Analysis I für Studierende der Ingenieurwissenschaften

Prof. Dr. Timo Reis

Fachbereich Mathematik, Universität Hamburg

Technische Universität Hamburg-Harburg
Wintersemester 2014/2015

Informationsquellen.

Internet

www.math.uni-hamburg.de/teaching/export/tuhh/cm/a1/1415/

Vorlesung

Dienstag, 11:30–13:00, SBS95, Audimax 1 Donnerstag, 9:45–11:15, DE22, Audimax 2

• Übungen in Tutorgruppen

Dr. Kai Rothe und Übungsgruppenleiter(innen)

• Anleitung zu den Übungen

Dr. Kai Rothe.

Dienstag, 13:15–14:45, SBS95, Audimax 1 Mittwoch, 9:45–11:15, SBS95, Audimax 1

Sprechstunde Prof. Reis

Dienstag, SBS 95-E 3.079, 15:00-16:00.

Literaturquellen.

PRIMÄR:

- R. Ansorge, H. J. Oberle: Mathematik für Ingenieure 1,
 - 3. Auflage. WILEY-VCH, Berlin, 2000.
- H. J. Oberle, K. Rothe, Th. Sonar: Mathematik für Ingenieure, Band 3: Aufgaben und Lösungen. WILEY-VCH, Berlin, 2000.

SEKUNDÄR:

- K. Meyberg, P. Vachenauer: Höhere Mathematik, Bände 1 und 2.
 Springer, Berlin.
- K. Burg, H. Haf, F. Wille: Höhere Mathematik für Ingenieure,
 Band 1: Analysis. B.G. Teubner, Stuttgart, 1992.

Literaturquellen.

SEKUNDÄR (cont.):

- G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure.
 Elsevier, Spektrum Akad. Verl., München 2006
- H. Neunzert, W. Eschmann, A. Blickensdörfer, K. Schelkes: Analysis 1 Ein Lehr- und Arbeitsbuch für Studienanfänger
 Springer, Berlin, 1993.
- N. Herrmann: Höhere Mathematik
 Oldenbourg, München, 2009.

Inhalte Analysis I.

- Aussagen, Logik und Mengen.
- Zahlensysteme, Relationen und Funktionen.
- Folgen, Reihen und Konvergenz.
- Vektorräume und Normen.
- Stetige und gleichmäßig stetige Funktionen.
- Differenzierbarkeit und Differentiationsregeln.
- Mittelwertsätze, lokale Extrema, Satz von Taylor.
- Regel von de l'Hospital, Kurvendiskussion.
- Fehlerrechnung, Iterationsmethoden und Banachscher Fixpunktsatz.

1 Aussagen, Mengen, Funktionen

1.1 Aussagen

Definition: Eine Aussage ist eine sprachliche Konstruktion, von der man eindeutig entscheiden kann, ob sie WAHR oder FALSCH ist.

Beispiele für Aussagen und keine Aussagen:

- Heute ist Mittwoch.
- Jede Primzahl ist ungerade.
- 2 ist eine Primzahl.
- Studieren macht Spaß ... ganz besonders an der TUHH.
- Harburg liegt in Niedersachsen.
- Messi ist besser als Ronaldo.

Charakteristische Eigenschaft: Aussagen sind entweder WAHR oder FALSCH.

Wahrheitswerte von Aussagen. Sei A eine Aussage. Dann kann man A einen eindeutigen Wahrheitswert w(A) zuordnen.

$$w(A) = 0 \iff A \text{ ist falsch};$$

$$w(A) = 1 \iff A \text{ ist wahr.}$$

Verknüpfungen von Aussagen. Seien A und B Aussagen.

 $\neg A$: Negation "nicht A"

 $A \wedge B$: Konjunktion "A und B"

 $A \vee B$: Disjunktion "A oder B"

 $A \Rightarrow B$: Implikation "aus A folgt B"

 $A \Leftrightarrow B$: Äquivalenz "A ist äquivalent zu B"

Wahrheitswertetafeln.

w(A)	w (B)	<i>w</i> (¬A)	$w(A \wedge B)$	$w(A \vee B)$	$w(A \Rightarrow B)$	$w(A \Leftrightarrow B)$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Bemerkung: Eine Implikation ist wahr, wenn die Prämisse falsch ist. Es gilt

$$A \Rightarrow B \iff \neg A \lor B$$

Definition:

- Eine Verknüpfung von Aussagen, die für sämtliche Kombinationen von Wahrheitswerten stets eine WAHRE Aussage ergeben, heißt Tautologie.
- Eine Verknüpfung von Aussagen, die für sämtliche Kombinationen von Wahrheitswerten stets eine FALSCHE Aussage ergeben, heißt Kontradiktion.

Beispiel für eine Tautologie.

$$(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$$

Betrachte zum Nachweis die folgende Wahrheitswertetafel.

w(A)	w(B)	$w(A \Rightarrow B)$	<i>w</i> (¬B)	<i>w</i> (¬ <i>A</i>)	$w(\neg B \Rightarrow \neg A)$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

w(A)	w(B)	$w(A \Rightarrow B)$	$w(\neg B \Rightarrow \neg A)$	$(A \Rightarrow B) \Longleftrightarrow (\neg B \Rightarrow \neg A)$
1	1	1	1	1
1	0	0	0	1
0	1	1	1	1
0	0	1	1	1

Beispiel für eine Tautologie.

$$\Big((A \Rightarrow B) \land \neg B \Big) \quad \Longrightarrow \quad \neg A$$

Betrachte zum Nachweis die folgende Wahrheitswertetafel.

w(A)	w(B)	$w(A \Rightarrow B)$	w(¬B)	$w((A \Rightarrow B) \land \neg B)$
1	1	1	0	0
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

w(A)	w(B)	$w((A \Rightarrow B) \land \neg B)$	<i>w</i> (¬A)	$w(((A \Rightarrow B) \land \neg B) \Rightarrow \neg A)$
1	1	0	0	1
1	0	0	0	1
0	1	0	1	1
0	0	1	1	1

Häufig verwendete Tautologien.

(1)	$A \lor \neg A$	tertium non datur
(2)	$\neg(A \land \neg A)$	Widerspruch
(3)	$\neg \neg A \iff A$	doppelte Verneinung
(4)	$\neg(A \land B) \Longleftrightarrow \neg A \lor \neg B$	de Morgan
(5)	$\neg(A \lor B) \Longleftrightarrow \neg A \land \neg B$	de Morgan
(6)	$(A \Rightarrow B) \Longleftrightarrow (\neg B \Rightarrow \neg A)$	Kontraposition
(7)	$(A \Rightarrow B) \land A \Longrightarrow B$	modus ponens
(8)	$(A \Rightarrow B) \land \neg B \Longrightarrow \neg A$	modus tollens
(9)	$(A \Rightarrow B) \land (B \Rightarrow C) \Longrightarrow (A \Rightarrow C)$	modus barbara
(10)	$A \wedge (B \vee C) \Longleftrightarrow (A \wedge B) \vee (A \wedge C)$	Distributivgesetz
(11)	$A \lor (B \land C) \Longleftrightarrow (A \lor B) \land (A \lor C)$	Distributivgesetz

Aussageformen.

Definition: Eine Aussage, die von Variablen abhängt, heißt Aussageform.

Beispiele für Aussageformen.

- x ist eine gerade Zahl;
- x ist größer als y;
- x ist größer als y, und y ist größer als z.

Beachte: Wahrheitswerte von Aussageformen erhält man nur durch Einsetzen von Werten für die einzelnen Variablen.

Beispiel: Definiere Aussageform A(x, y) durch

$$A(x,y) \iff x^2 + y^2 < 2$$

Dann gilt:

- A(1/2, 1) ist wahr, d.h. w(A(1/2, 1)) = 1;
- A(-3,2) ist falsch, d.h. w(A(-3,2)) = 0.

Quantoren.

Mathematische Aussagen werden häufig durch Kombination von Aussageformen mit *Quantoren* formuliert.

Es gibt zwei Grundquantoren:

- ∀ Allquantor;
- ∃ Existenzquantor;

und weiterhin

 $\bullet \exists_1$ Existenz mit Eindeutigkeit.

Sei A(x) eine Aussageform. Dann definieren wir neue Aussagen wie folgt.

- $\forall x : A(x)$, d.h. für alle x gilt A(x);
- $\exists x : A(x)$, d.h. es gibt *mindestens* ein x, für das A(x) gilt;
- $\exists_1 \ x : A(x)$, d.h. es gibt *genau* ein x, für das A(x) gilt.

Quantoren.

Die Wahrheitswerte der einzelnen Aussagen werden entsprechend definiert:

$$w(\forall x: A(x)) = 1 \iff \text{ für alle } x \text{ ist } w(A(x)) = 1$$
 $w(\exists x: A(x)) = 1 \iff \text{ es gibt } mindestens \text{ ein } x, \text{ so dass } w(A(x)) = 1$ $w(\exists_1 x: A(x)) = 1 \iff \text{ es gibt } genau \text{ ein } x, \text{ so dass } w(A(x)) = 1$

Negation von Quantoren.

Es gilt

$$\neg \Big(\forall x : A(x) \Big) \iff \exists x : \Big(\neg A(x) \Big)$$
$$\neg \Big(\exists x : A(x) \Big) \iff \forall x : \Big(\neg A(x) \Big)$$

Mathematische Sätze und Beweistechniken.

Standardform eines Satzes:

$$A \implies B$$
, für Aussagen A, B ,

wobei A Voraussetzung (Prämisse) und B Behauptung (Konklusion) heißt.

Mögliche Beweistechniken:

• Direkter Beweis (Kettenschluss)

$$A = A_0 \Longrightarrow A_1 \Longrightarrow A_2 \Longrightarrow \ldots \Longrightarrow A_n = B$$

• Indirekter Beweis (Kontraposition, Widerspruch)

$$A \Longrightarrow B \iff \neg B \Longrightarrow \neg A$$

ist eine Tautologie.

Exemplarisches Beispiel für einen ersten Beweis.

Satz: Eine natürliche Zahl $n \in \mathbb{N}$ ist genau dann gerade, wenn ihr Quadrat n^2 gerade ist, d.h. für $n \in \mathbb{N}$ gilt die Äquivalenz

n gerade
$$\iff$$
 n^2 gerade.

Beweis: Führe den Beweis in zwei Schritten:

1. Schritt: Zeige die Implikation

$$n \text{ gerade} \implies n^2 \text{ gerade}.$$

2. Schritt: Zeige die Implikation

$$n^2$$
 gerade \Longrightarrow n gerade.

1. Schritt: Direkter Beweis.

Sei \mathfrak{n} gerade. Dann $\exists k \in \mathbb{N} : \mathfrak{n} = 2k$

$$n = 2k \implies n^2 = 4k^2 = 2(2k^2) \implies n^2$$
 gerade.

2. Schritt: Indirekter Beweis. (zeige $\neg B \Rightarrow \neg A$ statt $A \Rightarrow B$)

Sei n^2 gerade. Angenommen n ist ungerade. Dann $\exists k \in \mathbb{N} : n = 2k - 1$.

$$n=2k-1 \implies n^2=(2k-1)^2=4k^2-4k+1=2(2k^2-2k)+1$$

$$\implies n^2 \text{ ungerade}.$$

Dies ist aber ein Widerspruch zur Annahme (n^2 gerade).

Ein weiteres exemplarisches Beweisbeispiel.

Satz: Die Zahl $\sqrt{2}$ ist irrational, d.h. $\sqrt{2}$ läßt sich nicht als Bruch $\sqrt{2}=n/m$ mit natürlichen Zahlen $n,m\in\mathbb{N}$ darstellen.

Beweis (durch Widerspruch) : Annahme: $\exists n, m \in \mathbb{N} : \sqrt{2} = \frac{n}{m}$.

Wir dürfen ohne Einschränkung annehmen, dass n und m teilerfremd sind. Denn ansonsten teilen wir m, n durch deren größten gemeinsamen Teiler (ggT).

Dann gilt:

$$2m^2 = n^2 \implies n^2$$
 gerade \implies n gerade $\implies \exists k \in \mathbb{N} : n = 2k$.

Einsetzen in $2m^2 = n^2$ ergibt:

$$2m^2 = n^2 = (2k)^2 = 4k^2 \Longrightarrow m^2 = 2k^2 \Longrightarrow m^2$$
 gerade $\Longrightarrow m$ gerade.

Dies ist ein Widerspruch zur Annahme, dass n und m teilerfremd sind.

Die Annahme $\sqrt{2} = \frac{n}{m}$ ist somit falsch $\Rightarrow \sqrt{2}$ ist irrational.

1.2 Mengen

Definition: Eine Menge ist eine Kollektion von paarweise verschiedenen Objekten. Die einzelnen Objekte werden Elemente der Menge genannt.

Beispiele für Mengen.

- $\mathbb{N} = \{1, 2, 3, \ldots\}$ Menge der natürlichen Zahlen;
- $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ Menge der nicht-negativen ganzen Zahlen;
- Studierende der TUHH;
- Hörer der Analysis I im WS 2013/2014;
- Menge der Primzahlen.

Notationen: Sei M eine Menge.

$$a \in M \iff a \text{ ist ein Element der Menge } M$$
 $a \notin M \iff \neg(a \in M)$

Definition von Mengen.

- Aufzählung der Elemente: $M := \{1, 2, 3, 4\}$
- Charakterisierende Eigenschaft der Menge, $M := \{x \in \Omega \mid A(x)\}$

Bedeutung der verwendeten Symbole.

:= "wird definiert durch"

A(x) Aussageform, definiert für Elemente x aus dem Grundbereich Ω

Teilmengen von Mengen.

$$M \subset N \iff \forall x : (x \in M \Longrightarrow x \in N)$$

Gleichheit von Mengen.

$$M = N \iff \forall x : (x \in M \iff x \in N)$$

Die leere Menge. Menge, die kein Element enthält. Bezeichnung: \emptyset

Ordnungseigenschaften.

- $M \subset M$;
- $\bullet (M \subset N) \wedge (N \subset M) \implies M = N;$
- $(M \subset N) \land (N \subset P) \implies M \subset P$.

Verknüpfung von Mengen.

$$M \cup N := \{x \mid x \in M \lor x \in N\}$$
 (Vereinigung)
 $M \cap N := \{x \mid x \in M \land x \in N\}$ (Durchschnitt)
 $M \setminus N := \{x \mid x \in M \land x \notin N\}$ (Differenz)
 $M \times N := \{(a,b) \mid a \in M \land b \in N\}$ (Cartesisches Produkt)
 $\mathcal{P}(M) := \{X \mid X \subset M\}$ (Potenzmenge)

Bemerkungen und weitere Bezeichnungen.

- Gilt $M \cap N = \emptyset$, so nennt man M und N disjunkt.
- Verknüpfung von endlich vielen Mengen.

$$\begin{array}{lll} \bigcup_{k=1}^{n} A_{k} & = & A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\ & := & \{\alpha \, | \, \exists \, i \in \{1, \ldots, n\} : \, \alpha \in A_{i} \} \\ & \bigcap_{k=1}^{n} A_{k} & = & A_{1} \cap A_{2} \cap \cdots \cap A_{n} \\ & := & \{\alpha \, | \, \forall \, i \in \{1, \ldots, n\} : \, \alpha \in A_{i} \} \\ & \prod_{k=1}^{n} A_{k} & = & A_{1} \times A_{2} \times \cdots \times A_{n} \\ & := & \{(\alpha_{1}, \ldots, \alpha_{n}) \, | \, \forall \, i \in \{1, \ldots, n\} : \, \alpha_{i} \in A_{i} \} \end{array}$$

Weitere Bemerkungen und Bezeichnungen.

• Für geordnete Paare bzw. n-Tupel gilt:

$$(a_1, a_2) = (b_1, b_2) \iff a_1 = b_1 \land a_2 = b_2$$

 $(x_1, \dots, x_n) = (y_1, \dots, y_n) \iff \forall i \in \{1, \dots, n\} : x_i = y_i$

- Wichtige Cartesische Produkte:
 - die Euklidische Ebene

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}\$$

- der dreidimensionale Euklidische Raum

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}\$$

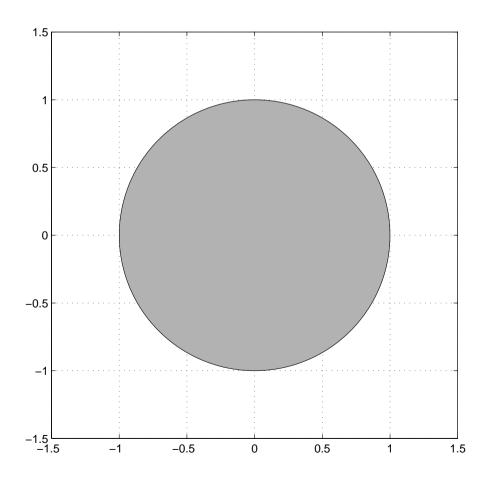
- der n-dimensionale Euklidische Raum

$$\mathbb{R}^{n} = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-\text{fach}} = \{(x_{1}, \dots, x_{n}) \mid x_{i} \in \mathbb{R}\}$$

Der Einheitskreis.

• Kreisscheibe mit Radius 1 (Einheitskreis)

$$A := \left\{ (x, y) \in \mathbb{R}^2 \, | \, \sqrt{x^2 + y^2} \le 1 \right\}$$



Zwei Streifen. $B := \{(x, y) \in \mathbb{R}^2 | 5 \le x^2 + 1 \le 17 \}$

Beachte:

$$5 \le x^2 + 1 \le 17 \iff 4 \le x^2 \le 16 \iff -4 \le x \le -2 \lor 2 \le x \le 4$$

und somit gilt

$$B = \{(x, y) \in \mathbb{R}^2 \mid -4 \le x \le -2 \lor 2 \le x \le 4\}.$$



Intervalle in \mathbb{R} .

Seien $a, b \in \mathbb{R}$ mit a < b.

$$[\alpha,b] := \{x \mid \alpha \leq x \leq b\} \text{ abgeschlossenes Intervall}$$

$$(\alpha,b) := \{x \mid \alpha < x < b\} \text{ offenes Intervall}$$

$$[\alpha,b) := \{x \mid \alpha \leq x < b\} \text{ halboffenes Intervall}$$

$$(\alpha,b) := \{x \mid \alpha \leq x \leq b\} \text{ halboffenes Intervall}$$

$$(\alpha,b) := \{x \mid \alpha < x \leq b\} \text{ halboffenes Intervall}$$