6 Weiterer Ausbau der Differentialrechnung

6.1 Mittelwertsätze, Extremwerte, Satz von Taylor

Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig Blech verbraucht wird?

Sei r der Radius der Grundfläche und h die Höhe der Konservendose. Dann gilt

$$f(r,h) = 2\pi r^2 + 2\pi rh$$

für die Oberfläche der Konservendose.

Ziel: Minimiere f unter Variation von r und h unter der Nebenbedingung

$$V = \pi r^2 h \qquad \Longleftrightarrow \qquad h = \frac{V}{\pi r^2}.$$

Minimiere somit

$$f(r) = 2\pi r^2 + 2\frac{V}{r}$$

unter Variation von r.

Klassifikation von Extrema.

Definition: Sei V normierter Vektorraum und $f:D\to\mathbb{R},\,D\subset V$, eine Funktion.

Dann hat die Funktion f in $x_0 \in D$

- einglobales Maximum, falls $f(x) \le f(x_0)$ für alle $x \in D$.
- ullet einstrenges globales Maximum, falls $f(x) < f(x_0)$ für alle $x \in D \setminus \{x_0\}$.
- ein lokales Maximum, falls es ein $\varepsilon > 0$ gibt mit

$$\|x-x_0\|<\varepsilon \implies f(x)\leq f(x_0)$$
 für alle $x\in D$.

• einstrenges lokales Maximum, falls es ein $\varepsilon > 0$ gibt mit

$$\|x - x_0\| < \varepsilon \implies f(x) < f(x_0)$$
 für alle $x \in D \setminus \{x_0\}$.

Die Begriffe (strenges) globales Minimum und (strenges) lokales

Minimum definiert man analog. Weiterhin fasst man die Begriffe "Minimum" und

"Maximum" unter dem Oberbegriff Extremum zusammen.

Notwendige Kriterien für lokale Extrema.

Satz: Besitzt eine Funktion $f: [a,b] \to \mathbb{R}$ in einem Punkt $x_0 \in (a,b)$ ein lokales Extremum, und ist f in x_0 differenzierbar, so gilt $f'(x_0) = 0$.

Falls x_0 Randpunkt von [a, b] (d.h. x = a oder x = b), so gilt

- $f'(x_0) \le 0$ ($f'(x_0) \ge 0$) für ein lokales Maximum (Minimum) in $x_0 = a$,
- $f'(x_0) \ge 0$ ($f'(x_0) \le 0$) für ein lokales Maximum (Minimum) in $x_0 = b$.

Beweis: Sei $x_0 \in [a, b]$ ein lokales Maximum von f. Dann gilt

$$\frac{f(x)-f(x_0)}{x-x_0} \leq 0 \quad \text{für } x_0 < x \leq \min(x_0+\epsilon,b),$$

$$\frac{f(x) - f(x_0)}{x - x_0} \geq 0 \quad \text{für } \max(x_0 - \varepsilon, \alpha) \leq x < x_0,$$

und daher $f'(x_0^-) \geq 0$ und $f'(x_0^+) \leq 0$. Für $x_0 \in (a,b)$ folgt somit $f'(x_0) = 0$.

Definition: Ein Punkt x_0 mit $f'(x_0) = 0$ heißt stationärer Punkt von f.

Zurück zu dem Beispiel mit der Blechdose.

Ziel: Minimiere

$$f(r) = 2\pi r^2 + 2\frac{V}{r}$$

unter Variation von $r \in (0, \infty)$. Es gilt $h = \frac{V}{\pi r^2}$ für die Höhe der Dose.

- Die Funktion f ist stetig in $(0, \infty)$ und es gilt V > 0.
- Es gilt $\lim_{r\to 0^+} f(r) = \lim_{r\to \infty} f(r) = \infty$.
- f besitzt somit in $(0, \infty)$ ein globales Minimum.
- Die notwendige Bedingung

$$f'(r) = 4\pi r - 2\frac{V}{r^2} = 0 \qquad \Longleftrightarrow \qquad 4\pi r^3 = 2V$$

für ein Minimum $r_0 \in (0,\infty)$ ist nur erfüllt für

$$r_0 = \sqrt[3]{\frac{V}{2\pi}}.$$

• Lösung: f besitzt in r_0 ein strenges globales Minimum. Es gilt $h_0=2r_0$.

Ein weiteres Beispiel.

Betrachte die Funktion $f(x) = x^2 \sqrt{1 - x^2}$ auf dem Intervall [-1, 1]. Es gilt

$$f'(x) = \frac{2x - 3x^3}{\sqrt{1 - x^2}} \quad \text{für } -1 < x < 1.$$

• Stationäre Punkte: $2x - 3x^3 = 0$ gilt nur für $x \in \{-\sqrt{2/3}, 0, \sqrt{2/3}\}$.

$$f'(x) = \begin{cases} >0 : -1 < x < -\sqrt{2/3} \\ <0 : -\sqrt{2/3} < x < 0 \\ >0 : 0 < x < \sqrt{2/3} \\ <0 : \sqrt{2/3} < x < 1 \end{cases}$$

- Globale Minima bei $x = \pm 1$ und x = 0 mit Funktionswert f(x) = 0.
- Globale Maxima bei $x = \pm \sqrt{2/3}$ mit Funktionswert $f(x) = 2/(3\sqrt{3})$.

Ein erster Mittelwertsatz.

Satz (Satz von Rolle): Ist $f : [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar auf (a, b), so gilt die Implikation

$$f(a) = f(b) \implies \exists x_0 \in (a, b) : f'(x_0) = 0.$$

Beweis: Da f auf dem Kompaktum [a, b] stetig ist, nimmt f auf [a, b] Minimum und Maximum an.

Fall 1: Liegen diese beiden Extrema am Rand des Intervalls [a,b], so ist f konstant, woraus folgt $f'(x) \equiv 0$.

Fall 2: Anderenfalls liegt ein Extremum x_0 in (a, b), woraus folgt $f'(x_0) = 0$.

Weitere Mittelwertsätze.

Satz:

• Erster Mittelwertsatz

Ist $f: [a,b] \to \mathbb{R}$ stetig auf [a,b] und differenzierbar auf (a,b), so gilt:

$$\exists x_0 \in (a,b) : f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

• Zweiter Mittelwertsatz Sind die Funktionen f, g stetig auf [a, b] und differenzierbar auf (a, b) und gilt $g'(x) \neq 0$ für alle $x \in (a, b)$, so gilt

$$\exists x_0 \in (a, b) : \frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Beweis: 1. MWS: Die Funktion

$$h(x) = f(x) - \frac{x - a}{b - a}(f(b) - f(a))$$

erfüllt die Voraussetzungen des Satzes von Rolle, denn h(a)=f(a)=h(b). Somit gibt es ein $x_0\in(a,b)$ mit

$$0 = h'(x_0) = f'(x_0) - \frac{1}{b-a}(f(a) - f(b)).$$

2. MWS: Wegen $g'(x) \neq 0$ für alle $x \in (a, b)$, gilt $g(b) \neq g(a)$. Somit erfüllt die Funktion

$$h(x) = f(x) - g(x) \cdot \frac{f(b) - f(a)}{g(b) - g(a)}$$

die Voraussetzungen des Satzes von Rolle, denn es gilt

$$h(a) = f(a) - g(a) \cdot \frac{f(b) - f(a)}{g(b) - g(a)} = f(b) - g(b) \cdot \frac{f(b) - f(a)}{g(b) - g(a)} = h(b).$$

Somit gibt es ein $x_0 \in (a, b)$ mit

$$0 = h'(x_0) = f'(x_0) - g'(x_0) \cdot \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Folgerungen aus den Mittelwertsätzen.

Sei $f : [a, b] \to \mathbb{R}$ differenzierbar auf [a, b]. Dann gilt:

- Falls $f'(x) \equiv 0$, so ist f konstant auf [a, b].
- Falls $f'(x) \ge 0$ für alle $x \in [a, b]$, genau dann wenn f monoton wachsend.
- Falls f'(x) > 0 für alle $x \in [a, b]$, dann ist f streng monoton wachsend.
- Falls $f'(x) \leq 0$ für alle $x \in [a, b]$, genau dann wenn f monoton fallend.
- Falls f'(x) < 0 für alle $x \in [a, b]$, dann ist f streng monoton fallend.

Beispiel. Betrachte $f(x) = x - \log(1 + x)$ für $x \in (-1, \infty)$. Wegen

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \begin{cases} < 0 & \text{für } -1 < x < 0, \\ > 0 & \text{für } 0 < x < \infty, \end{cases}$$

ist f streng monoton fallend in (-1,0], streng monoton wachsend in $[0,\infty)$.

Definition (Landau-Symbole): Für eine Funktion $\phi: D \to \mathbb{R}$, $D \subset \mathbb{R}$, $\emptyset \in D \cap D'$, und $k \in \mathbb{N}_0$ sagt man:

$$\varphi(h) = o(h^k)$$
 $:\iff$ $\lim_{h \to 0} \frac{\varphi(h)}{h^k} = 0$

$$\phi(h) = \mathcal{O}(h^k) \qquad :\Longleftrightarrow \qquad \exists \; C, \epsilon > 0 \; : \; \forall \, 0 < |h| < \epsilon \; : \; \left| \frac{\phi(h)}{h^k} \right| \leq C$$

Bedeutung:

 $\varphi(h) = o(h^k)$:

 $\phi(h)$ konvergiert für $h\to 0$ schneller gegen Null als $h^k.$

 $\varphi(h) = \mathcal{O}(h^k)$:

 $\phi(h)$ konvergiert für $h \to 0$ mindestens so schnell gegen Null wie h^k .

Beispiel: Ist f differenzierbar in x_0 , so gilt:

$$f(x) - f(x_0) - f'(x_0)(x - x_0) = o(x - x_0).$$