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The open graph dichotomy for subsets of κκ

Let κ be an infinite cardinal such that κ<κ = κ.

Let X ⊆ κκ. A graph G on X is an open graph if it is an open subset of X ×X.

OGDκ(X)

If G is an open graph on X, then either
G has a κ-coloring (i.e., X is the union of κ many G-independent sets),

or G includes a κ-perfect complete subgraph (i.e., there is a continuous
injection f : κ2→ X such that (f(x), f(y)) ∈ G for all distinct x, y ∈ κ2.)
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OGDκ(X) for definable subsets X of κκ
Theorem (Feng)

1 OGDω(X) holds for all Σ1
1 subsets X ⊆ ωω.

2 If λ is inaccessible, then in any Col(ω,<λ)-generic extension V [G],
OGDω(X) holds for all subsets X ⊆ ωω definable from an element
of ωOrd.

X is definable from an element of ωOrd if

X = {x : ϕ(x, a)}

for some order formula ϕ with a parameter a ∈ ωOrd.

Suppose κ is an uncountable cardinal such that κ<κ = κ.

Theorem (Sz.)

If λ > κ is inaccessible, then in any Col(κ,<λ)-generic extension V [G],
OGDκ(X) holds for all Σ1

1(κ) subsets X ⊆ κκ.

Theorem (Schlicht, Sz.)

In Col(κ,<λ)-generic extensions, where λ > κ is inaccessible, OGDκ(X)
holds for all subsets X ⊆ κκ definable from an element of κOrd.

These results give the exact consistency strength of these statements.
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A higher dimensional version
Introduced in the κ = ω case by R. Carroy, B. Miller and D. Soukup.

Suppose κ<κ = κ ≥ ω. Let X ⊆ κκ and let 2 ≤ δ ≤ κ.
Suppose H is a δ-dimensional dihypergraph on X, i.e., H ⊆ δX is a set of non-
constant sequences. H is box-open if it is open in the box topology on δX.

OGDδκ(X,H)

Either H has a κ-coloring (i.e., X is the
union of κ many H-independent sets),

or there is a continuous map f : κδ → X
which is a homomorphism from Hδ to H
(i.e. fδ(Hδ) ⊆ H).

Hδ =
{
x ∈ δ(κδ) :(∃t ∈ <κδ)

(∀α < δ) t_〈α〉 ⊂ xα
}
.

OGDδκ(X)

OGDδκ(X,H) holds for all δ-dimensional
box-open dihypergraphs H on X.

〈x0, x1, . . . , xα, . . .〉 ∈ Hδ
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OGDδκ(X)

For all δ-dimensional box-open dihypergraphs H on X, either
H has a κ-coloring, or
there is a continuous homomorphism f : κδ → X from Hδ to H.

Example

Let x0 6= x1 ∈ κ2. Let t be the node where they split.

〈x0, x1〉 ∈ H2 iff x0(|t|) = 0 and x1(|t|) = 1.

The smallest graph (i.e. symmetric relation) containing
H2 is the complete graph K2 on κ2.

G is a graph on X. Let f : κ2→ X be continuous homomorphism from H2 to G.
Since G is symmetric, f is a homomorphism from K2 to G. Thus, G has a κ-perfect
complete subgraph.

OGD2
κ(X) implies the open graph dichotomy OGDκ(X).
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Applications of OGDω
ω(X)

Theorem (R. Carroy, B. Miller, D. Soukup)

OGDω
ω(X) holds for all Σ1

1 subsets X of ωω

(and more generally, for all
analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup)

Suppose X is a separable metric space such that OGDω
ω(X) holds.

X satisfies the Hurewicz dichotomy (characterizes when X is
contained in a Kσ subset of ωω).
The Jayne-Rogers theorem holds for X (characterizes when a given
function from X to a separable metric space is ∆0

2-measurable).
A theorem of Lecomte and Zeleny holds for X, which characterizes
when a graph on X has ∆0

2-measurable ℵ0-coloring.
Several other applications . . .
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OGDδ
κ(X) for definable subsets of κκ

Theorem (Schlicht, Sz.)

Suppose κ<κ = κ ≥ ω. If λ > κ is inaccessible, then in any Col(κ,<λ)-
generic extension V [G], the following hold for all subsets X ⊆ κκ which
are definable from an element of κOrd:

1 OGDδ
κ(X), where 2 ≤ δ < κ.

2 OGDκ
κ(X,H) for all κ-dimensional box-open dihypergraphs H on X

which are definable from an element of κOrd.

This theorem gives the exact consistency strength of these statements.
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Sketch of the proof

κ<κ = κ ≥ ω. Let λ > κ be inaccessible, let G be Col(κ,<λ)-generic over V .

For all α ≤ λ, let Pα = Col(κ,<α) and Gα = G ∩Pα.
In V [G], assume:

X ⊆ κκ is defined by a formula ϕX with a parameter aX ∈ κOrd. That is,
X = {x ∈ (κκ)V [G] : V [G] |= ϕX(x, aX)}.

R is a δ-dimensional box-open dihypergraph on X which has no κ-coloring.
R is defined by a formula ψR with a parameter bR ∈ κOrd. That is,

R = {x ∈ (δ(κκ))V [G] : V [G] |= ψR(x, bR)}).

(When δ < κ, this can be assumed whenever R is box-open.)

We can also assume that aX , bR ∈ V .

Let x ∈

X −
⋃
{[T ] : T ∈ V is a subtree of <κκ, [T ] is R-independent}.

Then x ∈ V [Gα] for some α < λ. Let ẋ be a Pα-name for x.
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Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of κκ8 / 16



Sketch of the proof

κ<κ = κ ≥ ω. Let λ > κ be inaccessible, let G be Col(κ,<λ)-generic over V .
For all α ≤ λ, let Pα = Col(κ,<α) and Gα = G ∩Pα.
In V [G], assume:

X ⊆ κκ is defined by a formula ϕX with a parameter aX ∈ κOrd. That is,
X = {x ∈ (κκ)V [G] : V [G] |= ϕX(x, aX)}.

R is a δ-dimensional box-open dihypergraph on X which has no κ-coloring.
R is defined by a formula ψR with a parameter bR ∈ κOrd. That is,

R = {x ∈ (δ(κκ))V [G] : V [G] |= ψR(x, bR)}).

(When δ < κ, this can be assumed whenever R is box-open.)

We can also assume that aX , bR ∈ V .

Let x ∈

X −
⋃
{[T ] : T ∈ V is a subtree of <κκ, [T ] is R-independent}.

Then x ∈ V [Gα] for some α < λ. Let ẋ be a Pα-name for x.
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Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of κκ8 / 16



Sketch of the proof (the κ = ω case)
For κ = ω, the theorem can be proved using an argument similar to Feng’s proof,
and to an argument of Solovay’s.

These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V [G], V [G] is a Pλ-generic
extension of V [y].

This lemma fails when κ > ω (Schlicht).

We construct a (-preserving map e : <κδ → Pα such that for all y ∈ κδ,

gy = {q ∈ Pα : q ≥ e(t) for some t ( y} is a Pα-generic filter.

By the next lemma, e can be defined in such a way that ẋgy ∈ X for all y ∈ κδ,
and the (continuous) map

f : κδ → X; y 7→ ẋgy

is a homomorphism from Hδ to H.
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Sketch of the proof (the κ = ω case)

For any forcing Q, any q ∈ Q and any Q-name σ, define

Tσ,qQ = {t ∈ <κκ : (∃r ≤ q) r 
VQ t ⊆ σ},

the tree of possible values for σ below q.

ẋGα ∈ X; if T ∈ V is a subtree of <κκ and [T ] is R-independent, then ẋGα /∈ [T ].

Lemma 2
There exists p ∈ Pα such that the following hold.

1 p 
VPα “ϕX(ẋ, aX) holds in every further Pλ-generic extension of V [ẋ].”

2 For all r ∈ Pα below p, there exists (in V [G]) a sequence 〈ti ∈ T ẋ,rPα : i < δ〉
such that (in V [G]) ∏

i<δ

Nti ∩X ⊆ R.
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VPα “ϕX(ẋ, aX) holds in every further Pλ-generic extension of V [ẋ].”
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Sketch of the proof (the κ > ω case)

Assume κ = κ<κ is uncountable.

Lemma 3

There exist γ < λ and an Add(κ, 1)-name τ ∈ V [Gγ ] which satisfy a strong
version of Lemma 2:

1 
V [Gγ ]

Add(κ,1)“ϕX(τ, aX) holds in every further Pλ-generic extension.”

2 For all r ∈ Add(κ, 1), there exists a sequence

t(r) = 〈ti(r) ∈ T τ,rAdd(κ,1) : i < δ〉 ∈ V [Gγ ]

such that in V [G], ∏
i<δ

Nti(r) ∩X ⊆ R.
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Sketch of the proof (the κ > ω case)

Let Q consist of those partial maps p from <κδ to <κκ such that

1 dom(p) is a subtree of <κδ of size < κ.

2 For all u, v ∈ dom(p), u ( v implies p(u) ( p(v).

3 If i < δ and u_〈i〉 ∈ dom(p), then p
(
u_〈i〉

)

Add(κ,1) ti

(
p(u)

)
⊆ τ.

We let p ≤Q q if and only if dom(p) ⊇ dom(q), and

p(u) = q(u) for every non-terminal node u ∈ dom(q), and

p(u) ⊇ q(u) for every terminal node u of dom(q).

A Q-generic filter H adds a (-preserving map eH : <κδ → <κκ;

eH(u) =
⋃
{p(u) : p ∈ H}.

Q is equivalent to Add(κ, 1), since it is <κ-closed, nonatomic, and of size κ.
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Sketch of the proof (the κ > ω case)
Let K×H ′ be Pλ×Add(κ, 1)-generic over V [Gγ ] with V [G] = V [Gγ ×K×H ′].

Replace H ′ with aQ-generic H over V [Gγ×K] such that V [G] = V [Gγ×K×H].

In V [G], let g : κδ → κκ;

g(y) =
⋃
{eH(u) : u ( y}.

Lemma 4
Let y ∈ κδ.

1 g(y) is Add(κ, 1)-generic over V [Gγ ].

2 V [G] is a Pλ-generic extension of V [Gγ ][g(y)].

3 Therefore τg(y) ∈ X.

Let f : κδ → X;
f(y) = τg(y).

f is a continuous map and is a homomorphism from Hδ to R. (Item 3 in the
definition of Q guarantees this).
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In V [G], let g : κδ → κκ;
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{eH(u) : u ( y}.

Lemma 4
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2 V [G] is a Pλ-generic extension of V [Gγ ][g(y)].

3 Therefore τg(y) ∈ X.

Let f : κδ → X;
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f is a continuous map and is a homomorphism from Hδ to R. (Item 3 in the
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The Hurewicz dichotomy for definable subsets of κκ
Let κ be an infinite cardinal such that κ<κ = κ. Let X ⊆ κκ.

X is κ-compact iff every open cover of X has a subcover of size <κ.
X is Kκ iff X is the union of κ-many κ-compact sets.

X satisfies the Hurewicz dichotomy iff either X is contained in a Kκ subset of κκ
or there is a closed set Y ⊆ X homeomorphic to κκ.

Proposition

The Hurewicz dichotomy for X is implied by OGDκ
κ(X,R) for the class of

κ-dimensional box-open dihypergraphs R on X which are definable from
an element of κOrd.

Corollary (Lücke, Motto Ros, Schlicht)

If λ > κ is inaccessible, then in any Col(κ,<λ)-generic extension V [G],
the Hurewicz dichotomy holds for all subsets X ⊆ κκ which are definable
from an element of κOrd.
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Questions

Suppose κ > ω. Is it consistent with ZFC that OGDκ
κ(X) (i.e., for

all box-open κ-dimensional dihypergraphs) holds for Σ1
1(κ) subsets

X ⊆ κκ?

For all subsets of κκ which are definable using parameters in κOrd?

Which applications follow already from “OGDω
ω(X,R) for all

definable R ”?
Conjecture: all of them do.

Which other applications of OGDω
ω(X) can be generalized to the

setting of κ-Baire spaces for κ > ω?

OGAκ: if X ⊆ κκ and G is an open graph on X, then either G has a
κ-coloring or G includes a complete subgraph of size κ+.

Is OGAκ consistent when κ > ω? If so, how does it influence the
structure of the κ-Baire space?
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Thank you!
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