Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Mathematische Logik & Mengenlehre

Sommersemester 2019 Prof. Dr. Benedikt Löwe Übungsblatt 8

Abgabe am Dienstag, 28. Mai 2019 am Anfang der Übung. Ab Übungblatt #5 geben Sie bitte in Zweiergruppen ab.

(31) [Wiederholt von Übungsblatt #7.] Eine Menge I hieß induktiv, falls $\emptyset \in I$ und für alle $x \in I$, ist auch $x \cup \{x\} \in I$.

Analog nennen wir eine Menge Z Zermelo-induktiv falls $\emptyset \in Z$ und für alle $x \in Z$, ist auch $\{x\} \in Z$. Zeigen Sie:

- (a) Falls es eine Zermelo-induktive Menge gibt, so gibt es eine minimale Zermelo-induktive Menge.
- (b) Wir bezeichnen die minimale Zermelo-induktive Menge aus (a) mit $\mathbb{N}_{Zermelo}$. Dann gilt $\bigcup \mathbb{N}_{Zermelo} = \mathbb{N}_{Zermelo}$.
- (c) Falls $x \in \mathbb{N}_{\text{Zermelo}}$, so gilt $x \notin x$.
- (32) Sei $\mathfrak{G} = (V, E) \models \mathsf{FST}$ ein Graphenmodell. Falls $v \in V$, so gibt es ein $r_v \in \mathsf{Rel}(v, v)$ definiert durch

 $(u, w) \in r_v$ genau dann, wenn uEv, wEv und uEw.

Wir hatten gesagt, daß v \mathfrak{G} -transitiv ist, falls für alle u und w gilt: falls uEw und wEv, dann uEv.

Was können Sie über die Aussagen "v ist \mathfrak{G} -transitiv" und " r_v ist eine transitive Relation in \mathfrak{G} " sagen? Impliziert eine dieser Aussagen die andere?

- (33) Beweisen Sie die folgenden Aussagen über natürliche Zahlen in der Zermelo-Mengenlehre:
 - (a) Für alle n und m gilt: falls $m \in n$, so $n \notin m$.
 - (b) Für alle n und m gilt: falls S(n) = S(m), so n = m.
 - (c) Für alle n und m gilt: entweder $n \in m$ oder n = m oder $m \in n$.
 - (d) Für alle n, m und k gilt: (n+m)+k=n+(m+k).
 - (e) Für alle n und m gilt: n + m = m + n.
 - (f) Für alle n gilt: $1 \cdot n = n \cdot 1 = n$.
 - (g) Für alle n und m gilt: $n \cdot m = m \cdot n$.

(34) Wir definieren

$$\Phi_{\mathrm{plus}}(x,y,z) : \iff \exists a \exists b \exists f \exists g (a \cap b = \varnothing \land a \cup b = z \land f \in \mathrm{Bij}(x,a) \land g \in \mathrm{Bij}(y,b)).$$

Zeigen Sie, daß diese Formel eine binäre Operation auf \mathbb{N} definiert (hierfür müssen Existenz und Eindeutigkeit von z gezeigt werden) und daß für alle $x, y, z \in \mathbb{N}$ gilt:

$$x + y = z$$
 genau dann, wenn $\Phi_{\text{plus}}(x, y, z)$.

(35) Sei $S := \{\dot{+}, \dot{0}\}$ die Symbolmenge mit einem zweistelligen Funktionssymbol und einem Konstantensymbol. Wir nennen die Menge

$$T_{\rm AM} := \{ \forall x \forall y \forall z ((x \dotplus y) \dotplus z = x \dotplus (y \dotplus z)), \forall x (x \dotplus \dot{0} = x), \forall x \forall y (x \dotplus y = y \dotplus x) \}$$

die Axiome für abelsche Monoide und sagen, daß eine S-Struktur $\mathfrak{A} := (A, +, 0)$ ein abelsches Monoid ist, falls $\mathfrak{A} \models T_{AM}$.

Ist $\mathfrak{A}=(A,+,0)$ ein abelsches Monoid, so können wir durch

$$(a,b) \sim (a^*,b^*)$$
genau dann, wenn $a+b^*=b+a^*$

eine Äquivalenzrelation auf $A \times A$ definieren. Sei G die Menge der \sim -Äquivalenzklassen: definieren Sie eine Operation + auf G, so daß (G,+) zu einer Gruppe wird, die $\mathfrak A$ als Untermonoid enthält. Überlegen Sie sich, welche Axiome der Zermelo-Mengenlehre Sie für diese Konstruktion gebraucht haben.

Folgern Sie daraus, daß es in jedem Modell der Zermelo-Mengenlehre Objekte gibt, die wir als die Strukturen \mathbb{Z} und \mathbb{Q} interpretieren können. In welchem Sinne sind diese oder sind diese nicht eindeutig bestimmt?