Tragen Sie bitte zunächst Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer in DRUCKSCHRIFT in die folgenden jeweils dafür vorgesehenen Felder ein.

Diese Eintragungen werden auf Datenträger gespeichert.

Name:													
Vorname:													
MatrNr.:													
Studiengang	BU	1.1	IM	MB	МТ	BS	BI	RVT	EU	ТТ			

Bitte lösen Sie die angegebenen Aufgaben, und tragen Sie Ihre Antworten in die dafür vorgegebenen Kästchen ein. Sie erhalten jeweils 1 bzw. 2 Punkte pro richtige Antwort und null Punkte, wenn Sie eine falsche oder keine Lösung angegeben haben. Der Lösungsweg wird nicht bewertet.

a) Es sei $p_2(x) = a_0 + a_1 x + a_2 x(x-1)$ das Interpolationspolynom zweiten Grades zu den Daten:

Dann ist

$$\boxed{a_2 = 4}$$

b) Es sei $\sum_{k=0}^{\infty} a_k x^k$ die Potenzreihe der Funktion $f(x) = \frac{1}{2-7x}$ mit dem Entwicklungspunkt $x_0 = 0$.

Dann ist

$$a_2 = \frac{49}{8}$$

und die Potenzreihe hat den Konvergenzradius

$$r = \frac{2}{7}$$

c) Es sei $\sum_{k=0}^{\infty} a_k x^k$ die Potenzreihe der Funktion $f(x)=x\sin(x)-\cos(x)$ mit dem Entwicklungspunkt $x_0=0$.

Dann ist

$$a_0 = -1$$

und die Potenzreihe hat den Konvergenzradius

$$r = \infty$$

d)

$$\int_{1}^{e} 2x \ln(x) \, dx = \frac{e^2 + 1}{2}$$

e)

$$\int_0^\pi \sin(x) \cos^2(x) \, dx = \frac{2}{3}$$

Aufg.	a	b) i)	b) ii)	c) i)	c) ii)	d	e	\sum =
Punkte	2	1	1	1	1	2	2	