Fachbereich Mathematik der Universität Hamburg

Prof. Dr. R. Lauterbach

Dr. K. Rothe

Analysis I für Studierende der Ingenieurwissenschaften

Blatt 5

Aufgabe 17:

a) Man bestimme für folgende Mengen die Menge aller Häufungspunkte M' und aller inneren Punkte M^0 , und kläre, ob die Menge abgeschlossen oder offen ist.

$$M_{1} = (] - 3, 5] \cap]2, 8]) \cup \left\{ a_{n} \in \mathbb{R} \mid a_{n} = \frac{1}{n}, n \in \mathbb{N} \right\},$$

$$M_{2} = \{0\} \cup [3, 4] \cup \left\{ a_{n} \in \mathbb{R} \mid a_{n} = 1 + \frac{1}{2n}, n \in \mathbb{N} \right\},$$

$$M_{3} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid 0 < y < |x| < 1 \right\}.$$

- b) Man berechne die folgenden Grenzwerte, falls sie existieren
 - (i) $\lim_{x \to \pi/2} \cos x \tan x$,
 - (ii) $\lim_{x \to 1+} \frac{x+1}{\sqrt{x-1}}$.

Aufgabe 18:

a) Man zeichne die durch

$$f(x) = x\cos^2\left(\frac{1}{x}\right)$$

gegebene Funktion und untersuche mit Hilfe des ε - δ -Kriteriums, ob sie in $x_0 = 0$ durch f(0) = 0 stetig ergänzt werden kann.

b) Man zeichne die durch

$$g(x) = \begin{cases} x^2 & \text{für } x \ge 0 \\ e^x & \text{für } x < 0 \end{cases}$$

gegebene Funktion und überprüfe, ob sie in $x_0 = 0$ stetig ist.

2

Aufgabe 19:

a) Man berechne eine für alle $x \in \mathbb{R}$ stetige Funktion, für die gilt

$$\begin{array}{rclcrcl} f(0) & = & 1 & , \\ f'(x) & = & x & \text{für } -\infty < x < -2 \, , \\ f'(x) & = & 1 & \text{für } -2 < x < 1 \, , \\ f'(x) & = & -2x & \text{für } 1 < x < \infty \end{array}$$

und zeichne die Funktion.

b) Man bestimme $a, b \in \mathbb{R}$ so, daß

$$f(x) = \begin{cases} e^x & \text{für } 0 < x < \infty, \\ ax + b & \text{für } -\infty < x < 0 \end{cases}$$

differenzierbar wird und skizziere dann f.

Aufgabe 20:

a) Man berechne die erste Ableitung der folgenden Funktionen

i)
$$f(x) = (2x+1)^{\sin x}$$
, ii) $g(x) = \frac{x + \sin x \cos x}{2}$.

b) Man berechne die ersten beiden Ableitungen der folgenden Funktionen:

i)
$$h(x) = \frac{x+2}{x^3+8}$$
, ii) $k(x) = \ln(x^2-1)$.

c) Man berechne die ersten drei Ableitungen der folgenden Funktionen:

i)
$$u(x) = 2(1-3x)^2 + 4(5x-2) - 7$$
, ii) $v(x) = \sqrt[3]{(5x+1)^2}$.

Abgabetermin: 14.1. - 18.1.13 (zu Beginn der Übung)