Tragen Sie bitte zunächst Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer in **DRUCKSCHRIFT** in die folgenden jeweils dafür vorgesehenen Felder ein.

Diese Eintragungen werden auf Datenträger gespeichert.

Name:														
Vorname:														
MatrNr.:														
Studiengang:	AI	BU	BVT	ET	EUT	IN	LU	JM	MB	MT	В	SB	VT	

Aufg.	a) i)	a) ii)	b)	c) i)	c) ii)	d) i)	d) ii)	e)	f)	\sum =
Punkte	1	1	2	1	1	1	1	2	2	12
erreicht										

Bitte lösen Sie die angegebenen Aufgaben, und tragen Sie Ihre Antworten in die dafür vorgegebenen Kästchen ein. Sie erhalten jeweils 1 bzw. 2 Punkte pro richtige Antwort und null Punkte, wenn Sie eine falsche oder keine Lösung angegeben haben. Der Lösungsweg wird nicht bewertet.

a) Die Potenzreihe
$$\sum_{k=0}^{\infty} \frac{(x-5)^k}{3^k}$$
 mit dem Entwicklungspunkt $x_0 = 5$

hat den Konvergenzradius

$$r = 3$$

und das Konvergenzintervall

$$I =]2,8[$$

Hinweis: Klären Sie auch, ob die Reihe in den Randpunkten von I konvergiert!

b) Es sei $p_2(x) = a_0 + a_1 x + a_2 x(x-3)$ das Interpolationspolynom zweiten Grades zu den Daten:

Dann ist

$$a_2 = 3$$

c) Es sei $\sum_{k=0}^\infty a_k\,x^k$ die Potenzreihe der Funktion $f(x)=\frac{1}{30-10x}$ mit dem Entwicklungspunkt $x_0=0$. Dann ist

$$a_2 = \frac{1}{270}$$

und die Potenzreihe hat den Konvergenzradius

$$r = 3$$

d) Es sei $\sum_{k=0}^{\infty} a_k x^k$ die Potenzreihe der Funktion $f(x) = x \cos(x) + e^x$ mit dem Entwicklungspunkt $x_0 = 0$. Dann ist

$$a_3 = -\frac{1}{3}$$

und die Potenzreihe hat den Konvergenzradius

$$r = \infty$$

e)

$$\int_{-1}^{\frac{1}{2}} 2xe^{2x+2} \, dx = \frac{3}{2}$$

f)

$$\int_0^{\sqrt{\pi/2}} 2x \cos(x^2) dx = 1$$