & \cdots & x_1^{n-1} & x_1^n \\ \vdots & & & \vdots & \\ 1 & x_n & \cdots & x_n^{n-1} & x_n^n \end{bmatrix} = \det \begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 0 & x_1 - x_0 & \cdots & x_1^n - x_0^n \\ \vdots & & & \vdots \\ 0 & x_n - x_0 & \cdots & x_n^n - x_0^n \end{bmatrix}$$

$$= \det \left[\begin{array}{cccc} x_1 - x_0 & \cdots & x_1^n - x_0^n \\ \vdots & & \vdots \\ x_n - x_0 & \cdots & x_n^n - x_0^n \end{array} \right] = \det \left[\begin{array}{cccc} x_1 - x_0 & x_1^2 - x_0 x_1 & \cdots & x_1^n - x_0 x_1^{n-1} \\ \vdots & & & \vdots \\ x_n - x_0 & x_n^2 - x_0 x_n & \cdots & x_n^n - x_0 x_n^{n-1} \end{array} \right]$$

$$= (x_1 - x_0) \cdots (x_n - x_0) \cdot \det (V(x_1, \dots, x_n)) = \prod_{0 \le i < j \le n} (x_j - x_i). \quad \blacksquare$$

Existenz und Eindeutigkeit der Interpolation.

Folgerung: Falls Stützstellen x_0, \ldots, x_n paarweise verschieden, so ist V regulär.

Satz: Zu paarweise verschiedenen Stützstellen

$$X = \{x_0, x_1, \dots, x_n\} \subset \mathbb{R}$$

und Funktionswerten

$$f_0, f_1 \dots, f_n \in \mathbb{R}$$

gibt es genau ein interpolierendes Polynom pn vom Höchstgrad n mit

$$p_n(x_i) = f_i$$
 für alle $0 \le i \le n$.

ABER: Wir berechnen die Lösung **nicht** über das lineare System $V \cdot a = f|_X$.

DENN: Dies ist zu teuer und instabil.

9.2 Interpolationsformeln nach Lagrange und Newton

Lagrange-Darstellung.

Definieren Lagrange-Polynome

$$\begin{array}{ll} L_{j}(x) & := & \frac{(x-x_{0})\cdot\ldots\cdot(x-x_{j-1})\cdot(x-x_{j+1})\cdot\ldots\cdot(x-x_{n})}{(x_{j}-x_{0})\cdot\ldots\cdot(x_{j}-x_{j-1})\cdot(x_{j}-x_{j+1})\cdot\ldots\cdot(x_{j}-x_{n})} \\ \\ & = & \prod_{\stackrel{i=0}{i\neq j}}^{n}\frac{x-x_{i}}{x_{j}-x_{i}} \quad \text{für } 0\leq j\leq n. \end{array}$$

Dann ist L_i ein Polynom vom Grad n, und es gilt

$$L_j(x_i) = \left\{ \begin{array}{ll} 1 & \text{ für } i = j \\ 0 & \text{ für } i \neq j \end{array} \right. \quad \text{ für } 0 \leq i, j \leq n.$$

Lösung mit der Lagrange-Darstellung.

Die Interpolationsaufgabe

$$p_n(x_i) = f_i$$
 für alle $0 \le i \le n$

wird gelöst durch das (eindeutige) Polynom

$$p_n(x) = f_0 L_0(x) + ... + f_n L_n(x) = \sum_{i=0}^n f_i L_i(x).$$

Die obige Darstellung von p_n heißt Lagrange-Darstellung.

Beispiel. Betrachte die Daten

Dann sieht die zugehörige Lagrange-Basis wie folgt aus.

$$\begin{array}{lll} L_0(x) & = & \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} & L_1(x) & = & \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)} \\ L_2(x) & = & \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} & L_3(x) & = & \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)} \end{array}$$

Das interpolierende kubische Polynom p_3 besitzt die Darstellungen

$$p_3(x) = 4 \cdot L_2(x) + 18 \cdot L_3(x)$$

$$= -4 \cdot \frac{x(x-1)(x-3)}{2} + 18 \cdot \frac{x(x-1)(x-2)}{6}$$

$$= x^3 - x^2.$$

Auswertung von Interpolationspolynomen.

Für $0 \le j \le k \le n$ bezeichne p_{kj} das eindeutige Interpolationspolynom vom Höchstgrad j zu den Daten

$$(x_{k-j}, f_{k-j}), \ldots, (x_k, f_k),$$

d.h. es gilt

$$p_{kj}(x_{\ell}) = f_{\ell},$$
 für alle $k - j \le \ell \le k$.

Dann lassen sich für ein festes $x \in \mathbb{R}$ die Werte $p_{kj}(x)$ rekursiv berechnen.

Lemma (AITKEN): Es gilt die Rekursion

$$p_{k0}(x) = f_k$$

$$p_{kj}(x) = p_{k,j-1}(x) + \frac{x - x_k}{x_{k-j} - x_k} (p_{k-1,j-1}(x) - p_{k,j-1}(x)) \quad \text{ für } j \ge 0.$$

Beweis: Vollständige Induktion über j.

Induktionsanfang: Für j = 0 ist p_{k0} konstant mit $p_{k0} \equiv f_k$.

Induktionsschritt: $j-1 \rightarrow j$: Die rechte Seite der Rekursion,

$$q(x) = p_{k,j-1}(x) + \frac{x - x_k}{x_{k-j} - x_k} (p_{k-1,j-1}(x) - p_{k,j-1}(x))$$

ist ein Polynom vom Höchstgrad j.

Weiterhin interpoliert $p_{k,j-1}$ nach Induktionsvoraussetzung die Daten

$$(x_{k-j+1}, f_{k-j+1}), \ldots, (x_k, f_k),$$

und $p_{k-1,j-1}$ interpoliert die Daten

$$(x_{k-j}, f_{k-j}), \ldots, (x_{k-1}, f_{k-1}).$$

Daraus folgt mit der Rekursion, dass das Polynom q die Daten

$$(x_{k-j}, f_{k-j}), \ldots, (x_k, f_k)$$

interpoliert, genauso wie p_{kj} . Wegen der Eindeutigkeit gilt $q \equiv p_{kj}$.

Algorithmus von Neville-Aitken.

Ziel: Rekursive Berechnung von $p_{nn}(x)$ für $x \in \mathbb{R}$ in Dreiecksschema:

Besser: Effiziente Auswertung in Datenvektor $f = (f_0, f_1, \dots, f_n)$:

$$f_0 = f_0(x)$$
 $f_1 = f_1(x)$ $f_0(x)$
 $f_2 = f_2(x)$ $f_1(x)$ $f_0(x)$
 \vdots \vdots \vdots \ddots
 $f_n = f_n(x)$ $f_{n-1}(x)$ $f_{n-2}(x)$ \cdots $f_0(x)$

Implementierung als Matlab-Funktion.

INPUT:

```
x = (x(1), x(2), ..., x(n)) % Stuetzstellen
f = (f(1), f(2), ..., f(n)) % Funktionswerte
                           % Auswertungsstelle
У
function p = neville(x,f,y)
n = length(x);
for k=2:n
  z = y-x(k);
  for i=k-1:-1:1
    f(i) = f(i+1) + z/(x(i)-x(k))*(f(i)-f(i+1));
  end;
end;
p = f(1);
```


Newton-Darstellung. Betrachte die Newton-Basis

$$\omega_{\mathfrak{i}}(x) = \prod_{j=0}^{\mathfrak{i}-1} (x-x_{\mathfrak{j}}), \qquad \text{ für } 0 \leq \mathfrak{i} \leq \mathfrak{n}.$$

Dann gibt es eindeutige Newton-Koeffizienten $c_0, c_1, \ldots, c_n \in \mathbb{R}$ mit

$$p_{n}(x) = \sum_{i=0}^{n} c_{i} \omega_{i}(x)$$

$$= c_{0} + c_{1}(x - x_{0}) + \dots + c_{n}(x - x_{0}) \cdots (x - x_{n-1}).$$

Die obige Darstellung von p_n heißt Newton-Darstellung.

Beachte: Es gilt:

$$p_n(x_0) = c_0$$

 $p_n(x_1) = c_0 + c_1(x_1 - x_0)$
 $p_n(x_2) = c_0 + c_1(x_2 - x_0) + c_2(x_2 - x_0)(x_2 - x_1)$
 \vdots \vdots

Berechnung der Newton-Koeffizienten.

Beachte: Aus den Interpolationsbedingungen folgt

$$p_{n}(x_{0}) = c_{0} \stackrel{!}{=} f_{0} \implies c_{0} = f_{0}$$

$$p_{n}(x_{1}) = c_{0} + c_{1}(x_{1} - x_{0}) \stackrel{!}{=} f_{1} \implies c_{1} = \frac{f_{1} - f_{0}}{x_{1} - x_{0}}$$

$$\vdots = \vdots$$

$$p_{n}(x_{n}) = \sum_{i=0}^{n} c_{i} \prod_{j=0}^{i-1} (x_{n} - x_{j})$$

$$= c_{0} + c_{1}(x_{n} - x_{0}) + \dots + c_{n}(x_{n} - x_{0})(x_{n} - x_{1}) \cdots (x_{n} - x_{n-1})$$

$$\stackrel{!}{=} f_{n}$$

mit

$$c_{n} = \left(f_{n} - \sum_{j=0}^{n-1} c_{j} \prod_{i=0}^{j-1} (x_{n} - x_{i})\right) / \prod_{j=0}^{n-1} (x_{n} - x_{j}).$$

Beobachtungen.

• Zur Berechnung von c_i benötigt man nur die ersten (i + 1) Daten

$$(x_0, f_0), (x_1, f_1), \ldots, (x_j, f_j).$$

Notation:

$$c_j = f[x_0, x_1, \dots, x_{j-1}, x_j]$$
 für $j = 0, 1, \dots, n$

• Nimmt man ein Datum (x_{n+1}, f_{n+1}) hinzu, so gilt:

$$p_{n+1}(x) = p_n(x) + c_{n+1} \prod_{i=0}^{n} (x - x_i)$$

mit

$$c_{n+1} = (f_{n+1} - p_n(x_{n+1})) / \prod_{j=0}^{n} (x_{n+1} - x_j).$$

Dividierte Differenzen.

Satz: Die Koeffizienten

$$c_j = f[x_0, x_1, \dots, x_j], \qquad 0 \le j \le n,$$

des interpolierenden Newton-Polynoms

$$p_{n}(x) = \sum_{i=0}^{n} c_{i} \omega_{i}(x)$$

sind gegeben durch die dividierten Differenzen

$$\begin{array}{lcl} f[x_j] & = & f_j \\ \\ f[x_i, x_{i+1}, \dots, x_{i+k}] & = & \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}. \end{array}$$

Beweis: Mit Aitken-Lemma.

Effiziente Berechnung der dividierten Differenzen.

Beispiel: Rekursives Berechnungsschema der dividierten Differenzen für n=3.

Zum Beispiel:

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f_1 - f_0}{x_1 - x_0}$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{1}{x_3 - x_1} \left(\frac{f_3 - f_2}{x_3 - x_2} - \frac{f_2 - f_1}{x_2 - x_1} \right)$$

Der Interpolationsfehler. Für das Interpolationspolynom gilt

$$\epsilon(x) = f(x) - p_n(x)
= f(x) - \left(p_{n+1}(x) - c_{n+1} \prod_{i=0}^{n} (x - x_i)\right)
= f[x_0, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i).$$

Satz: Sei $f \in C^{n+1}([a,b])$. Dann gibt es ein $\xi \in [a,b]$ mit

$$f[x_0,\ldots,x_{n+1}]=\frac{1}{(n+1)!}f^{(n+1)}(\xi).$$

Folgerung: Für den Interpolationsfehler gilt die Abschätzung

$$|f(x) - p_n(x)| \le \frac{1}{(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)| \cdot \left| \prod_{i=0}^n (x - x_i) \right|.$$

Tschebyscheff-Knoten.

Beachte: Ein Term des Interpolationsfehlers ist das Knotenpolynom

$$\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$

Optimierungsproblem: Bestimme die Knoten x_0, x_1, \ldots, x_n , so dass

$$\max_{x_0,...,x_n\in[a,b]}\left|\prod_{i=0}^n(x-x_i)\right|$$

minimal auf [a, b].

Lösung: Für das Intervall [-1, 1] sind die Tschebyscheff-Knoten optimal.

$$x_j = \cos\left(\frac{2j+1}{2n+2}\pi\right) \qquad j = 0, 1, \dots, n.$$

Polynominterpolation mit Matlab.

Die Matlab-Funktion polyfit

$$a = polyfit(x,f,n-1);$$

berechnet die Koeffizienten

$$a = (a(1), a(2), ..., a(n));$$

des Interpolationspolynoms

$$p(x) = a(1)*x^{(n-1)} + a(2)*x^{(n-2)} + ... + a(n-1)*x + a(n);$$

zu den Daten

```
x = (x(1), x(2), ..., x(n));

f = (f(1), f(2), ..., f(n));
```

Polynome kann man mit der Matlab-Funktion polyval auswerten.

9.3 Spline-Interpolation

Sei Δ_n eine Unterteilung des Intervalls [a, b]:

$$\Delta_n$$
: $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$

mit Teilintervallen $[x_{j-1}, x_j]$, j = 1, ..., n.

Definition: Eine Funktion $S : [a, b] \to \mathbb{R}$ heißt kubischer Spline, falls

- $S \in C^2([a,b])$, d.h. S ist zweimal stetig differenzierbar auf [a,b];
- S ist auf jedem Teilintervall $[x_{j-1}, x_j]$, $1 \le j \le n$, ein kubisches Polynom:

$$S(x)|_{[x_{j-1},x_{j}]} \equiv s_{j}(x) = a_{j} + b_{j}(x-x_{j-1}) + c_{j}(x-x_{j-1})^{2} + d_{j}(x-x_{j-1})^{3}.$$

Ziel: Interpolation der Daten (x_j, f_j) , $0 \le j \le n$, mit einem kubischen Spline S, so dass

$$S(x_j) = f(x_j),$$
 für $0 \le j \le n.$

Interpolation mit kubischen Splines.

Beobachtungen:

- Ein kubischer Spline besitzt 4n Parameter, die wie folgt bestimmt werden.
 - Interpolationseigenschaft:

$$s_j(x_{j-1}) = f_{j-1}$$
 und $s_j(x_j) = f_j$ für alle $1 \le j \le n$;

• Stetigkeit der Ableitung:

$$s'_{j}(x_{j}) = s'_{j+1}(x_{j})$$
 für alle $1 \le j \le n-1$;

Stetigkeit der zweiten Ableitung:

$$s_{j}^{"}(x_{j}) = s_{j+1}^{"}(x_{j})$$
 für alle $1 \le j \le n-1$;

- \bullet Dies sind insgesamt 4n-2 Gleichungen für 4n Parameter.
- OBS! Es fehlen noch zwei Bedingungen.

Zwei weitere Nebenbedingungen.

Definition: Ein kubischer Spline heißt

- natürlicher Spline, falls S''(a) = S''(b) = 0;
- periodischer Spline, falls $S^{(i)}(a) = S^{(i)}(b)$, i = 0, 1, 2;
- vollständiger Spline, falls S'(a) = f'(a) und S'(b) = f'(b).

Beachte: Jede drei obigen Bedingungen liefert zwei weitere Gleichungen.

Satz: Unter allen interpolierenden C²-Funktionen minimiert der natürliche kubische Spline das Funktional

$$I[y] := \int_{a}^{b} (y''(x))^{2} dx$$

Bemerkung: Das Funktional I mißt die Krümmung von y *approximativ*.

Berechnung des natürlichen kubischen Splines.

Sei S auf dem Teilintervall $[x_{j-1}, x_j]$ gegeben durch

$$S(x)|_{[x_{j-1},x_{j}]} \equiv s_{j}(x) = a_{j} + b_{j}(x - x_{j-1}) + c_{j}(x - x_{j-1})^{2} + d_{j}(x - x_{j-1})^{3},$$

so gilt

$$\begin{array}{rcl} a_{j} & = & f_{j-1} \\ b_{j} & = & \frac{f_{j} - f_{j-1}}{h_{j}} - \frac{2M_{j-1} + M_{j}}{6} h_{j} \\ \\ c_{j} & = & \frac{M_{j-1}}{2} \\ \\ d_{j} & = & \frac{M_{j} - M_{j-1}}{6h_{i}} \end{array}$$

wobei $h_j = x_j - x_{j-1}$ für $1 \le j \le n$.

Die Momente $M_j = S''(x_j)$ lösen ein lineares System mit *Tridiagonalmatrix*.

Herleitung des Splines mit Momentenmethode.

Der gewählte Ansatz

$$M_j := S''(x_j), \quad \text{für } 0 \le j \le n,$$

heißt Momentenmethode: $s_{j}^{"}(x)$ ist eine Gerade mit

$$s_{j}^{"}(x) = M_{j-1} + \frac{M_{j} - M_{j-1}}{h_{j}}(x - x_{j-1})$$
 mit $h_{j} = x_{j} - x_{j-1}$

Zweifache Integration über Intervall $[x_{j-1}, x]$ liefert

$$s'_{j}(x) = B_{j} + M_{j-1}(x - x_{j-1}) + \frac{M_{j} - M_{j-1}}{2h_{j}}(x - x_{j-1})^{2}$$

$$s_{j}(x) = A_{j} + B_{j}(x - x_{j-1}) + \frac{M_{j-1}}{2}(x - x_{j-1})^{2} + \frac{M_{j} - M_{j-1}}{6h_{j}}(x - x_{j-1})^{3}$$

mit Integrationskonstanten A_j, B_j .

Lösung der Bedingungsgleichungen.

Aus den Interpolationsbedingungen $s_j(x_{j-1}) = f_{j-1}$ und $s_j(x_j) = f_j$ folgt direkt

$$A_j = f_{j-1}$$
 und $B_j = \frac{f_j - f_{j-1}}{h_j} - \frac{h_j}{6}(M_j + 2M_{j-1}),$ (1)

mit der Stetigkeit von S' bei x_j , $1 \le j < n$, d.h. $s_j'(x_j) = s_{j+1}'(x_j)$ weiterhin

$$B_{j} + \frac{M_{j} + M_{j-1}}{2}h_{j} = B_{j+1}$$
 für $1 \le j \le n-1$. (2)

Einsetzen von (1) in (2) ergibt schließlich n-1 lineare Gleichungen

$$h_j M_{j-1} + 2(h_j + h_{j+1}) M_j + h_{j+1} M_{j+1} = 6 \left(\frac{f_{j+1} - f_j}{h_{j+1}} - \frac{f_j - f_{j-1}}{h_j} \right),$$

 $1 \le j \le n-1$, für die n-1 unbekannten Momente M_1, \ldots, M_{n-1} .

Beachte: Die Momente $M_0 = 0$ und $M_n = 0$ sind bereits *bekannt*.

Tridiagonalsystem für die Momente.

Das hergeleitete $(n-1) \times (n-1)$ lineare System hat die Form

$$\begin{bmatrix} 2k_1 & h_2 & & & & \\ h_2 & 2k_2 & h_3 & & & & \\ & \ddots & \ddots & \ddots & & \\ & & h_{n-2} & 2k_{n-2} & h_{n-1} \\ & & & h_{n-1} & 2k_{n-1} \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_{n-2} \\ d_{n-1} \end{bmatrix}$$

$$\text{mit } h_j = x_j - x_{j-1} \text{, } 1 \leq j \leq n \text{, } k_j = h_j + h_{j+1} \text{, } 1 \leq j \leq n-1 \text{, und}$$

$$d_{j} = 6\left(\frac{f_{j+1} - f_{j}}{h_{j+1}} - \frac{f_{j} - f_{j-1}}{h_{j}}\right) \qquad \text{ für } 1 \leq j \leq n-1,$$

sowie den Randwerten $M_0 = M_n = 0$.

Abschließende Bemerkungen zu Splines.

- Der natürliche kubische Spline kann *effizient* berechnet werden, nämlich durch Lösen des Tridiagonalsystems in nur $\mathcal{O}(n)$ Schritten.
- Eine Splineinterpolante vermeidet (unerwünschte) Oszillationen.
- Für $f \in C^4$ gilt die asymptotische Fehlerabschätzung

$$|f(x) - S(x)| = \mathcal{O}(h^4), \quad h \to 0$$

wobei $h = \max_{1 \le j \le n} h_j$.

• Verwendet man einen vollständigen Spline mit Randbedingungen

$$S'(a) = f'(a)$$
 und $S'(b) = f'(b)$

so erhält man ein Tridiagonalsystem, das effizient gelöst werden kann.

• Verwendet man periodische Splines, so erhält man kein Tridiagonalsystem. Die Lösung kann dennoch effizient in $\mathcal{O}(n)$ Schritten berechnet werden.

Spline-Interpolation mit Matlab.

Die Matlab-Funktion spline

```
s = spline(x,f);
```

berechnet die Darstellung s einer kubischen Splinefunktion zu den Daten

```
x = (x(1), x(2), ..., x(n));

f = (f(1), f(2), ..., f(n));
```

Splines kann man mit der Matlab-Funktion ppval wie folgt auswerten.

10 Integration

10.1 Das bestimmte Integral

Sei $f : [a, b] \to R$ eine *beschränkte* Funktion auf einem Kompaktum $[a, b] \subset \mathbb{R}$.

Definition: Eine Menge der Form

$$Z = \{a = x_0 < x_1 < \cdots < x_n = b\}$$

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b].

Die Feinheit der Zerlegung Z ist dabei definiert durch

$$\|Z\| = \max_{1 \le i \le n} (x_i - x_{i-1})$$

Man bezeichnet mit **Z** bzw. $\mathbf{Z}[a,b]$ die Menge aller Zerlegungen von [a,b].

Riemannsche Summen.

Definition: Jede Summe der Form

$$R_f(Z) := \sum_{i=0}^{n-1} f(\xi_i)(x_{i+1} - x_i) \qquad \text{ für } x_i \le \xi_i \le x_{i+1}$$

nennt man eine Riemannsche Summe der Zerlegung Z,

$$U_f(Z) := \sum_{i=0}^{n-1} \inf f([x_i, x_{i+1}]) (x_{i+1} - x_i)$$

nennt man die Untersumme von f(x) zur Zerlegung Z,

$$O_f(Z) := \sum_{i=0}^{n-1} \sup f([x_i, x_{i+1}]) (x_{i+1} - x_i)$$

nennt man die Obersumme von f(x) zur Zerlegung Z.

Eigenschaften von Riemannschen Summen.

Beobachtung: Aus den Definitionen folgt direkt:

• Für eine feste Zerlegung Z gilt stets

$$U_f(Z) \le R_f(Z) \le O_f(Z)$$

• Ist Z_1 eine feinere Zerlegung als Z_2 , d.h. $Z_2 \subset Z_1$, dann gilt

$$U_f(Z_2) \le U_f(Z_1)$$
 und $O_f(Z_1) \le O_f(Z_2)$

 \bullet Für zwei beliebige Zerlegungen Z_1 und Z_2 gilt daher stets

$$U_{\rm f}(Z_1) \leq O_{\rm f}(Z_2)$$

und

$$U_f(Z_2) \leq O_f(Z_1)$$

Das Riemannsche Integral.

Beobachtung: Es existieren die Grenzwerte (über immer feinere Zerlegungen):

$$\int_{\overline{a}}^{b} f(x) \, dx := \sup\{U_f(Z) \, : \, Z \in \textbf{Z}[a,b]\} \qquad \text{(Unterintegral)}$$

$$\int_{a}^{\underline{b}} f(x) \, dx := \inf\{O_f(Z) \, : \, Z \in \textbf{Z}[a,b]\} \qquad \text{(Oberintegral)}$$

Definition: Eine Funktion f(x) heißt (Riemann-)integrierbar über [a, b], falls Unter- und Oberintegral übereinstimmen, d.h.

$$\int_{a}^{b} f(x) dx := \int_{\overline{a}}^{b} f(x) dx = \int_{a}^{\underline{b}} f(x) dx.$$

In diesem Fall heißt

$$\int_{a}^{b} f(x) dx$$

das (Riemann-) Integral von f(x) über [a, b].

Beispiele. Die konstante Funktion $f(x) \equiv c$ ist integrierbar, denn

$$U_{f}(Z) = O_{f}(Z) = \sum_{i=0}^{n-1} c(x_{i+1} - x_{i}) = c(b - a)$$

und somit

$$\int_{a}^{b} f(x) dx = c (b - a).$$

• Für f(x) = x, $0 \le x \le 1$, und $Z_n := \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$ gilt

$$U_f(Z_n) = \sum_{i=0}^{n-1} \frac{i}{n} \left(\frac{i+1}{n} - \frac{i}{n} \right) = \frac{1}{2} - \frac{1}{2n}$$

$$O_f(Z_n) = \sum_{i=0}^{n-1} \frac{i+1}{n} \left(\frac{i+1}{n} - \frac{i}{n} \right) = \frac{1}{2} + \frac{1}{2n}$$

somit

$$\int_0^1 f(x) dx = \frac{1}{2}.$$

Weitere Beispiele.

Betrachte

$$f(x) = \begin{cases} 0 : x \in [0,1] \cap \mathbb{Q} \\ 1 : x \in [0,1] \setminus \mathbb{Q} \end{cases}$$

Dann gilt für **jede** Zerlegung: $U_f(Z) = 0$, aber $O_f(Z) = 1$.

Somit ist die Funktion f **nicht** integrierbar.

• Betrachte

$$f(x) = \begin{cases} 0 : x \neq c \\ 1 : x = c \end{cases}$$

für $a \le c \le b$. Dann ist die Funktion f integrierbar mit

$$\int_{0}^{b} f(x) dx = 0,$$

denn es gilt

$$U_f(Z) = 0$$
 und $0 < O_f(Z) \le 2||Z||$.

Satz: Seien f(x) und g(x) integrierbar auf [a, b]. Dann gilt:

(a) Für $\alpha \le c \le b$ ist f auf $[\alpha, b]$ integrierbar, genau dann wenn f auf $[\alpha, c]$ und auf [c, b] integrierbar ist, und es gilt

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

(b) Linearität: Mit f und g ist auch $\alpha f(x) + \beta g(x)$ für $\alpha, \beta \in \mathbb{R}$, integrierbar:

$$\int_a^b \left(\alpha f(x) + \beta g(x)\right) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

(c) Positivität: Falls $f(x) \ge 0$ für alle $x \in [a, b]$, so gilt

$$\int_{a}^{b} f(x) dx \ge 0.$$

(d) Monotonie: Falls $f(x) \leq g(x)$ für alle $x \in [a, b]$, so gilt

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

Standardabschätzungen.

Satz: Sei f integrierbar über [a, b]. Dann gelten die Abschätzungen

$$(b-a)\cdot\inf(f[a,b])\leq \int_a^b f(x)\,dx \leq (b-a)\cdot\sup(f[a,b]).$$

und weiterhin

$$\left| \int_{a}^{b} f(x) dx \right| \leq (b-a) \cdot \sup\{|f(x)| : a \leq x \leq b\}$$

Falls |f(x)| integrierbar ist, so gilt

$$\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx.$$

Beweis: Für die Zerlegung $Z = \{a, b\}$ von [a, b] folgt sofort

$$\inf(f[\alpha,b])\cdot(b-\alpha)=U_f(Z)\leq \int_{\alpha}^b f(x)\,dx\leq O_f(Z)=\sup(f[\alpha,b])\cdot(b-\alpha)$$

Weiterhin folgt wegen $\pm f(x) \le |f(x)|$, für alle $x \in [a, b]$, die Ungleichung

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^{\underline{b}} |f(x)| \, \mathrm{d}x \leq O_{|f|}(Z) = \sup\{|f(x)| : a \leq x \leq b\} \cdot (b-a).$$

Bemerkung: Die obige Abschätzung

$$\inf(f[a,b]) \cdot (b-a) \le \int_a^b f(x) dx$$

liefert insbesondere die Positivität des Integrals.

Weitere Bemerkungen.

• Die Aussage

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

gilt für beliebige Anordnungen von a, b, c.

Wir definieren daher

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

sowie

$$\int_{\alpha}^{\alpha} f(x) \, \mathrm{d}x = 0$$

• Ist f(x) integrierbar, so gilt

$$R_f(Z_m) \to \int_a^b f(x) dx$$
 für $m \to \infty$

für alle Zerlegungsfolgen $\{Z_m\}_m \subset \mathbf{Z}[\mathfrak{a},\mathfrak{b}]$ mit $\|Z_m\| \to \mathfrak{0}$ für $m \to \infty$.

10.2 Kriterien für Integrierbarkeit

Satz: (Riemannsches Kriterium)

Sei $f : [a, b] \to \mathbb{R}$ eine beschränkte Funktion. Dann sind äquivalent:

- (a) f(x) ist integrierbar über [a, b].
- (b) Für alle $\epsilon > 0$ gibt es eine Zerlegung $Z \in \textbf{Z}[\mathfrak{a},\mathfrak{b}]$ mit $O_f(Z) U_f(Z) < \epsilon$.

Beweis: Für $\varepsilon > 0$ gibt es eine Zerlegung $Z \in \mathbf{Z}[\alpha, b]$ mit

$$0 \le O_f(Z) - \int_a^b f(x) \, dx < \varepsilon/2,$$

$$0 \le \int_{\overline{a}}^{b} f(x) dx - U_f(Z) < \varepsilon/2.$$

- $(a) \Rightarrow (b)$: Folgt aus der Addition der beiden Ungleichungen.
- $(b) \Rightarrow (a)$: Die Integrierbarkeit von f folgt direkt aus (b) mit

$$0 \le \int_{\alpha}^{\underline{b}} f(x) dx - \int_{\overline{a}}^{b} f(x) dx \le O_f(Z) - U_f(Z) < \varepsilon.$$

Monotone Funktionen sind integrierbar.

Satz: Eine beschränkte monotone Funktion $f : [a, b] \to \mathbb{R}$ ist integrierbar.

Beweis: Für eine uniforme Zerlegung $Z \in \mathbf{Z}[a, b]$ mit

$$x_j = a + \frac{j}{n}(b - a), \qquad 0 \le j \le n,$$

und für f monoton wachsend gilt

$$\begin{split} O_f(Z) - U_f(Z) &= \sum_{j=0}^{n-1} (f(x_{j+1}) - f(x_j))(x_{j+1} - x_j) \\ &= \frac{b-a}{n} \sum_{j=0}^{n-1} (f(x_{j+1}) - f(x_j)) = \frac{b-a}{n} (f(b) - f(a)) < \varepsilon \end{split}$$

für hinreichend großes n. Nach dem Riemannschen Kriterium ist f integrierbar.

Analog zeigt man die Integrierbarkeit für f monoton fallend.

Stetige Funktionen sind integrierbar.

Satz: Eine beschränkte stetige Funktion $f : [a, b] \to \mathbb{R}$ ist integrierbar.

Beweis: f ist sogar gleichmäßig stetig auf dem Kompaktum [a, b]. Daher gibt es zu jedem $\varepsilon > 0$ ein $\delta > 0$ mit

$$|x-y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b-a}.$$

Für eine Zerlegung $Z \in \mathbf{Z}[\alpha, b]$ mit Feinheit $\|Z\| < \delta$ gilt dann

$$\begin{split} O_f(Z) - U_f(Z) &= \sum_{j=0}^{n-1} (\sup f[x_j, x_{j+1}] - \inf f[x_j, x_{j+1}]) \cdot (x_{j+1} - x_j) \\ &\leq \sum_{j=0}^{n-1} \frac{\varepsilon}{b-a} \cdot (x_{j+1} - x_j) = \varepsilon. \end{split}$$

Somit ist f nach dem Riemannschen Kriterium integrierbar.

Satz: Seien $f, g : [a, b] \to \mathbb{R}$ integrierbare beschränkte Funktionen. Dann gilt:

- (a) Das Produkt $f(x) \cdot g(x)$ ist integrierbar über [a, b].
- (b) Gilt $g(x) \ge C > 0$, so ist der Quotient f(x)/g(x) integrierbar über [a,b].

Beweis: (a): Für eine feste Zerlegung $Z = \{x_j\}_{j=0}^n \in \mathbf{Z}[a,b]$ gilt

$$\begin{array}{ll} s_{j} & := & \sup(f \cdot g)[x_{j}, x_{j+1}] - \inf(f \cdot g)[x_{j}, x_{j+1}] \\ & = & \sup(f(x)g(x) - f(y)g(y)) \\ & = & \sup(f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)) \\ & \leq & \|f\|_{\infty} \sup_{x,y} (g(x) - g(y)) + \|g\|_{\infty} \sup_{x,y} (f(x) - f(y)) \end{array}$$

und somit

$$O_{f \cdot g} - U_{f \cdot g} \le ||f||_{\infty} (O_g - U_g) + ||g||_{\infty} (O_f - U_f),$$

womit die Integrierbarkeit von $f \cdot g$ mit dem Riemannschen Kriterium folgt.

Beweis von (b): Für eine feste Zerlegung $Z = \{x_j\}_{j=0}^n \in \mathbf{Z}[a,b]$ gilt

$$\begin{split} s_j &:= \sup \left(\frac{1}{g}\right) [x_j, x_{j+1}] - \inf \left(\frac{1}{g}\right) [x_j, x_{j+1}] \\ &= \sup_{x,y} \left(\frac{1}{g(x)} - \frac{1}{g(y)}\right) \\ &= \sup_{x,y} \frac{g(y) - g(x)}{g(x) \cdot g(y)} \\ &\leq \frac{1}{C^2} \cdot \sup_{x,y} (g(y) - g(x)) \end{split}$$

und somit

$$O_{1/g} - U_{1/g} \le \frac{1}{C^2} \cdot (O_g - U_g),$$

womit die Integrierbarkeit von 1/g mit dem Riemannschen Kriterium folgt. Insgesamt folgt mit (a) die Integrierbarkeit von f/g.

Spezialfälle integrierbarer Funktionen.

Satz: Sei f integrierbar über [a, b]. Dann sind folgende Funktionen integrierbar.

$$|f|(x) := |f(x)|$$

$$f^{+}(x) := \begin{cases} f(x) & \text{für } f(x) \ge 0, \\ 0 & \text{für } f(x) < 0. \end{cases}$$

$$f^-(x) := \begin{cases} 0 & \text{für } f(x) \ge 0, \\ -f(x) & \text{für } f(x) < 0. \end{cases}$$

Beweis: Aus

$$\sup_{x,y}(|f(x)|-|f(y)|)\leq \sup_{x,y}(f(x)-f(y))$$

folgt die Integrierbarkeit der Funktion |f|. Die Integrierbarkeit von f^+ und f^- folgt aus den Relationen $f^+ = (|f| + f)/2$ und $f^- = (|f| - f)/2$.

10.3 Der Hauptsatz und Anwendungen

Definition: Seien Funktionen F, f: $[a,b] \to \mathbb{R}$ Funktionen mit F'(x) = f(x), $a \le x \le b$. Dann heißt F(x) Stammfunktion von f(x).

Bemerkung:

• Ist F(x) eine Stammfunktion von f(x), so sind alle Funktionen der Form

$$\tilde{F}(x) = F(x) + c$$

mit einer Konstanten $c \in \mathbb{R}$ Stammfunktionen von f(x).

• Sind $F_1(x)$ und $F_2(x)$ Stammfunktionen von f(x), so ist die Funktion

$$F_1(x) - F_2(x)$$

konstant.

Hauptsatz der Differential- und Integralrechnung.

Satz: Sei $f : [a, b] \to \mathbb{R}$ eine stetige Funktion. Dann gilt:

(a) Die Funktion

$$F(x) := \int_{a}^{x} f(t) dt$$

ist eine Stammfunktion von f(x).

(b) Ist F(x) eine Stammfunktion von f(x), so gilt

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

Beweis von (a): Wir zeigen, dass F'(x) = f(x) gilt.

Sei $h \neq 0$ so, dass $x, x + h \in [a, b]$. Dann gilt

$$\begin{split} &\left| \frac{1}{h} (F(x+h) - F(x)) - f(x) \right| \\ &= \left| \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right) - \frac{1}{h} \int_{x}^{x+h} f(x) dt \right| \\ &= \left| \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt \right| \\ &\leq \sup\{ |f(t) - f(x)| : |t - x| \leq h \text{ und } t \in [a, b] \} \\ &\to 0 \qquad \text{für } h \to 0, \end{split}$$

mit der (gleichmäßigen) Stetigkeit von f auf [a, b].

Beweis von (b): Mit Teil (a) gilt

$$F(x) = \int_{a}^{x} f(t) dt + C$$

für eine Konstante C. Daraus folgt

$$F(b) = \int_a^b f(t) dt + C$$

$$F(\alpha) = \int_{\alpha}^{\alpha} f(t) dt + C = 0 + C = C$$

und somit

$$F(b) - F(a) = \int_{a}^{b} f(t) dt.$$

Bemerkungen.

• Teil (a) des Hauptsatzes gilt auch für stückweise stetige Funktionen f(x). An den Unstetigkeitsstellen ist die Stammfunktion allerdings nur **einseitig differenzierbar** mit

$$\mathsf{F}'(\mathsf{x}^-) = \lim_{\mathsf{x} \to \mathsf{x}^-} \mathsf{f}(\mathsf{x}) \quad \text{und} \quad \mathsf{F}'(\mathsf{x}^+) = \lim_{\mathsf{x} \to \mathsf{x}^+} \mathsf{f}(\mathsf{x}).$$

• Eine Stammfunktion einer Funktion f(x) nennt man das unbestimmte Integral von f(x) und man schreibt

$$F = \int f(x) \, dx$$

Die Funktion F ist bis auf eine Konstante eindeutig bestimmt.

Beispiele. Wir bezeichnen mit C stets die Integrationskonstante.

$$\int x^{n} dx = \frac{1}{n+1}x^{n+1} + C \qquad \text{für } n \neq -1$$

$$\int \frac{1}{x} dx = \log|x| + C \qquad \text{für } x \neq 0$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \cos(x) dx = \sin(x) + C$$

$$\int \tan(x) dx = -\log|\cos(x)| + C \qquad \text{für } \cos(x) \neq 0$$

$$\int \cot(x) dx = \log|\sin(x)| + C \qquad \text{für } \sin(x) \neq 0$$

$$\int \frac{1}{\cos^{2}(x)} dx = \tan(x) + C \qquad \text{für } x \neq \frac{(2k+1)\pi}{2} \text{ mit } k \in \mathbb{Z}$$

Weitere Beispiele.

$$\begin{split} \int \frac{1}{\sin^2(x)} \, \mathrm{d}x &= -\cot(x) + C \qquad \text{für } x \neq k\pi \text{ mit } k \in \mathbb{Z} \\ \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x &= \arcsin(x) + C \qquad \text{für } |x| < 1 \\ \int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x &= \log\left(x + \sqrt{1+x^2}\right) + C \\ \int \frac{1}{\sqrt{x^2-1}} \, \mathrm{d}x &= \log\left|x + \sqrt{x^2-1}\right| + C \qquad \text{für } |x| > 1 \\ \int \frac{1}{1+x^2} \, \mathrm{d}x &= \arctan x + C \\ \int \frac{1}{1-x^2} \, \mathrm{d}x &= \frac{1}{2} \log\left|\frac{1+x}{1-x}\right| + C \qquad \text{für } |x| \neq 1. \\ \int e^{\alpha x} \, \mathrm{d}x &= \frac{1}{\alpha} e^{\alpha x} + C \qquad \text{für } \alpha \neq 0. \end{split}$$

Noch mehr Beispiele.

$$\int b^x dx = \frac{1}{\log(b)} b^x + C \qquad \text{für } b > 0, b \neq 1.$$

$$\int \log(x) dx = x(\log(x) - 1) + C \qquad \text{für } x > 0.$$

$$\int \log_b(x) dx = \frac{x}{\log(b)} (\log(x) - 1) + C \qquad \text{für } b > 0, x > 0.$$

$$\int \sinh(x) dx = \cosh(x) + C$$

$$\int \cosh(x) dx = \sinh(x) + C$$

$$\int \tanh(x) dx = \log(\cosh(x)) + C$$

$$\int \coth(x) dx = \log(|\sinh(x)|) + C \qquad \text{für } x \neq 0.$$

Wichtige Integrationsregeln.

Satz (Linearität): Sind $f, g : [a, b] \to \mathbb{R}$ stückweise stetig, so gilt

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

für alle $\alpha, \beta \in \mathbb{R}$.

Satz (Partielle Integration): Sind $u, v : [a, b] \to \mathbb{R}$ stetig differenzierbar, so gilt

$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

für unbestimmte Integrale, womit für bestimmte Integrale folgt

$$\int_{a}^{b} u(x)v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) \, dx.$$

Beweis: folgt direkt aus Produktregel der Differentiation: $(u \cdot v)' = u'v + uv'$.

Die Substitutionsregel.

Satz: Ist $h:[a,b]\to [c,d]$ stetig differenzierbar und $f:[c,d]\to \mathbb{R}$ stetig mit Stammfunktion F(x), so gilt

$$\int f(h(t))h'(t) dt = F(h(t)).$$

Für bestimmte Integrale erhält man somit

$$\int_{a}^{b} f(h(t))h'(t) dt = F(h(b)) - F(h(a)) = \int_{h(a)}^{h(b)} f(x) dx.$$

Beweis: folgt direkt aus Kettenregel der Differentiation:

$$\frac{d}{dt}(F(h(t))) = f(h(t)) \cdot h'(t).$$

Beispiele.

• Linearität:

$$\int (28x^3 + 12x^2 - 2x + 3) \, dx = 7x^4 + 4x^3 - x^2 + 3x + C$$

• Partielle Integration:

$$\int xe^x dx = xe^x - \int e^x dx = (x-1)e^x + C$$

• Partielle Integration:

$$\int \log(x) dx = \int 1 \cdot \log(x) dx$$

$$= x \cdot \log(x) - \int x \cdot \frac{1}{x} dx$$

$$= x(\log(x) - 1) + C$$

Ein weiteres Beispiel zur partiellen Integration.

$$\int \sin^2(x) dx = \int \sin(x) \cdot \sin(x) dx$$

$$= \sin(x)(-\cos(x)) + \int \cos^2(x) dx$$

$$= -\sin(x)\cos(x) + \int (1 - \sin^2(x)) dx$$

$$\implies 2 \int \sin^2(x) dx = -\sin(x) \cos(x) + x + C$$

$$\implies \int \sin^2(x) dx = \frac{1}{2} (x - \sin(x) \cos(x)) + C$$

Ein Beispiel zur Substitutionsregel.

Substituiere $x = h(t) = a \cos(t)$ in

$$\int_{-a}^{a} \sqrt{1 - (x/a)^2} \, dx = \int_{\pi}^{0} \sqrt{1 - \cos^2(t)} (-a \sin(t)) \, dt,$$

denn

$$dx = -a \sin(t) dt$$
 $h(0) = a$ und $h(\pi) = -a$.

Somit gilt

$$\int_{-a}^{a} \sqrt{1 - (x/a)^2} \, dx = \int_{\pi}^{0} \sqrt{1 - \cos^2(t)} \, (-a \sin(t)) \, dt$$
$$= a \int_{0}^{\pi} \sin^2(t) \, dt$$
$$= \frac{a}{2} (t - \sin(t) \cos(t)) \Big|_{0}^{\pi} = \frac{a\pi}{2}.$$

Ein weiteres Beispiel zur Substitutionsregel.

Substituiere $x=h(t)=t^2$, d.h. $t=\sqrt{x}$ für $x\geq 0$ in

$$\int e^{\sqrt{x}} dx = \int e^t 2t dt$$

denn es gilt

$$h'(t) = 2t.$$

Daraus folgt

$$\int e^{\sqrt{x}} dx = \int e^{t} 2t dt$$

$$= 2(t-1)e^{t} + C$$

$$= 2(\sqrt{x} - 1)e^{\sqrt{x}} + C.$$

Bemerkung.

- Nicht jedes Integral lässt sich explizit "lösen", d.h.
- nicht jede (integrierbare) Funktion besitzt "einfache" Stammfunktion bzw.
- manche Stammfunktionen lassen sich nicht durch Komposition von elementaren Funktionen darstellen.

Beispiele:

$$Si(x) := \int_0^x \frac{\sin(t)}{t} dt$$
 (Integralsinus)

$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 (Fehlerfunktion)

$$\mathsf{E}(x,k) := \int\limits_0^x (1-k^2\sin^2 t)^{\pm\frac{1}{2}} \, \mathrm{d}t \qquad \text{(Elliptische Integrale)}$$

Mittelwertsatz der Integralrechnung.

Satz: Sei $f : [a,b] \to \mathbb{R}$ stetig, $p : [a,b] \to \mathbb{R}$ integrierbar und $p(x) \ge 0$ für $a \le x \le b$. Dann existiert ein $\xi \in [a,b]$ mit

$$\int_a^b f(x)p(x) dx = f(\xi) \int_a^b p(x) dx.$$

Beweis: Da f(x) stetig und $p(x) \ge 0$ folgt:

$$\min(f[a, b]) \cdot p(x) \le f(x)p(x) \le \max(f[a, b]) \cdot p(x)$$
.

Integration über [a, b] liefert:

$$\min(f[a,b]) \cdot \int_a^b p(x) \, dx \le \int_a^b f(x)p(x) \, dx \le \max(f[a,b]) \cdot \int_a^b p(x) \, dx.$$

Die Behauptung folgt dann aus dem Zwischenwertsatz für stetige Funktionen. ■

Mittelwertsatz der Integralrechnung: Spezialfall.

Für den Spezialfall $p \equiv 1$ gibt es ein $\xi \in [a, b]$ mit

$$\int_{a}^{b} f(x) dx = f(\xi) \cdot (b - a)$$

Beobachtung: Schreibt man diese Beziehung als

$$F(b) - F(a) = F'(\xi)(b - a)$$

mit der Stammfunktion F(x) von f(x), so folgt der Mittelwertsatz der Differentialrechnung für die Stammfunktion F(x):

$$F'(\xi) = \frac{F(b) - F(a)}{b - a}$$
 für ein $\xi \in [a, b]$.

Der Satz von Taylor. Man erhält die Taylor-Entwicklung einer Funktion $f \in C^{n+1}$ um x_0 durch n-fache partielle Integration:

$$\begin{split} f(x) - f(x_0) &= \int_{x_0}^x f'(t) \, dt = \int_{x_0}^x (x - t)^0 f'(t) \, dt \\ &= (x - x_0) f'(x_0) + \int_{x_0}^x (x - t)^1 f''(t) \, dt \\ &= (x - x_0) f'(x_0) + (x - x_0)^2 \frac{f''(x_0)}{2} + \frac{1}{2} \int_{x_0}^x (x - t)^2 f'''(t) \, dt \\ &\vdots \\ &= \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) \, dt. \end{split}$$

Daraus bekommt man die Lagrange-Restgliedformel aus Mittelwertsatz:

$$\frac{1}{n!} \, \int_{x_0}^x (x-t)^n f^{(n+1)}(t) \, dt = \frac{1}{(n+1)!} \, f^{(n+1)}(\xi) (x-x_0)^{n+1} \quad \text{ für ein } \xi \in [x_0,x].$$

10.4 Integration rationaler Funktionen

Ziel: Integration rationaler Funktionen

$$R(x) = \frac{p(x)}{q(x)} \qquad \text{wobei} \quad p(x) = \sum_{k=0}^{n} a_k x^k, \quad q(x) = \sum_{k=0}^{m} b_k x^k.$$

Methode: Partialbruch-Zerlegung von rationaler Funktion R(x).

Ansatz:

$$R(x) = p_{1}(x) + \sum_{j=1}^{n_{1}} \left[\frac{\alpha_{j1}}{(x - x_{j})} + \frac{\alpha_{j2}}{(x - x_{j})^{2}} + \dots + \frac{\alpha_{jk_{j}}}{(x - x_{j})^{k_{j}}} \right] + \sum_{j=n_{1}+1}^{n_{2}} \left[\frac{\gamma_{j1}x + \delta_{j1}}{\left((x - a_{j})^{2} + b_{j}^{2}\right)^{1}} + \dots + \frac{\gamma_{jk_{j}}x + \delta_{jk_{j}}}{\left((x - a_{j})^{2} + b_{j}^{2}\right)^{k_{j}}} \right]$$

Erläuterungen.

- Ohne Einschränkung: p(x) und q(x) haben keine gemeinsamen Nullstellen.
- Das Polynom $p_1(x)$ tritt nur auf, falls

$$deg(p) \ge deg(q)$$
.

In diesem Fall berechnet man $p_1(x)$ mit Polynomdivision, und es gilt

$$\frac{p_2(x)}{q(x)} = R(x) - p_1(x) \qquad \Longleftrightarrow \qquad p(x) = p_1(x) \cdot q(x) + p_2(x),$$

 $\mathsf{mit}\;\mathsf{deg}(\mathfrak{p}_2)<\mathsf{deg}(\mathfrak{q}).$

- Das Nennerpolynom q(x) besitze
 - die reellen Nullstellen x_j mit Vielfachheit k_j ;
 - die komplexen Nullstellen $z_j = a_j + ib_j$ mit Vielfachheit k_j und damit komplex konjugierte Nullstellen $\bar{z}_j = a_j ib_j$.

Ansatz der Partialbruch-Zerlegung.

$$R(x) = p_{1}(x) + \sum_{j=1}^{n_{1}} \left[\frac{\alpha_{j1}}{(x - x_{j})} + \frac{\alpha_{j2}}{(x - x_{j})^{2}} + \dots + \frac{\alpha_{jk_{j}}}{(x - x_{j})^{k_{j}}} \right] + \sum_{j=n_{1}+1}^{n_{2}} \left[\frac{\gamma_{j1}x + \delta_{j1}}{\left((x - a_{j})^{2} + b_{j}^{2}\right)^{1}} + \dots + \frac{\gamma_{jk_{j}}x + \delta_{jk_{j}}}{\left((x - a_{j})^{2} + b_{j}^{2}\right)^{k_{j}}} \right]$$

Unbekannte Parameter, die bestimmt werden müssen:

$$\alpha_{j\ell}, \qquad j = 1, \dots, n_1, \ \ell = 1, \dots, k_j;$$
 $\gamma_{j\ell}, \qquad j = n_1 + 1, \dots, n_2, \ \ell = 1, \dots, k_j;$
 $\delta_{j\ell}, \qquad j = n_1 + 1, \dots, n_2, \ \ell = 1, \dots, k_j.$

Diese Parameter werden durch Koeffizientenvergleich berechnet, die rechte Seite wird dabei auf den Hauptnenner gebracht.

Beispiel. Betrachten die rationale Funktion

$$R(x) = \frac{1 - x}{x^2(x^2 + 1)}$$

• Ansatz:

$$R(x) = \frac{\alpha_1}{x} + \frac{\alpha_2}{x^2} + \frac{\gamma_1 x + \delta_1}{x^2 + 1}$$

$$\Rightarrow 1 - x = x(x^2 + 1)\alpha_1 + (x^2 + 1)\alpha_2 + x^2(\gamma_1 x + \delta_1)$$

• Ausmultiplizieren:

$$1 - x = (\alpha_1 + \gamma_1)x^3 + (\alpha_2 + \delta_1)x^2 + \alpha_1x + \alpha_2$$

Koeffizientenvergleich:

$$\alpha_1 + \gamma_1 = 0$$
, $\alpha_2 + \delta_1 = 0$, $\alpha_1 = -1$, $\alpha_2 = 1$

• Partialbruchzerlegung:

$$R(x) = -\frac{1}{x} + \frac{1}{x^2} + \frac{x-1}{x^2+1}.$$

Grundtypen der Integration rationaler Funktionen.

Bei der Integration rationaler Funktionen gibt es 4 Grundtypen:

Typ I: Polynome:

$$\int \sum_{k=0}^{s} c_k x^k \, dx = \sum_{k=0}^{s} \frac{c_k}{k+1} x^{k+1} + C$$

Typ II: Inverse Potenzen:

$$\int \frac{dx}{(x-x_0)^{\ell}} = \begin{cases} \log(|x-x_0|) + C & \text{für } \ell = 1\\ \frac{1}{1-\ell} \cdot \frac{1}{(x-x_0)^{\ell-1}} + C & \text{für } \ell = 2, 3, \dots \end{cases}$$

Grundtypen der Integration rationaler Funktionen.

Typ III:

Analysis II

$$I_{\ell} := \int \frac{1}{(x^2 + 1)^{\ell}} dx$$
 für $\ell \in \mathbb{N}$

• Für $\ell = 1$ gilt

$$I_1 = \int \frac{1}{x^2 + 1} dx = \arctan(x) + C$$

• Für $\ell > 1$ kann man I_{ℓ} wie folgt *rekursiv* berechnen.

$$I_{\ell} = \frac{1}{2(1-\ell)} \left[(3-2\ell)I_{\ell-1} - \frac{x}{(x^2+1)^{\ell-1}} \right]$$
 für $\ell=2,3,\ldots$

Herleitung der Rekursion.

• Substitution: Setze $u = x^2 + 1$ in

$$\int \frac{2x}{(x^2+1)^{\ell}} dx = \int \frac{du}{u^{\ell}} = \frac{1}{1-\ell} \cdot \frac{1}{u^{\ell-1}} + C$$
$$= \frac{1}{1-\ell} \cdot \frac{1}{(x^2+1)^{\ell-1}} + C$$

• Partielle Integration:

$$I_{\ell-1} = \int \frac{1}{(x^2+1)^{\ell-1}} dx = \int \frac{x^2+1}{(x^2+1)^{\ell}} dx = \int \frac{x}{2} \cdot \frac{2x}{(x^2+1)^{\ell}} dx + I_{\ell}$$

$$= \frac{x}{2(1-\ell)(x^2+1)^{\ell-1}} - \frac{1}{2(1-\ell)} \cdot I_{\ell-1} + I_{\ell}$$

Somit:

$$I_{\ell} = \frac{1}{2(1-\ell)} \left[(3-2\ell)I_{\ell-1} - \frac{x}{(x^2+1)^{\ell-1}} \right]$$
 für $\ell = 2, 3, \dots$

Grundtypen der Integration rationaler Funktionen.

Typ IV:

$$\int \frac{cx+d}{((x-a)^2+b^2)^{\ell}} dx = \frac{c}{2} \int \frac{2(x-a)}{((x-a)^2+b^2)^{\ell}} dx + (d+ca) \int \frac{dx}{((x-a)^2+b^2)^{\ell}}$$

• Erstes Integral:

$$\int \frac{2(x-a)}{((x-a)^2+b^2)^{\ell}} \, dx = \int \frac{du}{u^{\ell}} \qquad \text{mit } u = (x-a)^2+b^2.$$

$$= \begin{cases} \log\left(|(x-a)^2+b^2|\right) + C & \text{für } \ell = 1 \\ \frac{1}{1-\ell} \cdot \frac{1}{((x-a)^2+b^2)^{\ell-1}} + C & \text{für } \ell = 2,3,.... \end{cases}$$

• Zweites Integral:

$$\int \frac{dx}{((x-a)^2 + b^2)^{\ell}} = \frac{1}{b^{2\ell-1}} \int \frac{dt}{(t^2+1)^{\ell}} \quad \text{mit} \quad t = \frac{x-a}{b}.$$

Beispiel.

Betrachten erneut die rationale Funktion

$$R(x) = \frac{1-x}{x^2(x^2+1)}$$
$$= -\frac{1}{x} + \frac{1}{x^2} + \frac{x-1}{x^2+1}$$

Somit bekommt man

$$\int R(x) dx = -\int \frac{dx}{x} + \int \frac{dx}{x^2} + \frac{1}{2} \int \frac{2x}{x^2 + 1} - \int \frac{dx}{x^2 + 1}$$
$$= -\log(|x|) - \frac{1}{x} + \frac{1}{2} \log(x^2 + 1) - \arctan(x) + C$$

Substitution bei verwandten Integralen.

Sei R(x) eine rationale Funktion.

Dann lassen sich die folgenden Integrale durch Substitution vereinfachen.

• Setze $t = e^x$ in

$$\int R(e^x) dx = \int \frac{R(t)}{t} dt$$

• Mit t = tan(x/2) bekommt man

$$cos(x) = \frac{1 - t^2}{1 + t^2}$$
 und $sin(x) = \frac{2t}{1 + t^2}$

und somit durch Substitution in

$$\int R(\cos x, \sin x) \, dx = \int R\left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right) \frac{2}{1 + t^2} \, dt$$

10.5 Uneigentliche Integrale

Ziel: Berechne uneigentliche Integrale, d.h.

• Integrale über unbeschränkten Bereichen

$$\int_{a}^{\infty} f(x) dx \qquad \int_{-\infty}^{b} f(x) dx \qquad \int_{-\infty}^{\infty} f(x) dx.$$

• Integrale über unbeschränkten Funktionen mit Singularitäten am Rand

$$\int_a^b f(x) dx \qquad \text{wobei } f:(a,b] \to \mathbb{R} \text{ stetig} \quad \text{oder } f:[a,b) \to \mathbb{R} \text{ stetig}$$

Lokale Integrierbarkeit und uneigentliche Integrale.

Definition: Eine Funktion $f: D \to \mathbb{R}$ mit $D \subset \mathbb{R}$ heißt lokal integrierbar, falls f über jedem kompakten Teilintervall $[a,b] \subset D$ integrierbar ist.

Definition: *Ist eine Funktion* f(x) *lokal integrierbar über* $[a, \infty)$ *bzw.* $(-\infty, b]$ *bzw.* $(-\infty, \infty)$, *so definiert man*

$$\int_{a}^{\infty} f(x) dx := \lim_{y \to \infty} \int_{a}^{y} f(x) dx$$

$$\int_{-\infty}^{b} f(x) dx := \lim_{y \to -\infty} \int_{y}^{b} f(x) dx$$

$$\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{\alpha} f(x) dx + \int_{\alpha}^{\infty} f(x) dx \qquad \text{für } \alpha \in \mathbb{R}.$$

Lokale Integrierbarkeit und uneigentliche Integrale.

Definition: Ist eine Funktion f(x) lokal integrierbar über (a, b] bzw. [a, b) bzw. (a, b), so definiert man

$$\int_{a}^{b} f(x) dx := \lim_{y \to a^{+}} \int_{y}^{b} f(x) dx$$

$$\int_a^b f(x) dx := \lim_{y \to b^-} \int_a^y f(x) dx$$

$$\int_a^b f(x) dx := \int_a^c f(x) dx + \int_c^b f(x) dx \qquad \text{für } c \in (a, b).$$

Ein Beispiel.

Betrachte das uneigentliche Integral

$$\int_1^\infty \frac{1}{x^\alpha} \, \mathrm{d}x.$$

Wegen

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1} \frac{1}{x^{\alpha - 1}} + C & \text{für } \alpha > 1\\ \log(|x|) + C & \text{für } \alpha = 1 \end{cases}$$

konvergiert das uneigentliche Integral

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

für $\alpha > 1$ und divergiert für $\alpha = 1$.

Ein weiteres Beispiel. Betrachte das uneigentliche Integral

$$\int_{-\infty}^{\infty} |x| e^{-x^2} dx.$$

Es gilt

$$\int_{-\infty}^{\infty} |x| e^{-x^2} dx = -\int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{\infty} x e^{-x^2} dx = 2 \int_{0}^{\infty} x e^{-x^2} dx,$$

und weiterhin

$$\int_{0}^{y} x e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{y^{2}} e^{-u} du \qquad \text{mit } u = x^{2}$$
$$= \frac{1}{2} \left(1 - e^{-y^{2}} \right) \to \frac{1}{2} \quad \text{für } y \to \infty.$$

Somit gilt

$$\int_{-\infty}^{\infty} |x| e^{-x^2} \, \mathrm{d}x = 1$$

Konvergenzkriterien.

Satz: Sei $f: [\alpha, \infty) \to \mathbb{R}$ lokal integrierbar. Dann gilt:

(a) Das uneigentliche Integral $\int_{\alpha}^{\infty} f(x) dx$ existiert genau dann, wenn gilt

$$\forall \varepsilon > 0 : \exists C > \alpha : \forall z_1, z_2 > C : \left| \int_{z_1}^{z_2} f(x) dx \right| < \varepsilon$$

(b) Ist das uneigentliche Integral absolut konvergent, d.h.

$$\int_{a}^{\infty} |f(x)| \, \mathrm{d}x$$

konvergiert, so konvergiert auch das uneigentliche Integral

$$\int_{a}^{\infty} f(x) dx.$$

Majorantenkriterium.

Satz: Sei $f: [\alpha, \infty) \to \mathbb{R}$ lokal integrierbar. Dann gilt:

(c)

$$\forall x : |f(x)| \le g(x)$$
 und $\int_{\alpha}^{\infty} g(x) dx$ konvergent

$$\implies \int_{a}^{\infty} f(x) dx$$
 absolut konvergent

(d) Weiterhin gilt folgende Umkehrung:

$$\forall x : 0 \le g(x) \le f(x)$$
 und $\int_{\alpha}^{\infty} g(x) dx$ divergent

$$\implies \int_{a}^{\infty} f(x) dx$$
 divergent.

Beispiel: Das Dirichlet-Integral

Betrachte das Dirichlet-Integral

$$I = \int_0^\infty \frac{\sin(x)}{x} dx.$$

Das Dirichlet-Integral ist konvergent, denn es gilt

$$\int_{y_1}^{y_2} \frac{\sin(x)}{x} dx = -\frac{\cos(x)}{x} \Big|_{y_1}^{y_2} - \int_{y_1}^{y_2} \frac{\cos(x)}{x^2} dx$$

und somit

$$\left| \int_{y_1}^{y_2} \frac{\sin(x)}{x} \, dx \right| \leq \frac{1}{y_1} + \frac{1}{y_2} + \int_{y_1}^{y_2} \frac{1}{x^2} \, dx = \frac{2}{y_1} \to 0 \quad \text{für } y_1 \to \infty.$$

Bemerkungen:

- Das Dirichlet-Integral ist nicht absolut konvergent;
- Das Dirichlet-Integral besitzt den Wert I = $\pi/2$.

Beispiel: Das Exponentialintegral

• Betrachte das Exponentialintegral

$$\operatorname{Ei}(x) := \int_{-\infty}^{x} \frac{e^{t}}{t} dt \qquad \text{für } x < 0.$$

Wegen $\lim_{t\to-\infty}te^t=0$ gibt es ein C>0 mit $|te^t|\leq C$ für alle $t\in(-\infty,x]$, und somit gilt

$$\left|\frac{e^{t}}{t}\right| = \frac{|te^{t}|}{t^{2}} \le \frac{C}{t^{2}}.$$

Mit der Konvergenz des Integrals

$$\int_{-\infty}^{x} \frac{1}{t^2} dt$$

folgt die *absolute Konvergenz* des Exponentialintegrals Ei(x) für alle x < 0 aus dem Majorantenkriterium.

Beispiel: Die Gamma-Funktion.

Die Gamma-Funktion $\Gamma:(0,\infty)\to\mathbb{R}$ ist definiert durch

$$\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt \qquad \text{für } x > 0.$$

Beachte: Für 0 < x < 1 ist der Integrand von $\Gamma(x)$ singulär. Mit

$$\left| e^{-t} t^{x-1} \right| \le t^{x-1} \qquad \text{ für } 0 < t \le 1$$

folgt jedoch in diesem Fall

$$\int_{\varepsilon}^{1} t^{x-1} dt = \frac{1}{x} t^{x} \Big|_{t=\varepsilon}^{t=1} = \frac{1}{x} (1 - \varepsilon^{x}) \to \frac{1}{x} \qquad \text{ für } \varepsilon \to 0 + .$$

Die Konvergenz bei $t = \infty$ zeigt man wie beim Exponentialintegral:

$$\left|e^{-t}t^{x-1}\right| = \left|\frac{e^{-t}t^{x+1}}{t^2}\right| \le \frac{C}{t^2}$$
 für $1 \le t \le \infty$.

Mit dem Majorantenkriterium folgt die absolute Konvergenz von $\Gamma(x)$ für x > 0.

Weitere Bemerkungen zur Gamma-Funktion.

Die Gamma-Funktion erfüllt die Funktionalgleichung

$$\Gamma(x+1) = x \cdot \Gamma(x)$$
 $x > 0$

und es gilt

$$\Gamma(1) = 1$$
.

Folgerung: Es gilt

$$\Gamma(n) = (n-1)!$$
 für alle $n \in \mathbb{N}$.

10.6 Parameterabhängige Integrale

Beispiel: Die Gamma-Funktion

$$\Gamma(x) := \int_0^\infty f(x, t) dt = \int_0^\infty e^{-t} t^{x-1} dt.$$

Zunächst: Parameterabhängige *eigentliche* Integrale.

Sei $f: I \times [a, b] \to \mathbb{R}$, $I \subset \mathbb{R}$, so dass f für festes $x \in I$ als Funktion von y integrierbar über [a, b] ist:

$$F(x) := \int_{a}^{b} f(x, y) dy.$$

Fragen:

- Ist die Funktion F(x) stetig, wenn f(x,y) stetig ist?
- Ist die Funktion F(x) differenzierbar, wenn f(x,y) nach x differenzierbar?

Stetigkeit parameterabhängiger Integrale.

Satz: *Ist* f(x, y) *stetig auf* $I \times [a, b]$, *so existiert das Integral*

$$F(x) := \int_{0}^{b} f(x, y) dy$$

für alle $x \in I$, und F(x) ist stetig auf I.

Beweis: Sei $x_0 \in I_0 \subset I$, so dass $I_0 \subset I$ kompakt. Dann ist f(x,y) auf dem Kompaktum $I_0 \times [\alpha,b]$ gleichmäßig stetig. Daher gibt es zu $\epsilon > 0$ ein $\delta > 0$ mit

$$|x-x_0|<\delta \implies |f(x,y)-f(x_0,y)|<\epsilon \qquad \text{für } x,x_0\in I_0 \text{ und alle }y\in [a,b].$$

Mit diesem δ und $|x-x_0|<\delta$ für $x,x_0\in I_0$ folgt dann

$$|F(x) - F(x_0)| = \left| \int_a^b (f(x, y) - f(x_0, y)) \, dy \right| \le \int_a^b |f(x, y) - f(x_0, y)| \, dy < \varepsilon(b - a).$$

Somit ist F stetig in x_0 . Da x_0 beliebig gewählt, ist F auf ganz I stetig.

Differenzierbarkeit parameterabhängiger Integrale.

Satz: Ist f(x,y) stetig auf $I \times [a,b]$ und nach x stetig (partiell) differenzierbar, so ist auch F(x) auf dem Intervall I stetig differenzierbar, und es gilt

$$F'(x) = \int_a^b \frac{\partial f}{\partial x}(x, y) \, dy.$$

Beweis: Für $x, x_0 \in I$, $x \neq x_0$, folgt mit dem Mittelwertsatz

$$\frac{F(x)-F(x_0)}{x-x_0}=\int_0^b\frac{f(x,y)-f(x_0,y)}{x-x_0}\,\mathrm{d}y=\int_0^b\frac{\partial f}{\partial x}(\xi,y)\,\mathrm{d}y\qquad\text{ für ein }\xi\in[x_0,x],$$

und damit weiterhin

$$F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \int_0^b \lim_{\xi \to x_0} \frac{\partial f}{\partial x}(\xi, y) \, dy = \int_0^b \frac{\partial f}{\partial x}(x_0, y) \, dy.$$

Somit ist F differenzierbar in x_0 .

Da x_0 beliebig gewählt, ist F auf ganz I differenzierbar.

Zwei Beispiele. Beispiel 1:

$$F(x) = \int_{1}^{\pi} \frac{\sin(tx)}{t} dt \implies F'(x) = \int_{1}^{\pi} \cos(tx) dt.$$

Beispiel 2: Die Bessel-Funktion

$$\begin{split} J_n(x) &:= & \frac{1}{\pi} \int_0^\pi \cos(x \sin(t) - nt) \, dt, \qquad \text{für } n \in \mathbb{Z}, \\ J_n'(x) &= & -\frac{1}{\pi} \int_0^\pi \sin(t) \cdot \sin(x \sin(t) - nt) \, dt, \\ J_n''(x) &= & -\frac{1}{\pi} \int_0^\pi \sin^2(t) \cdot \cos(x \sin(t) - nt) \, dt. \end{split}$$

Bemerkung: Die Bessel-Funktion $J_n(x)$, $n \in \mathbb{Z}$, ist (eine) Lösung der Besselschen Differentialgleichung

$$x^2y^{''}(x) + xy'(x) + (x^2 - n^2)y(x) = 0$$
 für $n \in \mathbb{Z}$.

Beweis: Übung (mit partieller Integration).

Parameterabhängige uneigentliche Integrale.

$$F(x) := \int_{\alpha}^{\infty} f(x, y) dy \qquad \text{für } x \in I.$$

Beispiel: Die Gamma-Funktion:

$$\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt.$$

Definition: Das uneigentliche Integral

$$\int_{a}^{\infty} f(x, y) dy \qquad \text{für } x \in I$$

heißt gleichmäßig konvergent, falls es zu $\varepsilon>0$ eine Konstante $C>\alpha$ gibt mit

$$\left| \int_{y_1}^{y_2} f(x, y) \, dy \right| < \varepsilon \qquad \text{für alle } x \in I \text{ und für alle } y_1, y_2 \ge C.$$

Das Majorantenkriterium.

Bemerkung: Es gilt das Majorantenkriterium, wonach das uneigentliche Integral

$$\int_{0}^{\infty} f(x, y) dy$$

gleichmäßig und absolut konvergiert, falls es eine (gleichmäßige) Majorante g(y) von f(x,y) gibt mit

$$|f(x,y)| \le g(y)$$
 und $\int_{\alpha}^{\infty} g(y) \, dy < \infty$ für alle $x,y \in I$.

Beweis:

$$\left| \int_{a}^{\infty} f(x, y) \, dy \right| \leq \int_{a}^{\infty} |f(x, y)| \, dy \leq \int_{a}^{\infty} g(y) \, dy < \infty.$$

Differenzierbarkeit und gleichmäßige Konvergenz.

Satz: Sei f(x,y) stetig und nach x stetig (partiell) differenzierbar. Weiterhin seien die uneigentlichen Integrale

$$F(x) := \int_{0}^{\infty} f(x, y) dy \quad und \quad \int_{0}^{\infty} \frac{\partial f}{\partial x}(x, y) dy$$

auf (allen) kompakten Teilmengen von I gleichmäßig konvergent. Dann ist F(x) stetig differenzierbar, und die Ableitung F'(x) von F(x) läßt sich durch Differentiation unter dem Integralzeichen gewinnen, d.h. es gilt

$$F'(x) = \int_{a}^{\infty} \frac{\partial f}{\partial x}(x, y) dy.$$

Beweis: Analog wie im Fall von eigentlichen Integralen.

Beispiel: Die Ableitung der Gamma-Funktion:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \qquad \Gamma'(x) = \int_0^\infty e^{-t} t^{x-1} \cdot \log(t) dt.$$

11 Anwendungen der Integralrechnung

11.1 Rotationskörper

Betrachte für eine Funktion f(x) die Rotation des Funktionsgraphen y = f(x) um die x-Achse über dem Intervall [a, b].

Dann gilt für die Querschnittsfläche

$$Q(x) = \pi(f(x))^2$$
 für $x \in [a, b]$.

Damit ergibt sich für den entstehenden Rotationskörper die Volumenformel

$$V_{\text{rot}} = \pi \int_{a}^{b} (f(x))^{2} dx.$$

Prinzip von Cavalieri: Haben zwei Körper die jeweils gleiche Querschnittsfläche, so stimmen ihre Volumina überein.

Beispiel. Durch die Rotation der Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 mit $a, b > 0$

um die x-Achse erhält man ein Rotationsellipsoid mit dem Volumen

$$V_{\text{rot}} = \pi \int_{-a}^{a} \left[b \sqrt{1 - \left(\frac{x}{a}\right)^2} \right]^2 dx$$
$$= \pi b^2 \int_{-a}^{a} \left(1 - \frac{x^2}{a^2} \right) dx$$
$$= \frac{4}{3} \pi a b^2.$$

Speziell bekommt man für a = b = r das Volumen

$$V_{\mathsf{rot}} = \frac{4}{3}\pi r^3$$

der Kugel um Null mit Radius r > 0.

Die Oberfläche eines Rotationskörpers.

Für die Oberfläche (Mantelfläche) eines Rotationskörpers gilt die Formel

$$O_{rot} = 2\pi \int_{a}^{b} y(x) \sqrt{1 + (y'(x))^2} dx$$

Beispiel: Für die Oberfläche der Kugel um Null mit Radius r > 0 gilt mit

$$y = f(x) = \sqrt{r^2 - x^2}$$

die Formel

$$O_{\text{rot}} = 2\pi \int_{-r}^{r} \sqrt{r^2 - x^2} \frac{r}{\sqrt{r^2 - x^2}} dx = 2\pi r \int_{-r}^{r} dx = 4\pi r^2.$$

11.2 Kurven und Bogenlänge

Definition: Sei $c = (c_1, \ldots, c_n) : [a, b] \to \mathbb{R}^n$ eine stetige Funktion.

- Dann wird c als Kurve im \mathbb{R}^n bezeichnet; c(a) heißt Anfangspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene Kurve, falls c(a) = c(b).
- Falls $c : [a,b] \to \mathbb{R}^n$ eine C^1 -Funktion, d.h. jede Koordinatenfunktion $c_j(t)$ ist stetig differenzierbar, so heißt c(t) eine C^1 -Kurve.
- c(t) heißt stückweise C^1 -Kurve, falls es eine Zerlegung

$$a = t_0 < t_1 < ... < t_m = b$$

gibt, so dass c(t) auf jedem Teilintervall $[t_j, t_{j+1}]$ eine C^1 -Funktion ist.

• Die Kurve c heißt glatt, falls

$$\frac{d}{dt}c(t) := \dot{c}(t) = (c_1'(t), \dots, c_n'(t))^\mathsf{T} \neq 0 \qquad \textit{für alle } t \in [\mathfrak{a}, \mathfrak{b}].$$

Beispiele:

Die Kurve

$$c(t) := (\cos(t), \sin(t))^{T}$$
 $t \in [0, 2\pi]$

beschreibt einen Kreis im \mathbb{R}^2 .

• Die Kurve

$$c(t) = (r(t - \sin(t)), r(1 - \cos(t))^{\mathsf{T}}$$

beschreibt eine Zykloide.

Wegen

$$\dot{\mathbf{c}}(\mathbf{t}) = (\mathbf{r}(1 - \cos(\mathbf{t})), \mathbf{r}\sin(\mathbf{t}))^{\mathsf{T}}$$

ist die Kurve an den Stellen $t=2\pi k$, $k\in\mathbb{Z}$, nicht glatt.

Die Kurve

$$c(t) = (r\cos(2\pi t), r\sin(2\pi t), ht)^T$$
 für $t \in \mathbb{R}$

beschreibt eine Schraubenlinie (Helix) mit Radius r und Ganghöhe h.

Umparametrisierung von Kurven.

Ist $c : [a,b] \to \mathbb{R}^n$ eine Kurve und $h : [\alpha,\beta] \to [a,b]$ eine stetige, bijektive und monoton wachsende Abbildung, so hat die Kurve

$$(c \circ h)(\tau) = c(h(\tau))$$
 für $\alpha \le \tau \le \beta$

die gleiche Gestalt und den gleichen Durchlaufsinn wie die Kurve c.

Bemerkungen:

- Man nennt $t = h(\tau)$ eine Umparametrisierung (Parameterwechsel). Die Kurven c und $c \circ h$ werden als gleich angesehen.
- Im Fall einer C^1 -Kurve werden nur C^1 -Parameterwechsel zugelassen.
- Jede stetige Funktion y = f(x), $a \le x \le b$ beschreibt eine Kurve mit

$$c(x) := (x, f(x))^T$$
 für $a \le x \le b$

bzw.
$$c(t) := (a + t(b - a), f(a + t(b - a)))^T$$
 für $0 \le t \le 1$.

Die Bogenlänge einer Kurve.

Sei $Z = \{\alpha = t_0 < t_1 \dots < t_m = b\}$ eine Zerlegung von $[\alpha, b]$, so ist

$$L(Z) := \sum_{j=0}^{m-1} \|c(t_{j+1}) - c(t_j)\|$$

eine untere Schranke für die Bogenlänge der Kurve c(t).

Definition: Ist die Menge $\{L(Z):Z\in \mathbf{Z}[\alpha,b]\}$ nach oben beschränkt, so heißt die Kurve c rektifizierbar, und in diesem Fall ist

$$L(c) := \sup\{L(Z) \,:\, Z \in \boldsymbol{Z}[\alpha,b]\} = \lim_{\|Z\| \to 0} L(Z)$$

die Länge der Kurve c.

Berechnung der Bogenlänge einer C¹-Kurve.

Satz: Jede C¹-Kurve ist rektifizierbar, und es gilt

$$L(c) = \int_{a}^{b} \|\dot{c}(t)\| dt$$

Beweisidee: Zunächst gilt die Darstellung

$$L(Z) = \sum_{j=0}^{m-1} \sqrt{\sum_{k=1}^{n} (c_k(t_{j+1}) - c_k(t_j))^2}$$

und nach dem Mittelwertsatz gibt es Zahlen τ_{k_i} mit $t_j \leq \tau_{k_i} \leq t_{j+1}$, so dass

$$c_k(t_{j+1}) - c_k(t_j) = c'_k(\tau_{k_j}) \cdot (t_{j+1} - t_j),$$

somit

$$L(Z) = \sum_{j=0}^{m-1} \left(\sqrt{\sum_{k=1}^{n} (c'_k(\tau_{k_j}))^2 \cdot (t_{j+1} - t_j)} \right). \quad \blacksquare$$

Beispiel.

Berechnen die Länge eines Zykloidenbogens

$$c(t) = (r(t - \sin(t)), r(1 - \cos(t)))^T$$
 für $0 \le t \le 2\pi$

mit

$$\begin{split} \dot{c}(t) &= (r(1-\cos(t)), r\sin(t))^T \\ \|\dot{c}(t)\| &= r\sqrt{(1-\cos(t))^2 + \sin^2(t)} = 2r\sin(t/2) \\ L(c) &= 2r\int_0^{2\pi} \sin(t/2) \, dt = 8r \end{split}$$

Bemerkung: Die Bogenlänge einer C^1 -Kurve ist unabhängig von der Parametrisierung, denn es gilt

$$L(c \circ h) = \int_{\alpha}^{\beta} \|\dot{c}(h(\tau))h'(\tau)\| d\tau = \int_{\alpha}^{\beta} \|\dot{c}(h(\tau))\|h'(\tau) d\tau = \int_{\alpha}^{b} \|\dot{c}(t)\| dt = L(c)$$

Die Bogenlängenfunktion einer C¹-Kurve.

Definition: *Sei* $c : [a, b] \rightarrow \mathbb{R}$ *eine* C^1 –*Kurve.*

• Die Funktion

$$S(t) := \int_{a}^{t} \|\dot{c}(\tau)\| d\tau$$

heißt die Bogenlängenfunktion von c.

- Ist c glatt, so ist $S : [a,b] \rightarrow [0,L(c)]$ ein C^1 -Parameterwechsel.
- Die Umkehrabbildung $t = S^{-1}(s)$, $0 \le s \le L(c)$, ist dann ebenfalls ein C^1 -Parameterwechsel.
- Die Parametrisierung

$$\tilde{c}(s) = c(S^{-1}(s))$$
 für $0 \le s \le L(c)$

von c nennt man die Parametrisierung nach der Bogenlänge.

Eigenschaften der Bogenlängenparametrisierung.

Bemerkung: Für die Bogenlängenparametrisierung $\tilde{c}(s) = c(S^{-1}(s))$ gilt:

• Die Ableitung von $\tilde{c}(s)$ ist gegeben durch

$$\tilde{c}'(s) = \dot{c}(S^{-1}(s)) \cdot \frac{1}{\|\dot{c}(S^{-1}(s))\|}$$

Daher ist $\tilde{c}'(s)$ ist ein Einheitsvektor, d.h. mit dieser Parametrisierung wird die Kurve mit konstanter Geschwindigkeit 1 durchlaufen. Weiterhin ist $\tilde{c}'(s)$ der Einheitstangentenvektor von c.

• Aus $\langle \tilde{c}'(s), \tilde{c}'(s) \rangle = 1$ folgt durch Differentiation

$$\langle \tilde{\mathbf{c}}''(\mathbf{s}), \tilde{\mathbf{c}}'(\mathbf{s}) \rangle = 0$$

d.h. der Beschleunigungsvektor $\tilde{c}''(s)$ bezüglich der Bogenlänge steht senkrecht auf dem Geschwindigkeitsvektor $\tilde{c}'(s)$.

Hauptnormale und Krümmung.

Definition: Sei $\tilde{c}(s) = c(S^{-1}(s))$ die Bogenlängenparametrisierung der Kurve c.

• Dann bezeichnet man den Vektor

$$n(s) := \frac{\tilde{c}''(s)}{\|\tilde{c}''(s)\|}$$

als den Hauptnormalenvektor von c.

• Die Funktion

$$\kappa(s) := \|\tilde{c}''(s)\|$$
 für $0 \le s \le L(c)$

nennt man die Krümmung von c.

Beispiel: Mit der Parametrisierung des Einheitskreises nach der Bogenlänge:

$$\tilde{c}(s) = (\cos(s), \sin(s))$$
 für $0 \le s \le 2\pi$

$$n(s) = \tilde{c}''(s) = -(\cos(s), \sin(s))$$

$$\kappa(s) \equiv 1$$

Parametrisierungen von Funktionsgraphen.

Betrachte Graph von y = y(x) als Kurve im \mathbb{R}^2 , d.h. $c(x) = (x, y(x))^T$. Dann:

$$c'(x) = (1, y'(x))^{T} ds = \sqrt{1 + (y'(x))^{2}} dx$$

$$L(c) = \int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx \kappa(x) = \frac{|y''(x)|}{(\sqrt{1 + (y'(x))^{2}})^{3}}$$

Betrachte analog für y(x) und z(x) die Kurve $c(x) = (x, y(x), z(x))^T \in \mathbb{R}^3$:

$$c'(x) = (1, y'(x), z'(x))^{T}$$

$$ds = \sqrt{1 + (y'(x))^{2} + (z'(x))^{2}} dx \qquad \text{(Bogenlängenelement)}$$

$$L(c) = \int_{a}^{b} \sqrt{1 + (y'(x))^{2} + (z'(x))^{2}} dx$$

$$\kappa(x) = \frac{\sqrt{(1 + (y')^{2} + (z')^{2})((y'')^{2} + (z'')^{2}) - (y'y'' + z'z'')^{2}}}{\sqrt{(1 + (y')^{2} + (z')^{2})}}$$

Polarkoordinaten und Kugelkoordinaten.

• Für die Polarkoordinaten $r \equiv r(t), \phi \equiv \phi(t)$ im \mathbb{R}^2 gilt:

$$c(t) = (r\cos(\phi), r\sin(\phi))^T$$
 für $a \le t \le b$

$$L(c) = \int_a^b \sqrt{\dot{r}^2 + r^2 \dot{\varphi}^2} dt.$$

• Für die Kugelkoordinaten $r \equiv r(t), \phi \equiv \phi(t), \psi \equiv \psi(t)$ im \mathbb{R}^3 gilt:

$$c(t) = (r\cos(\phi)\cos(\psi), r\sin(\phi)\cos(\psi), r\sin(\psi))^T \qquad \text{für } \alpha \leq t \leq b$$

$$L(c) = \int_{a}^{b} \sqrt{\dot{r}^2 + r^2 \dot{\phi}^2 \cos^2(\psi) + r^2 \dot{\psi}^2} dt.$$

Beispiel: Kardioide in Polarkoordinaten.

Betrachte die Kardioide (Herzlinie) in Polarkoordinaten:

$$r = a(1 + \cos(\phi))$$
 für $a > 0$, $0 \le \phi \le 2\pi$.

Für den Umfang (d.h. Bogenlänge) der Kardioide gilt:

$$L(c) = \int_0^{2\pi} \sqrt{\alpha^2 \sin^2(\phi) + \alpha^2 (1 + \cos(\phi))^2} \, d\phi = 2\alpha \int_0^{2\pi} \left| \cos \frac{\phi}{2} \right| \, d\phi = 8\alpha$$

Die von einer Kurve umschlossene Fläche.

Satz: Für die von einer C^1 -Kurve $c(t) = (x(t), y(t))^T \in \mathbb{R}^2$ überstrichene Fläche gilt:

$$F(c) = \frac{1}{2} \int_{a}^{b} (x(t)\dot{y}(t) - \dot{x}(t)y(t)) dt$$

Beweisskizze: Summiere für eine Zerlegung $Z \in \mathbf{Z}[a,b]$ über die Flächen

$$|F_i| = \frac{1}{2} \|c(t_i) \times c(t_{i+1})\| = \frac{1}{2} (x_i y_{i+1} - x_{i+1} y_i) \qquad \text{ für } 0 \leq i \leq m-1.$$

Beispiel: Die Archimedische Spirale.

Die Archimedische Spirale ist in Polarkoordinaten gegeben durch

$$x = \alpha \varphi \cos(\varphi), \quad y = \alpha \varphi \sin(\varphi), \quad \text{für } \alpha > 0, \ \varphi \in \mathbb{R}$$

Berechnung des Umfangs (Bogenlänge) und der Fläche der innersten Schleife:

$$L(c) = \int_{-\pi/2}^{\pi/2} \sqrt{\alpha^2 + \alpha^2 \varphi^2} d\varphi$$

$$= \frac{\alpha}{2} \left[\varphi \sqrt{1 + \varphi^2} + \log \left(\varphi + \sqrt{1 + \varphi^2} \right) \right]_{-\pi/2}^{\pi/2} \approx 4.158\alpha$$

und mit

$$x\dot{y} - \dot{x}y = r^2\dot{\phi}$$

gilt

$$F = \frac{1}{2} \int_{-\pi/2}^{\pi/2} r^2 d\varphi = \frac{\alpha^2}{2} \int_{-\pi/2}^{\pi/2} \varphi^2 d\varphi \approx 1.292\alpha^2.$$

11.3 Kurvenintegrale

Definition: Sei $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$, eine stetige Funktion und $c: [a, b] \to D$ eine stückweise C^1 -Kurve. Dann wird das Kurvenintegral (Linienintegral) von f(x) längs c definiert durch

$$\int_{c} f(x) ds := \int_{a}^{b} f(c(t)) ||\dot{c}(t)|| dt.$$

Notation: Für eine **geschlossene** Kurve c schreibt man auch

$$\oint_{c} f(s) ds.$$

Parametrisierungsinvarianz von Kurvenintegralen.

Satz: Das Kurvenintegral ist unabhängig von der Parametrisierung der Kurve.

Beweis: Für einen Parameterwechsel $h : [\alpha, \beta] \to [a, b]$ einer Kurve c gilt

$$\int_{c \circ h} f(x) ds = \int_{\alpha}^{\beta} f(c(h(\tau))) \left\| \frac{d}{d\tau} c(h(\tau)) \right\| d\tau$$

$$= \int_{\alpha}^{\beta} f(c(h(\tau))) \left\| \dot{c}(h(\tau)) \right\| h'(\tau) d\tau$$

$$= \int_{\alpha}^{b} f(c(t)) \left\| \dot{c}(t) \right\| dt$$

$$= \int_{c}^{b} f(x) ds$$

Beispiel. Betrachte einen krummlinigen mit Masse belegten Draht, beschrieben durch eine C^1 -Kurve c und mit der (inhomogenen) Massendichte ρ .

• Für die Gesamtmasse des Drahtes bekommt man

$$\int_{c} \rho(x) \, ds := \int_{a}^{b} \rho(c(t)) \, \|\dot{c}(t)\| \, dt.$$

• Der Schwerpunkt des Drahtes liegt bei

$$x_{S} = \frac{\int_{c} \rho(x) x \, ds}{\int_{c} \rho(x) \, ds}$$

• Das Trägheitsmoment des Drahtes ist gegeben durch

$$\theta = \int_{c} \rho(x) r^{2}(x) \, ds$$

wobei r(x) der Abstand von der Drehachse ist.

12 Fourier-Analysis

12.1 Grundlegende Begriffe

Definition: Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ (oder $f: \mathbb{R} \to \mathbb{C}$) heißt periodisch mit der Periode T (oder T-periodisch), falls

$$f(t+T)=f(t)$$
 für alle $t \in \mathbb{R}$.

Ziel: Entwicklung einer periodischen Funktion f in eine Fourier-Reihe

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$$

Grundschwingungen: $cos(\omega t)$, $sin(\omega t)$

Oberschwingungen: $cos(k\omega t)$, $sin(k\omega t)$, k = 2, 3, ...

Bemerkungen.

- Ist T eine Periode von f, so auch kT, $k \in \mathbb{Z}$, eine Periode von f.
- Sind T₁ und T₂ Perioden von f, so sind auch

$$k_1T_1 + k_2T_2$$
 für $k_1, k_2 \in \mathbb{Z}$

Perioden von f.

- Existiert eine kleinste positive Periode T > 0 von f, so ist die Menge der Perioden von f gegeben durch kT, $k \in \mathbb{Z}$. Jede nichtkonstante, stetige und periodische Funktion f besitzt eine solche kleinste Periode.
- Sind f und g T-periodisch, so ist auch $\alpha f + \beta g$, $\alpha, \beta \in \mathbb{R}$, T-periodisch.
- Ist f T-periodisch und integrierbar (über kompakten Intervallen), so gilt

$$\int_0^T f(t) dt = \int_a^{a+T} f(t) dt$$

für beliebige $\alpha \in \mathbb{R}$.

Periodische Fortsetzungen.

Definition: Eine Funktion g(t), $t \in [0,T]$ bzw. $t \in [0,T/2]$ läßt sich zu einer T-periodischen Funktion $f: \mathbb{R} \to \mathbb{R}$ wie folgt fortsetzen.

• Direkte Fortsetzung.

$$f(t) := g(t - kT)$$
 für $kT \le t < (k + 1)T$

• Gerade Fortsetzung. Sei g(t) auf [0, T/2] gegeben. Dann setze

$$f(t) := g(t - kT)$$
 für $\left(\frac{2k-1}{2}\right)T \le t < \left(\frac{2k+1}{2}\right)T$,

wobei g zunächst an der y-Achse gespiegelt wird:

$$g(t) := g(-t),$$
 für $-\frac{T}{2} \le t < 0.$

• Ungerade Fortsetzung. Wie oben, aber Spiegelung um Ursprung:

$$g(t) := -g(-t),$$
 für $-\frac{T}{2} \le t < 0.$

Fourier-Reihen und trigonometrische Polynome.

Definition:

• Eine Reihe der Form

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \qquad \textit{mit } a_k, b_k \in \mathbb{R} \textit{ (oder } \mathbb{C} \textit{)}$$

heisst Fourier-Reihe (oder trigonometrische Reihe). Dabei sei

$$\omega = \frac{2\pi}{\mathsf{T}} > 0.$$

• Die zugehörigen Partialsummen

$$f_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \qquad \textit{mit } a_k, b_k \in \mathbb{R} \textit{ (oder } \mathbb{C} \textit{)}$$

der Fourier-Reihe f(t) heißen trigonometrische Polynome vom Grad n.

Komplexe Schreibweise der Fourier-Reihe.

• Es gilt die Eulersche Formel

$$e^{ix} = \cos(x) + i\sin(x)$$
 für alle $x \in \mathbb{R}$,

womit

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \quad \text{ und } \quad \sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

• Damit lassen sich die trigonometrischen Polynome wie folgt darstellen.

$$\begin{split} f_n(t) &= \frac{a_0}{2} + \sum_{k=1}^n \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \\ &= \frac{a_0}{2} + \sum_{k=1}^n \left[\frac{a_k}{2} \left(e^{ik\omega t} + e^{-ik\omega t} \right) + \frac{b_k}{2i} \left(e^{ik\omega t} - e^{-ik\omega t} \right) \right] \\ &= \frac{a_0}{2} + \sum_{k=1}^n \left[\frac{a_k - ib_k}{2} e^{ik\omega t} + \frac{a_k + ib_k}{2} e^{-ik\omega t} \right] \end{split}$$

Komplexe Schreibweise der Fourier-Reihe.

• Somit kann man die trigonometrischen Polynome schreiben als

$$f_n(t) = \sum_{k=-n}^n \gamma_k e^{ik\omega t}$$
 für $t \in \mathbb{R}$

mit den Koeffizienten

$$\gamma_0 = \frac{1}{2}a_0, \qquad \gamma_k = \frac{1}{2}(a_k - ib_k), \qquad \gamma_{-k} = \frac{1}{2}(a_k + ib_k),$$

womit gilt

$$a_0 = 2\gamma_0,$$
 $a_k = \gamma_k + \gamma_{-k},$ $b_k = i(\gamma_k - \gamma_{-k}).$

• Für die Darstellung der Fourier-Reihe bekommt man somit

$$f(t) = \lim_{n \to \infty} \sum_{k=-n}^n \gamma_k e^{ik\omega t} = \sum_{k=-\infty}^\infty \gamma_k e^{ik\omega t} = \sum_{k \in \mathbb{Z}} \gamma_k e^{ik\omega t} \qquad \text{für } t \in \mathbb{R}.$$

Wichtige Frage: Konvergiert die Fourier-Reihe (punktweise oder gleichmäßig)?

Orthonormalität der Basisfunktionen.

Satz: Die Funktionen $e^{ik\omega t}$, $k \in \mathbb{Z}$, $\omega = 2\pi/T$, bilden ein Orthonormalsystem bezüglich des Skalarprodukts

$$\langle u, v \rangle := \frac{1}{T} \int_0^T \overline{u(t)} v(t) dt.$$

Beweis: Einerseits

$$\langle e^{ik\omega t}, e^{ik\omega t} \rangle = \frac{1}{T} \int_0^T e^{-ik\omega t} e^{ik\omega t} dt = \frac{1}{T} \int_0^T 1 dt = 1,$$

andererseits

$$\langle e^{ik\omega t}, e^{i\ell\omega t} \rangle = \frac{1}{T} \int_0^T e^{i(\ell-k)\omega t} dt = \frac{1}{T} \frac{1}{i(\ell-k)\omega} e^{i(\ell-k)\omega t} \Big|_{t=0}^{t=T} = 0$$

für $k \neq \ell$.

Berechnung der Fourier-Koeffizienten.

Satz: Konvergiert die Fourier-Reihe

$$\lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \sum_{k=-n}^n \gamma_k e^{ik\omega t}$$

auf [0, T] gleichmäßig gegen eine Funktion f, so ist f stetig und es gilt:

$$\gamma_k = \frac{1}{T} \int_0^T f(t) e^{-ik\omega t} dt$$
 für $k \in \mathbb{Z}$.

Beweis: Da f_n stetig und gleichmäßig gegen f konvergieren, ist f stetig. Weiterhin:

$$\begin{split} \int_0^T f(t) e^{-i\ell\omega t} \, dt &= \int_0^T \sum_{k\in\mathbb{Z}} \gamma_k e^{ik\omega t} e^{-i\ell\omega t} \, dt \\ &= \sum_{k\in\mathbb{Z}} \gamma_k \int_0^T e^{ik\omega t} e^{-i\ell\omega t} \, dt = \gamma_\ell \cdot T. \end{split}$$

Orthonormalität und Fourier-Koeffizienten in \mathbb{R} .

$$\begin{split} \int_0^T \cos(k\omega t) \cos(\ell\omega t) \, dt &= \begin{cases} 0 &: \ k \neq \ell \\ T/2 &: \ k = \ell \neq 0 \\ T &: \ k = \ell = 0 \end{cases} \\ \int_0^T \sin(k\omega t) \sin(\ell\omega t) \, dt &= \begin{cases} 0 &: \ k \neq \ell \\ T/2 &: \ k = \ell \neq 0 \end{cases} \\ \int_0^T \sin(k\omega t) \cos(\ell\omega t) \, dt &= 0 \end{cases} \\ \alpha_k &= \frac{2}{T} \int_0^T f(t) \cos(k\omega t) \, dt \quad \text{für } k \geq 0 \\ b_k &= \frac{2}{T} \int_0^T f(t) \sin(k\omega t) \, dt \quad \text{für } k > 0 \end{split}$$

12.2 Fourier-Reihen

Definition:

- Eine Funktion f: [a, b] → C heißt stückweise stetig bzw. stückweise stetig differenzierbar, falls f(t) bis auf endlich viele Stellen auf [a, b] stetig bzw. stetig differenzierbar ist und in diesen Ausnahmepunkten die einseitigen Grenzwerte von f(t) bzw. f'(t) existieren.
- Für eine stückweise stetige Funktion $f:[0,T] \to \mathbb{C}$ werden die Fourier-Koeffizienten von f(t) definiert durch

$$\gamma_k := \frac{1}{T} \int_0^T f(t) e^{-ik\omega t} dt$$
 für $k \in \mathbb{Z}$

Dabei ist $\omega = 2\pi/T$ die Kreisfrequenz.

Bemerkung: Mit den (komplexen) Fourier-Koeffizienten γ_k bekommt man die (reellen) Fourier-Koeffizienten

$$\begin{array}{ll} a_k & := & \displaystyle \frac{2}{T} \int_0^T f(t) \cos(k\omega t) \, dt & \quad \text{für } k \geq 0 \\ \\ b_k & := & \displaystyle \frac{2}{T} \int_0^T f(t) \sin(k\omega t) \, dt & \quad \text{für } k > 0 \end{array}$$

Definition: Die mit den Fourier-Koeffizienten gebildete Reihe

$$F_f(t) = \sum_{k=-\infty}^{\infty} \gamma_k e^{ik\omega t} = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} [\alpha_k \cos(k\omega t) + b_k \sin(k\omega t)]$$

heißt die Fourier-Reihe von f(t).

Bemerkung: Bei der obigen Definition verwendet man die **direkte Fortsetzung** der Funktion $f:[0,T] \to \mathbb{C}$ zu einer T-periodischen Funktion. Notation:

$$f(t) \sim \sum_{k=-\infty}^{\infty} \gamma_k e^{ik\omega t}$$
.

Satz: Sei f(t) eine stückweise stetige, T-periodische Funktion. Dann gilt:

$$f(t) \textit{ gerade } \implies \alpha_k = \frac{4}{T} \int_0^{T/2} f(t) \cos(k\omega t) \, dt \quad \textit{ und } \quad b_k = 0$$

$$f(t)$$
 ungerade \implies $a_k = 0$ und $b_k = \frac{4}{T} \int_0^{1/2} f(t) \sin(k\omega t) dt$.

Beweis: Beispielsweise gilt für f gerade (argumentiere für f ungerade analog):

$$\begin{split} b_k &= \frac{2}{T} \int_0^T f(t) \sin(k\omega t) \, dt = \frac{2}{T} \int_0^{-T} f(-\tau) \sin(k\omega \tau) \, d\tau \\ &= -\frac{2}{T} \int_{-T}^0 f(\tau) \sin(k\omega \tau) \, d\tau = -\frac{2}{T} \int_0^T f(\tau) \sin(k\omega \tau) \, d\tau = -b_k. \end{split}$$

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\omega t) dt = \frac{2}{T} \left[\int_{-T/2}^{0} f(t) \cos(k\omega t) dt + \int_{0}^{T/2} f(t) \cos(k\omega t) dt \right]$$

$$= \frac{2}{T} \left[\int_{0}^{T/2} f(-\tau) \cos(k\omega \tau) dt + \int_{0}^{T/2} f(t) \cos(k\omega t) dt \right] = \frac{4}{T} \left[\int_{0}^{T/2} f(t) \cos(k\omega t) dt \right].$$

Beispiel: Die Sägezahnfunktion.

Betrachte die Sägezahnfunktion

$$S(t) := \left\{ \begin{array}{rcl} 0 & : & \text{für } t = 0 \text{ oder } t = 2\pi \\ \frac{1}{2}(\pi - t) & : & \text{für } 0 < t < 2\pi \end{array} \right.$$

Die Sägezahnfunktion ist ungerade, also gilt (mit $\omega = 1$)

$$a_k = 0$$
 und $b_k = \frac{2}{\pi} \int_0^{\pi} \frac{\pi - t}{2} \sin(kt) dt = \frac{1}{k}$

und damit bekommt man die Fourier-Reihe

$$S(t) \sim \sin(t) + \frac{\sin(2t)}{2} + \frac{\sin(3t)}{3} + \dots$$

Approximation der Sägezahnfunktion durch 10. Partialsumme

$$S_{10}(t) = \sum_{k=1}^{10} \frac{\sin(kt)}{k}.$$

Beispiel: Die Rechteckschwingung.

Betrachte die Rechteckschwingung

$$R(t) := \left\{ \begin{array}{rl} 0 & : & \text{f\"{u}r} \ t = 0, t = \pi \ \text{oder} \ t = 2\pi \\ \\ 1 & : & \text{f\"{u}r} \ 0 < t < \pi \\ \\ -1 & : & \text{f\"{u}r} \ \pi < t < 2\pi \end{array} \right.$$

Die Funktion ist ungerade, also gilt:

$$a_k = 0$$

$$b_k = \frac{2}{\pi} \int_0^{\pi} \sin(kt) dt = \begin{cases} 0 : & \text{für k gerade;} \\ \frac{4}{k\pi} : & \text{für k ungerade.} \end{cases}$$

Die Fourier-Reihe von R(t) lautet daher

$$R(t) \sim \frac{4}{\pi} \left(\frac{\sin(t)}{1} + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \ldots \right).$$

Noch ein Beispiel.

Betrachte $f(t) = t^2$, $-\pi < t < \pi$ mit direkter 2π -periodischer Fortsetzung.

Die Fortsetzung ist gerade, damit folgt

$$a_k = \frac{2}{\pi} \int_0^\pi t^2 \cos(kt) \, dt = \begin{cases} \frac{2\pi^2}{3} & : & \text{für } k = 0 \\ (-1)^k \frac{4}{k^2} & : & \text{für } k = 1, 2, \dots \end{cases}$$

Damit bekommt man die Fourier-Reihe

$$f(t) \sim \frac{\pi^2}{3} - \frac{4\cos(t)}{1^2} + \frac{4\cos(2t)}{2^2} \mp \dots$$

Rechenregeln für Fourier-Reihen.

Für $f, g: \mathbb{R} \to \mathbb{C}$ stückweise stetig, T-periodisch mit

$$f(t) \sim \sum_{k=-\infty}^{\infty} \gamma_k e^{\mathrm{i}k\omega t} \quad \text{ und } \quad g(t) \sim \sum_{k=-\infty}^{\infty} \delta_k e^{\mathrm{i}k\omega t}$$

gelten die folgenden Rechenregeln.

• Linearität:

$$\alpha f(t) + \beta g(t) \sim \sum_{k=-\infty}^{\infty} (\alpha \gamma_k + \beta \delta_k) e^{ik\omega t}$$

• Konjugation:

$$\overline{f(t)} \sim \sum_{k=-\infty}^{\infty} \overline{\gamma_{-k}} e^{ik\omega t}$$

• Zeitumkehr:

$$f(-t) \sim \sum_{k=-\infty}^{\infty} \gamma_{-k} e^{ik\omega t}$$

Weitere Rechenregeln für Fourier-Reihen.

• Streckung:

$$f(ct) \sim \sum_{k=-\infty}^{\infty} \gamma_k e^{ik(c\omega)t}$$
 für $c > 0$

• Verschiebung:

$$\begin{array}{lll} f(t+\alpha) & \sim & \displaystyle\sum_{k=-\infty}^{\infty} \left(\gamma_k e^{\mathrm{i}k\omega\alpha}\right) e^{\mathrm{i}k\omega t} & \text{ für } \alpha \in \mathbb{R} \\ \\ e^{\mathrm{i}n\omega t} f(t) & \sim & \displaystyle\sum_{k=-\infty}^{\infty} \gamma_{k-n} e^{\mathrm{i}k\omega t} & \text{ für } n \in \mathbb{Z} \end{array}$$

Noch mehr Rechenregeln für Fourier-Reihen.

• Ableitung: Ist f(t) stetig und stückweise differenzierbar, so gilt

$$f'(t) \sim \sum_{k=-\infty}^{\infty} (ik\omega\gamma_k)e^{ik\omega t}$$

$$= \sum_{k=1}^{\infty} (k\omega) [b_k \cos(k\omega t) - a_k \sin(k\omega t)]$$

• Integration: Gilt $a_0 = \gamma_0 = \int_0^T f(t) dt = 0$, so folgt

$$\int_0^t f(\tau) d\tau \sim -\frac{1}{T} \int_0^T \tau f(\tau) d\tau - \sum_{k=1}^{\infty} \left[\frac{b_k}{k\omega} \cos(k\omega t) - \frac{a_k}{k\omega} \sin(k\omega t) \right]$$

Konvergenzsatz.

Satz: Sei $f : \mathbb{R} \to \mathbb{C}$ T-periodisch und stückweise stetig differenzierbar. Dann gelten die folgenden Konvergenzaussagen für die zugehörige Fourier-Reihe

$$F_f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \qquad \textit{für } t \in \mathbb{R}.$$

• Die Fourier-Reihe konvergiert punktweise und für alle $t \in \mathbb{R}$ gilt

$$F_f(t) = \frac{1}{2} \left[f(t^+) + f(t^-) \right]$$
 für $t \in \mathbb{R}$.

• In allen kompakten Intervallen [a, b], in denen f(t) stetig ist, ist die Konvergenz der Fourier-Reihe gleichmäßig.

Bemerkung:

Die Stetigkeit von f(t) reicht für die Konvergenz der Fourier-Reihe nicht aus. \square

Beispiel: Die Sägezahnfunktion.

$$S(t) := \left\{ \begin{array}{rcl} 0 & : & \text{für } t = 0 \text{ oder } t = 2\pi \\ \frac{1}{2}(\pi - t) & : & \text{für } 0 < t < 2\pi \end{array} \right.$$

Fehlerfunktion: Definiere für $0 < t < 2\pi$

$$R_n(t) := \frac{1}{2}(t-\pi) + \sin(t) + \frac{\sin(2t)}{2} + \ldots + \frac{\sin(nt)}{n}$$

Es gilt:

$$1 + 2\cos(t) + 2\cos(2t) \dots + 2\cos(nt) = \frac{\sin\left[\left(n + \frac{1}{2}\right)t\right]}{\sin(t/2)}$$

Integration:

$$\int_{\pi}^{t} \frac{\sin\left[\left(n+\frac{1}{2}\right)\tau\right]}{\sin(\tau/2)} d\tau = (t-\pi) + 2\sin(t) + 2\frac{\sin(2t)}{2} + \ldots + 2\frac{\sin(nt)}{n}$$

Daraus folgt:

$$\begin{split} R_n(t) &= \int_{\pi}^t \frac{\sin\left[\left(n+\frac{1}{2}\right)\tau\right]}{2\sin(\tau/2)} \, d\tau \\ &= \frac{-\cos\left[\left(n+\frac{1}{2}\right)t\right]}{(2n+1)\sin(t/2)} + \frac{1}{2n+1} \int_{\pi}^t \cos\left(\left(n+\frac{1}{2}\right)\tau\right) \frac{d}{d\tau} \left(\frac{1}{\sin(\tau/2)}\right) \, d\tau \\ &= \frac{-\cos\left[\left(n+\frac{1}{2}\right)t\right]}{(2n+1)\sin(t/2)} + \frac{\cos\left[\left(n+\frac{1}{2}\right)\xi\right]}{(2n+1)} \left(\frac{1}{\sin(t/2)} - 1\right) \quad \text{für } \xi \in [\pi,t], \end{split}$$

und daher

$$|R_n(t)| \le \frac{2}{(2n+1)\sin(t/2)}$$

Ist $t \in (0, 2\pi)$ fest, so gilt:

$$|R_n(t)| \to 0$$
 $t \to \infty$

Approximation im quadratischen Mittel.

Satz: Sei $f : \mathbb{R} \to \mathbb{C}$ eine T-periodische, stückweise stetige Funktion, und seien

$$S_n(t) := \frac{a_0}{2} + \sum_{k=1}^n \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$$

die Partialsummen der zugehörigen Fourier-Reihe von f. Für den linearen Raum

$$T_n := \textit{span} \ \left\{ \frac{1}{\sqrt{2}}, cos(\omega t), \ldots, cos(n\omega t), sin(\omega t), \ldots, sin(n\omega t) \right\} \subset C(\mathbb{R})$$

der trigonometrischen Polynome mit dem Skalarprodukt

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{2}{\mathsf{T}} \int_{0}^{\mathsf{T}} \overline{\mathbf{u}(\mathsf{t})} \mathbf{v}(\mathsf{t}) d\mathsf{t}$$

gilt

$$\|f - S_n\| \le \|f - \phi\|$$
 für alle $\phi \in T_n$,

d.h. S_n ist Bestapproximation and f aus T_n bezüglich $\|\cdot\|$.

Beweis: Die Funktionen

$$\phi_0(t) \equiv \frac{1}{\sqrt{2}}, \quad \phi_k(t) = \cos(k\omega t), \quad \psi_k(t) = \sin(k\omega t) \qquad k = 1, 2, \dots, n$$

bilden eine Orthonormalbasis des linearen Teilraums $T_n \subset C(\mathbb{R})$.

Dann ist die Bestapproximation $s^* \in T_n$ aus T_n an $f \in C(\mathbb{R})$ gegeben durch die orthogonale Projektion von f auf T_n :

$$\begin{split} s^*(t) &= \langle f, \phi_0 \rangle \phi_0(t) + \sum_{k=1}^n \left[\langle f, \phi_k \rangle \phi_k(t) + \langle f, \psi_k \rangle \psi_k(t) \right] \\ &= \frac{a_0}{\sqrt{2}} \phi_0(t) + \sum_{k=1}^n \left[a_k \phi_k(t) + b_k \psi_k(t) \right] \\ &= S_n(t), \end{split}$$

wobei $a_0=\sqrt{2}< f, \phi_0>$, $a_k=< f, \phi_k>$ und $b_k=< f, \psi_k>$ für $k=1,2,\ldots,n.$

Die Besselsche Ungleichung.

Satz: Es gilt die Besselsche Ungleichung $||S_n||^2 \le ||f||^2$, d.h.

$$\frac{|a_0|^2}{2} + \sum_{k=1}^n \left[|a_k|^2 + |b_k|^2 \right] \le \frac{2}{T} \int_0^T |f(t)|^2 dt.$$

Beweis: Es gilt

$$\begin{split} 0 & \leq & \|f - S_n\|^2 = < f - S_n, f - S_n > = \|f\|^2 - 2\text{Re} < f, S_n > + \|S_n\|^2 \\ & = & \|f\|^2 - 2\text{Re} < f, \frac{\alpha_0}{\sqrt{2}}\phi_0 + \sum_{k=1}^n (\alpha_k\phi_k + b_k\psi_k) > + \|S_n\|^2 \\ & = & \|f\|^2 - 2\text{Re} \left(< f, \frac{\alpha_0}{\sqrt{2}}\phi_0 > + \sum_{k=1}^n \left[\alpha_k < f, \phi_k > + b_k < f, \psi_k > \right] \right) + \|S_n\|^2 \\ & = & \|f\|^2 - 2\left(\frac{|\alpha_0|^2}{2} + \sum_{k=1}^n \left[|\alpha_k|^2 + |b_k|^2 \right] \right) + \|S_n\|^2 = \|f\|^2 - \|S_n\|^2 \end{split}$$

Das Riemannsche Lemma.

Folgerung: Aus der Besselschen Ungleichung folgt insbesondere die Konvergenz der beiden Reihen

$$\sum_{k=1}^{\infty} |a_k|^2 \qquad \text{ und } \qquad \sum_{k=1}^{\infty} |b_k|^2$$

und damit gilt das Riemannsche Lemma

$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} b_k = 0.$$

Konvergenzgeschwindigkeit.

Satz: Ist eine T-periodische Funktion $f: \mathbb{R} \to \mathbb{R}$ (oder $f: \mathbb{R} \to \mathbb{C}$) stückweise (m+1)-fach stetig differenzierbar, und sind die Ableitungen

$$f^{(0)}, f^{(1)}, \dots, f^{(m-1)}$$

stetig auf \mathbb{R} , so gibt es eine Konstante C > 0 mit

$$|\gamma_k| \leq \frac{C}{|k|^{m+1}}$$
 für $k = \pm 1, \pm 2, \dots$

Fazit: Je glatter f, desto schneller konvergiert die Fourier-Reihe F_f gegen f.

Beweis: Reicht zu zeigen für m=0. Sei f(t) stückweise stetig differenzierbar mit Unstetigkeitsstellen

$$0 = t_0 < t_1 < \ldots < t_m = T$$
.

Dann bekommt man mit partieller Integration

$$\begin{split} T \cdot \gamma_k &= \int_0^T f(t) e^{-ik\omega t} \, dt \\ &= -\frac{1}{ik\omega} \sum_{j=0}^{m-1} \left[f(t) e^{-ik\omega t} \Big|_{t_j^+}^{t_{j+1}^-} - \int_{t_j}^{t_{j+1}} f'(t) e^{-ik\omega t} \, dt \right] \end{split}$$

und somit

$$\begin{aligned} |\gamma_{k}| & \leq & \frac{1}{T} \cdot \frac{1}{k} \left[\frac{1}{\omega} \sum_{j=0}^{m-1} \left[|f(t_{j+1}^{-})| + |f(t_{j}^{+})| \right] + \frac{1}{\omega} \int_{0}^{T} |f'(t)| \, dt \right] \\ & = & \frac{C}{|k|}, \qquad \text{mit } C \equiv C(f). \end{aligned}$$

Die Parsevalsche Gleichung.

Bemerkung. Für $n \to \infty$ geht die Besselsche Ungleichung in Gleichheit über, d.h. es gilt die Parsevalsche Gleichung $\lim_{n\to\infty} \|S_n\|^2 = \|f\|^2$, d.h.

$$\frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} \left[|a_k|^2 + |b_k|^2 \right] = \frac{2}{T} \int_0^T |f(t)|^2 dt,$$

denn die Fourier-Reihe konvergiert im quadratischen Mittel gegen f, d.h.

$$\lim_{n\to\infty}\|f-S_n\|=0.$$

Beispiel: Für die Rechteckschwingung R(t) gilt $\frac{2}{T}\int_0^T|f(t)|^2~dt=2$. Da $\alpha_k=0$ für alle $k\in\mathbb{N}_0$, gilt weiterhin

$$\sum_{k=1}^{\infty} |b_k|^2 = \frac{16}{\pi^2} \left(\frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right) = \frac{16}{\pi^2} \cdot \frac{\pi^2}{8} = 2.$$

Eindeutigkeitssatz.

Satz: Seien f(t) und g(t) zwei T-periodische stückweise stetige Funktionen mit

$$\begin{array}{ll} f(t) &=& \displaystyle \frac{1}{2} \left(f(t^-) + f(t^+) \right) & \text{ für alle } t \in [0,T]; \\ \\ g(t) &=& \displaystyle \frac{1}{2} \left(g(t^-) + g(t^+) \right) & \text{ für alle } t \in [0,T]. \end{array}$$

Weiterhin besitzen f und g dieselben Fourier-Koeffizienten, d.h. es gilt

$$\int_0^T f(t) \cos(k\omega t) \, dt = \int_0^T g(t) \cos(k\omega t) \, dt \qquad \text{für alle } k \in \mathbb{N}_0;$$

$$\int_0^T f(t) \sin(k\omega t) \, dt = \int_0^T g(t) \sin(k\omega t) \, dt \qquad \text{für alle } k \in \mathbb{N}.$$

Dann stimmen f und g auf ganz \mathbb{R} überein, d.h. es gilt $f \equiv g$.

13 Numerische Quadratur

Ausgangssituation: Zu berechnen sei ein bestimmtes Integral

$$I = I[f] = \int_{a}^{b} f(x) dx$$

mit einem *numerischen* Algorithmus.

Verwenden Numerische Quadratur (Quadraturformel) der Form

$$I[f] \approx I_n[f] = \sum_{i=0}^n g_i f(x_i)$$

mit

- Knoten $x_i \in [a, b]$, für $i = 0, 1, \ldots, n$;
- Gewichten g_i für i = 0, 1, ..., n.

13.1 Newton-Cotes Formeln

Grundidee: Verwende Interpolationspolynom p_n zu Daten

$$(x_i, f(x_i))$$
 $i = 0, 1, \dots, n$

und integriere die Interpolante

$$p_n(x) = \sum_{i=0}^n L_i(x)f(x_i) \qquad \text{mit } L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Ergebnis: Quadraturformel

$$I_n[f] = \int_a^b p_n(x) dx = \sum_{i=0}^n g_i f(x_i)$$

mit Gewichten

$$g_i = \int_a^b L_i(x) dx$$
 für $0 \le i \le n$.

Konstruktion der Newton-Cotes Formeln.

Vereinfachung: Verwenden äquidistante Knoten

$$x_i = a + ih$$
, $0 \le i \le n$, wobei $h = (b - a)/n$.

Ergebnis: Newton-Cotes-Quadraturformel

$$I_n[f] = \int_a^b p_n(x) dx = (b - a) \sum_{i=0}^n \alpha_{in} f(x_i)$$

mit Gewichten

$$\alpha_{in} = \frac{1}{b-a} \int_a^b \prod_{\stackrel{j=0}{j \neq i}}^n \frac{x-x_j}{x_i-x_j} dx = \frac{1}{n} \int_0^n \prod_{\stackrel{j=0}{j \neq i}}^n \frac{s-j}{i-j} ds \qquad \text{für } 0 \leq i \leq n,$$

unter Verwendung der Substitution s = (x - a)/h.

Die Trapezregel.

Wähle n = 1 und somit $x_0 = a$ und $x_1 = b$. Damit gilt

$$p_1(x) = \frac{x - a}{b - a} \cdot f(b) + \frac{b - x}{b - a} \cdot f(a)$$

und somit bekommt man die beiden Gewichte

$$\alpha_{01} = \int_0^1 (1-x) dx = \frac{1}{2}$$

 $\alpha_{11} = \int_0^1 x dx = \frac{1}{2}$

Daraus folgt die Trapezregel

$$I[f] \approx I_1[f] = (b-a) \cdot \frac{f(a) + f(b)}{2}.$$

Die Simpsonregel.

Wähle n = 2 und somit

$$x_0 = a$$
, $x_1 = \frac{b+a}{2}$, $x_2 = b$.

Damit bekommt man die drei Gewichte

$$\alpha_{02} = \frac{1}{4} \int_0^2 (x-1)(x-2) dx = \frac{1}{6}$$

$$\alpha_{12} = \frac{1}{2} \int_0^2 x(2-x) dx = \frac{2}{3}$$

$$\alpha_{22} = \frac{1}{4} \int_0^2 x(x-1) dx = \frac{1}{6}$$

Daraus folgt die Simpsonregel

$$I[f] \approx I_2[f] = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right).$$

Zwei weitere Newton-Cotes-Formeln.

• 3/8-Regel.

$$I_3[f] = \frac{b-a}{8} \left(f(a) + 3f\left(a + \frac{b-a}{3}\right) + 3f\left(a + 2\frac{(b-a)}{3}\right) + f(b) \right)$$

• Milne-Regel.

$$I_{4}[f] = \frac{b-a}{90} \left[7f(a) + 32f\left(a + \frac{b-a}{4}\right) + 12f\left(a + \frac{b-a}{2}\right) + 32f\left(a + 3\frac{(b-a)}{4}\right) + 7f(b) \right]$$

Übersicht: Gewichte der Newton-Cotes Formeln.

n			α_{in}			
1	$\frac{1}{2}$	1/2				Trapezregel
2	$\frac{1}{6}$	$\frac{4}{6}$	1 6			Simpson-Regel
3	1/8	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$		3/8-Regel
4	$\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$	Milne-Regel

Satz:

Die Newton-Cotes-Formel $I_n[f]$ integriert Polynome vom Grad $\leq n$ exakt.

Beweis: Das Interpolationspolynom $p_n \in \mathcal{P}_n$ zu den n+1 Daten $(x_i, f(x_i))$, $0 \le i \le n$, rekonstruiert $f \in \mathcal{P}_n$ exakt, d.h. $f \equiv p_n$, und daher gilt

$$I[f] = I[p_n] = \int_a^b p_n(x) dx = I_n[f]$$
 für alle $f \in \mathcal{P}_n$.

Quadraturfehler der Newton-Cotes Formeln.

 $R_n[f] := I_n[f] - I[f]$ heißt Quadraturfehler der Quadraturformel $I_n(f)$.

Erinnerung: Darstellung für den Interpolationsfehler:

$$f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \cdot \prod_{i=0}^{n} (x - x_i)$$

Beispiel: Für den Quadraturfehler der Trapezregel (n = 1) gilt

$$R_{1}[f] = \int_{a}^{b} (p_{1}(x) - f(x)) dx = -\int_{a}^{b} \frac{f^{(2)}(\xi)}{2!} (x - a)(x - b) dx$$
$$= -\frac{f^{(2)}(\xi)}{2} \int_{a}^{b} (x - a)(x - b) dx = \frac{1}{12} f^{(2)}(\xi)(b - a)^{3}$$

und somit gilt für $h=b-\alpha$ die Fehlerabschätzung

$$|R_1[f]| = |I_1[f] - I[f]| \le \frac{1}{12} ||f^{(2)}||_{\infty} \cdot h^3.$$

Quadraturfehler der Newton-Cotes Formeln.

n	$R_n[f]$	
1	$h^3 \frac{1}{12} f^{(2)}(\xi)$	Trapezregel
2	$h^5 \frac{1}{90} f^{(4)}(\xi)$	Simpson-Regel
3	$h^5 \frac{3}{80} f^{(4)}(\xi)$	3/8-Regel
4	$h^7 \frac{8}{945} f^{(6)}(\xi)$	Milne-Regel

wobei jeweils

$$h = \frac{b - a}{n}.$$

Zusammengesetzte Newton-Cotes Formeln.

Ziel: Höhere Genauigkeit durch Unterteilung des Intervalls [a, b].

Gegeben sei die äquidistante Unterteilung mit den Knoten

$$t_i = a + ih$$
 $i = 0, 1, ..., N, h = \frac{b - a}{N}.$

Verwende auf jedem Teilintervall $[t_i, t_{i+1}]$ Quadraturformel der Ordnung n.

Beispiel: Zusammengesetzte Trapezregel

$$\begin{split} T(h) &= \sum_{i=0}^{N-1} \frac{h}{2} \Big(f(t_i) + f(t_{i+1}) \Big) \\ &= h \left(\frac{f(\alpha)}{2} + f(\alpha + h) + \dots + f(b-h) + \frac{f(b)}{2} \right). \end{split}$$

Fehlerabschätzung zusammengesetzte Trapezregel.

Satz: Für die zusammengesetzte Trapezregel gilt die Fehlerabschätzung

$$\left| \int_{a}^{b} f(x) dx - T(h) \right| \leq \frac{h^{2}}{12} (b - a) \|f^{(2)}\|_{\infty}.$$

Beweis:

$$\begin{split} \left| \int_{a}^{b} f(x) \, dx - T(h) \right| &= \left| \sum_{j=0}^{N-1} \left(\int_{t_{j}}^{t_{j+1}} f(x) \, dx - I_{1}^{(j)}[f] \right) \right| \\ &\leq \sum_{j=0}^{N-1} \left| \int_{t_{j}}^{t_{j+1}} f(x) \, dx - I_{1}^{(j)}[f] \right| \\ &\leq \sum_{j=0}^{N-1} \frac{(t_{j+1} - t_{j})^{3}}{12} \|f^{(2)}\|_{\infty} \\ &\leq \frac{N}{12} h^{3} \|f^{(2)}\|_{\infty} = \frac{h^{2}}{12} (b - a) \|f^{(2)}\|_{\infty} \end{split}$$

Die zusammengesetzte Simpson-Regel.

Wende die Simpson-Regel auf die Teilintervalle $[t_{2i}, t_{2i+2}]$ an, mit Knoten

$$t_{2i}, t_{2i+1}, t_{2i+2}$$
 für $0 \le i \le N/2 - 1$,

wobei N gerade. Dann bekommt man die zusammengesetzte Simpson-Regel

$$S(h) = \frac{h}{3} \sum_{i=0}^{N/2-1} (f(t_{2i}) + 4f(t_{2i+1}) + f(t_{2i+2}))$$

$$= \frac{h}{3} (f(a) + 4f(a+h) + 2f(a+2h) + \dots + 4f(b-h) + f(b))$$

Satz: Für die zusammengesetzte Simpson-Regel gilt die Fehlerabschätzung

$$\left| \int_{a}^{b} f(x) dx - S(h) \right| \le \frac{h^4}{180} (b - a) \|f^{(4)}\|_{\infty}$$

Beweis: analog wie bei der zusammengesetzten Trapezregel.

13.2 Gauß-Quadratur

Erinnerung: Mit der Newton-Cotes Quadratur

$$I_n[f] = \sum_{i=0}^n g_i f(x_i) \approx I[f] = \int_a^b f(x) dx$$

werden Polynome vom Grad n exakt integriert.

Dabei sind die Knoten x_i , $0 \le i \le n$, äquidistant auf [a, b] verteilt.

Grundidee der Gauß-Quadratur: Variiere die Knoten x_0, \ldots, x_n .

Grundidee der Gauß-Quadratur.

Ziel:

Variiere Knoten, um Polynome möglichst hohen Grades exakt zu integrieren.

Genauer:

Approximiere für eine feste positive Gewichtsfunktion $w:(\mathfrak{a},\mathfrak{b})\to (\mathfrak{d},\infty)$ Integrale der Form

$$I[f] = \int_{a}^{b} f(x)w(x) dx$$

durch Quadratur der Form

$$I[f] \approx \sum_{i=0}^{n} f(x_i) w_i$$

mit einer speziellen Wahl von Stützstellen x_i und positiven Gewichten w_i .

Ergebnis: Gaußsche Quadraturformeln mit (n + 1) Knoten integrieren Polynome vom Grad 2n + 1 exakt.

Beispiel: Gauß-Tschebyscheff-Quadratur.

- Integrations intervall: I = [-1, 1]
- Gewichtsfunktion: $w(x) = 1/\sqrt{1-x^2}$.
- Knoten: Nullstellen

$$x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right)$$
 für $0 \le i \le n$

des (n + 1)-ten Tschebyscheff-Polynoms

$$T_{n+1}(x) = \cos((n+1)\arccos(x)) \in \mathcal{P}_{n+1} \qquad \text{ für } x \in [-1,1].$$

- Konstante Gewichte: $w_i \equiv \pi/(n+1)$.
- Gauß-Tschebyscheff Quadratur:

$$I_n[f] = \frac{\pi}{n+1} \sum_{i=0}^n f(x_i) \approx I_w[f] = \int_{-1}^1 f(x) w(x) dx.$$

Eigenschaften der Tschebyscheff-Polynome.

Satz: Die Tschebyscheff-Polynome T_0, \ldots, T_n bilden eine orthogonale Basis des Polynomraums \mathcal{P}_n bezüglich des gewichteten Skalarprodukts

$$(f,g)_w := \int_{-1}^1 f(x)g(x)w(x) dx.$$

Genauer gilt:

$$(T_k,T_j)_{\mathcal{W}} = \left\{ \begin{array}{ll} \pi & \text{ für } k=j=0 \\ \pi/2 & \text{ für } k=j>0 \\ 0 & \text{ für } j\neq k \end{array} \right.$$

Beweis: Übung (mit Substitution t = cos(x))

Satz: Für die Tschebyscheff-Polynome gilt die Rekursionsformel

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$
 für $k \ge 1$,

wobei $T_0 \equiv 1$ und $T_1(x) = x$.

Legendre-Polynome.

Satz: Für die Gewichtsfunktion $w \equiv 1$ auf dem Intervall I = [-1, 1] sind die Legendre-Polynome

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \in \mathcal{P}_n$$

Orthogonalpolynome. Genauer gilt:

$$(L_n,L_m) = \begin{cases} \frac{2}{2n+1} & \textit{für } n = m \ge 0 \\ 0 & \textit{für } n \ne m \end{cases}$$

Beweis: Übung (per Induktion).

Satz: Für die Legendre-Polynome gilt die Rekursionsformel

$$L_{n+1}(x) = \frac{2n+1}{n+1}xL_n(x) - \frac{n}{n+1}L_{n-1}$$
 für $n \ge 1$,

wobei $L_0 \equiv 1$ und $L_1(x) = x$.

Weitere Eigenschaften der Legendre-Polynome.

Die ersten Legendre-Polynome sind gegeben durch

$$L_0(x) \equiv 1$$

$$L_1(x) = x$$

$$L_2(x) = (3x^2 - 1)/2$$

$$L_3(x) = (5x^3 - 3x)/2$$

$$L_4(x) = (35x^4 - 30x^2 + 3)/8$$

Deren jeweilige Nullstellen sind gegeben durch

L₁:
$$x_0 = 0$$

L₂: $x_{0/1} = \pm \sqrt{1/3}$
L₃: $x_0 = 0, x_{1/2} = \pm \sqrt{3/5}$
L₄: $x_{0/1/2/3} = \pm \sqrt{\frac{3}{7} \pm \frac{1}{7} \sqrt{\frac{24}{5}}}$

Zur Konstruktion der Gauß-Legendre-Quadratur.

- Integrations intervall: I = [-1, 1]
- Gewichtsfunktion: $w(x) \equiv 1$.
- **Knoten:** n+1 Nullstellen x_0, \ldots, x_n des Legendre-Polynoms $L_{n+1} \in \mathcal{P}_{n+1}$.
- **Gewichte:** Mit festen Knoten x_0, \ldots, x_n zu berechnen aus

$$w_{i} = \int_{-1}^{1} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx > 0.$$

• Gauß-Legendre Quadratur:

$$I_n[f] = \sum_{i=0}^n w_i f(x_i) \approx I[f] = \int_{-1}^1 f(x) dx.$$

Weitere Spezialfälle der Gauß-Quadratur.

Name	Intervall	Gewicht
Gauß-Legendre	[-1,1]	$w \equiv 1$
Gauß-Tschebyscheff	[-1,1]	$w(x) = 1/\sqrt{1-x^2}$
Gauß-Jacobi	[-1,1]	w(x) = (1-x)(1+x)
Gauß-Laguerre	$[0,\infty)$	$w(x) = e^{-x}$
Gauß-Hermite	$(-\infty,\infty)$	$w(x) = e^{-x^2}$

Zur Konstruktion von Gauß-Quadraturformeln.

• Konstruiere zu festem Intervall [a, b] und Gewichtsfunktion w eine Folge

$$p_0, p_1, \ldots, p_n, p_{n+1}$$

von Orthogonalpolynomen, wobei $p_k \in \mathcal{P}_k$ und $(p_k, p_j)_w = \delta_{jk}$.

- Verwende Nullstellen x_0, x_1, \ldots, x_n von p_{n+1} als Knoten.
- Berechne (positive) Gewichte

$$w_{i} = \int_{-1}^{1} \prod_{\substack{j=0\\i\neq j}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx \qquad \text{für } 0 \leq i \leq n.$$

• Ergebnis: Gauß-Quadraturformel

$$I_n[f] = \sum_{i=0}^n w_i f(x_i) \approx I[f] = \int_a^b f(x) w(x) dx$$

 $\text{mit } I_n[f] = I_n[p] \text{ für alle } p \in \mathcal{P}_{2n+1}.$

14 Die Schnelle Fourier-Transformation

Ziel: Effiziente Berechnung der Diskreten Fourier-Transformation (DFT)

$$\widehat{z}(m) = \sum_{n=0}^{N-1} z(n) \omega_N^{nm}$$
 für $0 \le m \le N-1$,

wobei

$$\omega_{\rm N} := e^{-2\pi i/{\rm N}}$$
.

• Methode (Cooley & Tukey, 1965):

Schnelle Fourier-Transformation, "Fast Fourier-Transformation" (FFT).

• INPUT: Vektor

$$z = (z(0), z(1), \dots, z(N-1))^{T} \in \mathbb{C}^{N}$$

• OUTPUT: \hat{z} , die Diskrete Fourier-Transformation (DFT) von z:

$$\hat{z} = (\hat{z}(0), \hat{z}(1), \dots, \hat{z}(N-1))^{\mathsf{T}} \in \mathbb{C}^{\mathsf{N}}$$

Grundidee der schnellen Fourier-Transformation.

Wichtige Beobachtung: Es gilt $\omega_{2N}^2 = \omega_N$.

Divide and Conquer: Für $N=2^k$ und $0 \le m \le N-1$ gilt

$$\begin{split} \hat{z}(m) &= \sum_{n=0}^{N-1} z(n) \omega_{N}^{mn} \\ &= \sum_{n \text{ gerade}} z(n) \omega_{N}^{mn} + \sum_{n \text{ ungerade}} z(n) \omega_{N}^{mn} \\ &= \sum_{n=0}^{N/2-1} z(2n) \omega_{N}^{2mn} + \sum_{n=0}^{N/2-1} z(2n+1) \omega_{N}^{(2n+1)m} \\ &= \sum_{n=0}^{N/2-1} z(2n) \omega_{N}^{2mn} + \omega_{N}^{m} \sum_{n=0}^{N/2-1} z(2n+1) \omega_{N}^{2mn}. \end{split}$$

Reduktionsschritt.

Sei M = N/2. Dann gilt für m = 0, 1, ..., N-1

$$\begin{split} \hat{z}(m) &= \sum_{n=0}^{M-1} z(2n)\omega_N^{2mn} + \omega_N^m \sum_{n=0}^{M-1} z(2n+1)\omega_N^{2mn} \\ &= \sum_{n=0}^{M-1} u(n)\omega_{N/2}^{mn} + \omega_N^m \sum_{n=0}^{M-1} v(n)\omega_{N/2}^{mn} \\ &= \sum_{n=0}^{M-1} u(n)\omega_M^{mn} + \omega_N^m \sum_{n=0}^{M-1} v(n)\omega_M^{mn}, \end{split}$$

wobei $\mathfrak{u}(\mathfrak{n}):=z(2\mathfrak{n})$ und $\mathfrak{v}(\mathfrak{n}):=z(2\mathfrak{n}+1)$ für $\mathfrak{n}=0,1,\ldots,M-1$.

Es gilt:

$$\hat{z}(m) = \hat{u}(m) + \omega_N^m \hat{v}(m)$$
 für $m = 0, 1, ..., M - 1$.
$$\hat{z}(m) = \hat{u}(\ell) - \omega_N^\ell \hat{v}(\ell)$$
 für $m = M, M + 1, ..., N - 1, m = \ell + M$.

Komplexität der schnellen Fourier-Transformation.

Fazit: Die Diskrete Fourier-Transformation von $z \in \mathbb{C}^N$ schreibt sich als Summe zweier Diskreter Fourier-Transformationen der Länge N/2.

Satz: Die schnelle Fourier-Transformation von $z \in \mathbb{C}^N$ kann für $N = 2^k$ in $\mathcal{O}(N \log(N))$ Schritten berechnet werden.

Beweisskizze:

- Zerlege FFT von z der Länge N in zwei FFTs der Länge N/2.
- Per Induktion: Zerlege FFT der Länge $N/2^j$ in zwei FFTs der Länge $N/2^{j+1}$.
- Es gilt $N = 2^k$, d.h. $k = \log_2(N)$.
- Daher bleiben nach j = k Schritten nur noch N FFTs der Länge Eins übrig.
- Nun gilt $\hat{z}(0) = z(0)$ für $z \in \mathbb{C}^1$, d.h. konstante Kosten $\mathcal{O}(1)$ für N = 1.
- Man bekommt $\hat{z} \in \mathbb{C}^N$ mit dieser Rekursion nach N $\log_2(N)$ Schritten.

Schnelle Fourier-Transformation mit Matlab.

• Berechne Fourier-Transformation $w = \hat{z} \in \mathbb{C}^N$ aus $z \in \mathbb{C}^N$ mit Matlab.

$$w = fft(z);$$

ullet Berechne inverse FFT (IFFT) $z\in\mathbb{C}^{\mathbb{N}}$ aus $w=\widehat{z}\in\mathbb{C}^{\mathbb{N}}$ mit

$$z = ifft(w);$$

Grundlage der IFFT: Die Inversionsformel

$$z(n) = \frac{1}{N} \sum_{m=0}^{N-1} \hat{z}(m) e^{2\pi i m n/N} \qquad \text{für } 0 \le n \le N-1.$$