3.3 Konvergenzkriterien für reelle Folgen

Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent mit Grenzwert

$$\lim_{n\to\infty}a_n=\sup\{a_n\,|\,n\in\mathbb{N}\}$$

Beweis: Sei $(a_n)_{n\in\mathbb{N}}$ nach oben beschränkt. Dann gilt

$$s := \sup\{a_n \mid n \in \mathbb{N}\} < \infty$$

Sei nun $\varepsilon > 0$ gegeben. Dann existiert ein $N = N(\varepsilon)$ mit

$$s - \varepsilon < a_N \le s$$

Die Folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend, also folgt

$$s - \varepsilon < a_N \le a_n \le s \quad \forall \ n \ge N$$

d.h.

$$|s-a_n|<\varepsilon\quad\forall\ n\geq N(\varepsilon)$$

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

79 / 108

Folgerung: Prinzip der Intervallschachtelung.

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende reelle Folge und $(b_n)_{n\in\mathbb{N}}$ eine monoton fallende reelle Folge mit

$$a_n \leq b_n$$
 für alle $n \in \mathbb{N}$ (Intervallschachtelung)

Dann sind beide Folgen konvergent. Gilt weiterhin

$$\lim_{n\to\infty}(a_n-b_n)=0$$

so haben $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ denselben Grenzwert, d.h. es gibt ein $\xi\in\mathbb{R}$ mit

$$\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Weiterhin gelten in diesem Fall die Fehlerabschätzungen

$$|a_n-\xi|\leq |b_n-a_n|$$
 $|b_n-\xi|\leq |b_n-a_n|$

Beispiel: Prinzip der Intervallschachtelung.

Definiere für 0 < a < b zwei Folgen (a_n) und (b_n) rekursiv durch

$$a_0 := a$$
 $b_0 := b$ $a_{n+1} := \sqrt{a_n b_n}$ $b_{n+1} := \frac{a_n + b_n}{2}$

Die Folgen (a_n) und (b_n) bilden eine *Intervallschachtelung*, und es gilt

$$(b_{n+1}-a_{n+1})\leq \frac{1}{2}(b_n-a_n)$$

Der gemeinsame Grenzwert von (a_n) und (b_n)

$$agm(a,b) := \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

heißt arithmetisch-geometrisches Mittel von a und b.

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

81 / 108

Bernoullische Ungleichung und die geometrische Folge.

Es gilt

$$\forall x > -1, n \in \mathbb{N} : (1+x)^n > 1 + nx$$

wobei Gleichheit nur bei n = 1 oder x = 0 gilt.

Die Geometrische Folge.

Sei $(a_n)_{n\in\mathbb{N}}$ relle Folge mit $a_n=q^n$ für $q\in\mathbb{R}.$ Dann gilt

$$q > 1$$
 : $\lim_{n \to \infty} q^n = +\infty$ $(q^n = (1 + (q - 1))^n \ge 1 + n(q - 1))$

$$q=1$$
 : $\lim_{n\to\infty}q^n=1$

$$0 < q < 1$$
 : $\lim_{n o \infty} q^n = 0$ $\left(q^n = \frac{1}{(1 + (1/q - 1))^n} \le \frac{1}{1 + n(1/q - 1)}\right)$

$$-1 < q \le 0$$
 : $\lim_{n \to \infty} q^n = 0$ $(|q^n| = |q|^n)$

$$q=-1$$
 : (q^n) beschränkt, aber nicht konvergent $(q^n\in\{-1,1\})$

$$q<-1$$
 : $\left(q^{n}
ight)$ divergent, kein uneigentlicher Grenzwert

Weitere Rechenregeln für konvergente Folgen.

Satz: Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente reelle Folgen. Dann gilt

a)
$$\lim_{n\to\infty}(a_nb_n)=(\lim_{n\to\infty}a_n)\cdot(\lim_{n\to\infty}b_n)$$

b)
$$\forall n : b_n \neq 0 \land \lim_{n \to \infty} b_n \neq 0 \quad \Rightarrow \quad \lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

c)
$$\forall n : a_n \geq 0 \land m \in \mathbb{N} \quad \Rightarrow \quad \lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{\lim_{n \to \infty} a_n}$$

Beweis zu a): Für hinreichend große n gilt

$$|a_nb_n - ab| = |a_nb_n - a_nb + a_nb - ab|$$

 $\leq |a_n| \cdot |b_n - b| + |b| \cdot |a_n - a|$
 $\leq C_a \cdot |b_n - b| + |b| \cdot |a_n - a| < (C_a + |b|)\varepsilon$

Für b) und c) siehe Textbuch von Ansorge/Oberle.

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

83 / 108

Beispiele für die Rechenregeln konvergenter Folgen.

Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n := \sqrt{n^2 + 5n + 1} - n$$

Es gilt

$$(n^2 + 5n + 1) - n^2 = (\sqrt{n^2 + 5n + 1} - n)(\sqrt{n^2 + 5n + 1} + n)$$

woraus folgt

$$a_n = \frac{(n^2 + 5n + 1) - n^2}{\sqrt{n^2 + 5n + 1} + n} = \frac{5 + \frac{1}{n}}{\sqrt{1 + \frac{5}{n} + \frac{1}{n^2}} + 1}$$

und somit

$$\lim_{n \to \infty} a_n = \frac{5+0}{\sqrt{1+0}+1} = \frac{5}{2}$$

Beispiele für die Rechenregeln konvergenter Folgen.

Gegeben sei die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n := \left(1 + \frac{p}{n}\right)^n$$

Kapitalverzinsung: Anfangskapital K_0 , Jahreszinssatz p

$$K_1 = K_0(1+p)$$
 jährlich $K_2 = K_0 \left(1+\frac{p}{2}\right)^2$ halbjährlich $K_4 = K_0 \left(1+\frac{p}{4}\right)^4$ vierteljährlich $K_{10} = K_0 \left(1+\frac{p}{10}\right)^{10}$ monatlich $K_{360} = K_0 \left(1+\frac{p}{360}\right)^{360}$ täglich

Untersuche die Konvergenz der Folge (a_n) , also

$$\lim_{n\to\infty}a_n = ?$$

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

OF / 100

Beispiele für die Rechenregeln konvergenter Folgen.

Für p > 0 zeigt man, dass

a) die Folge $(a_n)_{n\in\mathbb{N}}$ streng monoton wachsend ist,

$$\frac{a_{n+1}}{a_n} > 1$$

b) die Folge $(a_n)_{n\in\mathbb{N}}$ nach oben beschränkt ist,

$$\left(1+rac{p}{n}\right)^n \leq 4^I \quad (\text{wobei } I \in \mathbb{N} \text{ mit } I \geq p)$$

Damit konvergiert die Folge und für den Grenzwert erhält man

$$\lim_{n\to\infty}a_n=e^p$$

Die Grenzwertformel gilt auch für negative p und als Spezialfall erhalten wir die Eulersche Zahl,

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e = 2.718281828 \dots$$

Das Cauchysche Konvergenzkriterium.

Satz: (Cauchysches Konvergenzkriterium) Der Vektorraum $\mathbb R$ ist vollständig, d.h. jede reelle Cauchyfolge ist konvergent.

Zur Erinnerung:

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in einem normierten Vektorraum V. Dann heißt

• die Folge $(a_n)_{n\in\mathbb{N}}$ Cauchy–Folge, falls

$$\forall \, \varepsilon > 0 : \, \exists \, N = N(\varepsilon) \in \mathbb{N} : \, \forall \, n, m \geq N : \, \|a_n - a_m\| < \varepsilon$$

Für den Beweis des Cauchyschen Konvergenzkriteriums benötigen wir

- a) das Prinzip der Häufungspunkte von Folgen,
- b) den Satz von Bolzano und Weierstraß.

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

87 / 108

Häufungspunkte und Satz von Bolzano und Weierstraß.

Definition:

Sei $(a_{n_k})_{k\in\mathbb{N}}$ eine konvergente Teilfolge der Folge $(a_n)_{n\in\mathbb{N}}$. Dann wird der Grenzwert der Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ als Häufungspunkt der Folge $(a_n)_{n\in\mathbb{N}}$ bezeichnet.

Beispiel: Sei $(a_n)_{n\in\mathbb{N}}$ die komplexe Folge mit $a_n=i^n$. Dann besitzt (a_n) die vier Häufungspunkte $\{i,-i,1,-1\}$.

Satz: (Satz von Bolzano und Weierstraß)

Jede reelle beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge, d.h. die Folge $(a_n)_{n\in\mathbb{N}}$ hat mindestens einen Häufungspunkt.

Beweisidee:

Verknüpfe das Bisektionsverfahren mit einer Intervallschachtelung: Ist die Folge (a_n) beschränkt, so liegen alle Folgenglieder in einem endlichen Intervall [A, B] und man kann rekursiv Teilintervalle $[A_k, B_k]$ definieren mit $A_k \nearrow$ und $B_k \nearrow$.

Das Cauchysche Konvergenzkriterium.

Satz: (Cauchysches Konvergenzkriterium)

Der Vektorraum \mathbb{R} ist vollständig, d.h. jede reelle Cauchyfolge ist konvergent.

Beweis: Zeige, dass jede Cauchyfolge beschränkt ist: für n und $N = N(\varepsilon)$ gilt

$$|a_n| = |a_n - a_N + a_N| \le |a_n - a_N| + |a_N| < \varepsilon + |a_N|$$

Nach dem Satz von Bolzano und Weierstraß besitzt (a_n) einen Häufungspunkt ξ . Dann gilt für $m, n_k \geq N(\varepsilon/2)$

$$|a_m - \xi| = |a_m - a_{n_k} + a_{n_k} - \xi|$$

$$\leq \underbrace{|a_m - a_{n_k}|}_{\text{Cauchyfolge}} + \underbrace{|a_{n_k} - \xi|}_{\text{Häufungspunkt}} < \underbrace{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}}_{\text{Tauchyfolge}} = \varepsilon$$

Notation:

lim inf $a_n =$ kleinster Häufungspunkt, lim sup $a_n =$ größter Häufungspunkt

Jens Struckmeier (Mathematik, UniHH)

Analysis I für Ingenieure

Kapitel 3. Konvergenz von Folgen und Reihen

3.4. Konvergenz in normierten Vektorräumen

Im letzten Abschnitt 3.3. haben wir uns mit Konvergenzkriterien für reelle Folgen $(a_n)_{n\in\mathbb{N}}$ beschäftigt.

Sei nun $(V, \|\cdot\|)$ wieder allgemein ein normierter Vektorraum.

Wiederholung aus Abschnitt 3.2:

Definition:

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in einem normierten Vektorraum V. Dann heißt

ullet die Folge $(a_n)_{n\in\mathbb{N}}$ konvergent mit Grenzwert (Limes) $a\in V$, falls

$$\forall \, \varepsilon > 0 : \exists \, N = N(\varepsilon) \in \mathbb{N} : \forall \, n \geq N : \|a_n - a\| < \varepsilon$$

Beispiel:

Betrachte den Vektorraum C[0,1] aller stetigen Funktionen auf [0,1].