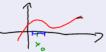
Umgebung

Definition

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion. Dann heißt $x_0 \in I$

• lokales Maximum, wenn es eine Umgebung U von x_0 gibt, so dass

$$f(x_0) = \max_{x \in U \cap I} f(x);$$



• lokales Minimum, wenn es eine Umgebung U von x_0 gibt, so dass

$$f(x_0) = \min_{x \in U \cap I} f(x);$$

 lokales Extremum, wenn es ein lokales Maximum oder lokales Minimum ist.

Analysis I

164 / 176

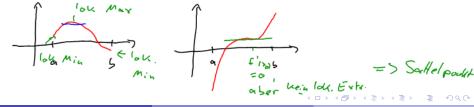
Satz 2.22: (notwendige Bedingung nach Leibniz), vergl. Satz 2.14

Für jede lokale Extremalstelle x_0 einer differenzierbaren Funktion $f:I\to\mathbb{R}$ gilt

a)
$$f'(x_0) = 0$$
 oder b) x_0 ist Randpunkt von I .

Ist x_0 lokale Maximalstelle (Minimalstelle), so gilt

$$f'(x_0)(x-x_0) \le 0 \ (\ge 0)$$
 für alle x in einer Umgebung von x_0 ,

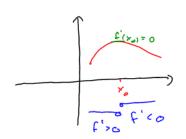


Satz 2.23: (hinreichende Bedingung für relative Extrema)

Sei $f:D\to\mathbb{R}$ auf einer Umgebung von x_0 zweimal stetig differenzierbar. Falls

$$f'(x_0) = 0$$
 und $f''(x_0) > 0$ ($f''(x_0) < 0$)

erfüllt ist, dann hat f in x_0 ein relatives Minimum (Maximum).



Beachte: Bedingony ist nicht notwendig, da fix = x4

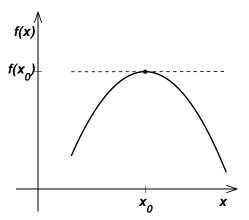


Abbildung 2.38: Maximum bei x_0 (mit f'' < 0)

Monotonie

Monotonie

Sei $f: I \to \mathbb{R}$ differenzierbar un sei $J \subset I$.

Falls

$$f'(x) \ge (>)0$$
 für alle $x \in J$,

dann ist f auf J (streng) monoton wachsend.

Falls

$$f'(x) \le (<)0$$
 für alle $x \in J$,

dann ist f auf J (streng) monoton fallend.

167 / 176

Analysis I February 1, 2018

Links- und Rechtskurven

1

Links- und Rechtskurven

Sei $f: I \to \mathbb{R}$ zweimal differenzierbar und sei $J \subset I$.

 Falls f' auf J monoton fällt, dann macht der Graph von f eine Rechtskurve

$$\Leftarrow f''(x) < 0$$
 für alle $x \in J$.

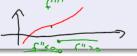
 Falls f' auf J monoton wächst, dann macht der Graph von f eine Linkskurve

$$\Leftarrow f''(x) > 0$$
 für alle $x \in J$.

Wendepunkt

Den Wechsel von Links- auf Rechtskurve oder Rechts- auf Linkskurve in x_0 nennt man Wendepunkt

$$\Rightarrow f''(x_0)=0.$$



Analysis | February 1, 2018 168 / 176

Asymptoten

Asymptoten

Sei f eine Funktion. Eine Gerade $y = \alpha x + \beta$ heißt **Asymptote** von f(x) f^* ur $x \to \pm \infty$, falls gilt

$$\lim_{x\to\pm\infty}(f(x)-\alpha x-\beta)=0$$

$$L(x) = \frac{x_3^+ \times 1}{5 \times 3} + x_5 - x + 1$$

$$(2x^{3} + x^{2} - x + n) : (x^{2} + x + n) = 2x - n$$

=
$$\int f(x) = \int f(x) - \int \frac{x_1 + x_2}{x_1 + x_2} = \int \lim_{x \to \pm \infty} \frac{f(x) - (f(x))}{f(x)} = \lim_{x \to \pm \infty} \frac{x_1 + x_2}{x_1 + x_2} = 0$$

February 1, 2018 169 / 176

Ziel

Feststellung des qualitativen und quantitativen (Werte-)Verhaltens einer gegebenen Funktion f mit Skizze des Graphen von f. Dabei sollen (mindestens) folgende Punkte untersucht werden.

- Definitionsbereich, Wertebereich
- Symmetrien
- Pole
- Asymptotische «
- Nullstellenbestimmung
- Bestimmung der (lokalen) Extrema
- Werteverhalten
- Bestimmung der Wendepunkte
- Skizze des Graphen

170 / 176

Analysis I February 1, 2018

Beispiel

$$\int (x) = \frac{2 \times^2 + 3 \times -4}{\times^2}$$

Definitionshereich
$$O = IR \setminus \{0\}$$

Werkbereich — spoiter

Symmetrien: $f(-x) = \frac{2x^2 - 3x - 4}{x^2} = f$ wader great each organish

Asymptotic: Es silt $\lim_{x \to \pm \infty} f(x) = 2 = 7$ $y = 2$ ist Asymptote

Nullshellen:
$$\int (x) = 0 = 7 \ 2x^{2} + 3x - 4 = 0 = 7 \ x^{2} + \frac{3}{2}x - 2 = 0$$

$$= 7 \ x_{n/2} = -\frac{3}{4} + \sqrt{\frac{3}{16} + 2} = -\frac{3}{4} + \sqrt{\frac{5132}{4}}$$

$$= -\frac{3}{4} + \sqrt{\frac{5132}{4}}$$

Analysis I February 1, 2018 171 / 176

Beispiel

$$f'(x) = \frac{2x^2 + 3x - 4}{x^2}$$

$$f'(x) = \frac{3}{2x^2 + 8 - 4} = \frac{64}{x^3} = \frac{64}{x^4} = \frac{62}{x^4} = \frac{428 + 36}{x^4}$$

$$f''(x) = \frac{2x^2 + 3x - 4}{x^3} = \frac{164}{x^4} = \frac{$$

Analysis | February 1, 2018 172 / 176

Beispiel

$$f(x) = \frac{x_x}{5x_x+3x-4}$$

Westeverhalta:

173 / 176

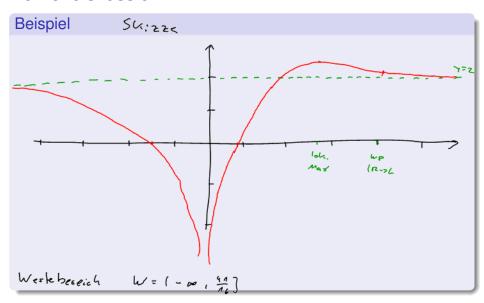
Beispiel

Wendepunkle

$$f''(x) = \frac{G_{\gamma} - 24}{K^4}$$
 $f''(x) = 0 = 7 \times = 4$
 $f'''(x) = \frac{-48 \times 436}{K^6}$ $f'''(4) > 0$

=7 Wonde punkt in X=0, Wecksel von Rechts - auf Linkskure

alysis I February 1, 2018 174 / 176



alysis I February 1, 2018 175 / 176