The Open Dihypergraph Dichotomy for Definable Subsets of Generalized Baire Spaces

> Dorottya Sziráki joint work with Philipp Schlicht

Hamburg Set Theory Workshop 2020

The open graph dichotomy for subsets of ${}^\kappa\kappa$

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$.

Let $X \subseteq {}^{\kappa}\kappa$. A graph G on X is an open graph if it is an open subset of $X \times X$.

 $OGD_{\kappa}(X)$

If G is an open graph on X, then either

- G has a κ -coloring (i.e., X is the union of κ many G-independent sets),
- or G includes a κ-perfect complete subgraph (i.e., there is a continuous injection f : ^κ2 → X such that (f(x), f(y)) ∈ G for all distinct x, y ∈ ^κ2.)

$OGD_{\kappa}(X)$ for definable subsets X of ${}^{\kappa}\kappa$ Theorem (Feng) $\bigcirc OGD_{\omega}(X)$ holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.

Theorem (Feng)

• OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.

If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Theorem (Feng)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

X is definable from an element of $^\omega {\rm Ord}$ if

$$X = \{x : \varphi(x, a)\}$$

for some order formula φ with a parameter $a \in {}^{\omega}Ord$.

Theorem (Feng)

• OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.

If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Theorem (Feng)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz.)

If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Feng)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz.)

If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz.)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

Theorem (Feng)

- OGD_{ω}(X) holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.
- If λ is inaccessible, then in any Col(ω, <λ)-generic extension V[G], OGD_ω(X) holds for all subsets X ⊆ ^ωω definable from an element of ^ωOrd.

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

Theorem (Sz.)

If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz.)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

These results give the exact consistency strength of these statements.

Introduced in the $\kappa = \omega$ case by R. Carroy, B. Miller and D. Soukup.

Introduced in the $\kappa = \omega$ case by R. Carroy, B. Miller and D. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le \delta \le \kappa$.

Suppose *H* is a δ -dimensional dihypergraph on *X*, i.e., $H \subseteq {}^{\delta}X$ is a set of non-constant sequences.

Introduced in the $\kappa = \omega$ case by R. Carroy, B. Miller and D. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le \delta \le \kappa$.

Suppose *H* is a δ -dimensional dihypergraph on *X*, i.e., $H \subseteq {}^{\delta}X$ is a set of nonconstant sequences. *H* is box-open if it is open in the box topology on ${}^{\delta}X$.

Introduced in the $\kappa = \omega$ case by R. Carroy, B. Miller and D. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le \delta \le \kappa$.

Suppose *H* is a δ -dimensional dihypergraph on *X*, i.e., $H \subseteq {}^{\delta}X$ is a set of nonconstant sequences. *H* is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_\kappa^\delta(X,H)$

 Either H has a κ-coloring (i.e., X is the union of κ many H-independent sets),

Introduced in the $\kappa = \omega$ case by R. Carroy, B. Miller and D. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le \delta \le \kappa$.

Suppose *H* is a δ -dimensional dihypergraph on *X*, i.e., $H \subseteq {}^{\delta}X$ is a set of nonconstant sequences. *H* is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_\kappa^\delta(X,H)$

- Either H has a κ-coloring (i.e., X is the union of κ many H-independent sets),
- or there is a continuous map f: ^κδ → X which is a homomorphism from H_δ to H (i.e. f^δ(H_δ) ⊆ H).

Introduced in the $\kappa=\omega$ case by R. Carroy, B. Miller and D. Soukup.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le \delta \le \kappa$.

Suppose H is a δ -dimensional dihypergraph on X, i.e., $H \subseteq {}^{\delta}X$ is a set of nonconstant sequences. H is box-open if it is open in the box topology on ${}^{\delta}X$.

 $\mathrm{OGD}_{\kappa}^{\delta}(X,H)$

- Either H has a κ-coloring (i.e., X is the union of κ many H-independent sets),
- or there is a continuous map f: ^κδ → X which is a homomorphism from H_δ to H (i.e. f^δ(H_δ) ⊆ H).

$$\mathbb{H}_{\delta} = \left\{ \overline{x} \in {}^{\delta}({}^{\kappa}\delta) : (\exists t \in {}^{<\kappa}\delta) \\ (\forall \alpha < \delta) \ t^{\frown}\langle \alpha \rangle \subset x_{\alpha} \right\}.$$

 $\mathrm{OGD}_{\kappa}^{\delta}(X)$

$$\label{eq:odd_state} \begin{split} & \mathrm{OGD}^\delta_\kappa(X,H) \text{ holds for all } \delta\text{-dimensional} \\ & \mathsf{box}\text{-open dihypergraphs } H \text{ on } X. \end{split}$$

$\mathrm{OGD}_{\kappa}^{\delta}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a $\kappa\text{-coloring, or}$
- there is a continuous homomorphism $f: {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

$\mathrm{OGD}_{\kappa}^{\delta}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f: {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

Example

Let $x_0 \neq x_1 \in {}^{\kappa}2$. Let t be the node where they split.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

$\mathrm{OGD}_{\kappa}^{\delta}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f: {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

Example

Let $x_0 \neq x_1 \in {}^{\kappa}2$. Let t be the node where they split.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

The smallest graph (i.e. symmetric relation) containing \mathbb{H}_2 is the complete graph \mathbb{K}_2 on κ_2 .

$\mathrm{OGD}_\kappa^\delta(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f: {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

Example

Let $x_0 \neq x_1 \in {}^{\kappa}2$. Let t be the node where they split.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

The smallest graph (i.e. symmetric relation) containing \mathbb{H}_2 is the complete graph \mathbb{K}_2 on κ_2 .

G is a graph on X. Let $f: {}^{\kappa}2 \to X$ be continuous homomorphism from \mathbb{H}_2 to G.

$OGD^{\delta}_{\kappa}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f : {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

Example

' Example Let $x_0 \neq x_1 \in {}^{\kappa}2$. Let t be the node where they split.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

The smallest graph (i.e. symmetric relation) containing \mathbb{H}_2 is the complete graph \mathbb{K}_2 on $\kappa 2$.

G is a graph on X. Let $f: {}^{\kappa}2 \to X$ be continuous homomorphism from \mathbb{H}_2 to G. Since G is symmetric, f is a homomorphism from \mathbb{K}_2 to G.

$OGD^{\delta}_{\kappa}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f : {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

Example

/ Example Let $x_0 \neq x_1 \in {}^{\kappa}2$. Let t be the node where they split.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

The smallest graph (i.e. symmetric relation) containing \mathbb{H}_2 is the complete graph \mathbb{K}_2 on $\kappa 2$.

G is a graph on X. Let $f: {}^{\kappa}2 \to X$ be continuous homomorphism from \mathbb{H}_2 to G. Since G is symmetric, f is a homomorphism from \mathbb{K}_2 to G. Thus, G has a κ -perfect complete subgraph.

$\mathrm{OGD}^{\delta}_{\kappa}(X)$

For all δ -dimensional box-open dihypergraphs H on X, either

- H has a κ -coloring, or
- there is a continuous homomorphism $f : {}^{\kappa}\delta \to X$ from \mathbb{H}_{δ} to H.

 $\langle x_0, x_1 \rangle \in \mathbb{H}_2$ iff $x_0(|t|) = 0$ and $x_1(|t|) = 1$.

The smallest graph (i.e. symmetric relation) containing \mathbb{H}_2 is the complete graph \mathbb{K}_2 on $\kappa 2$.

G is a graph on X. Let $f: {}^{\kappa}2 \to X$ be continuous homomorphism from \mathbb{H}_2 to G. Since G is symmetric, f is a homomorphism from \mathbb{K}_2 to G. Thus, G has a κ -perfect complete subgraph.

 $OGD^2_{\kappa}(X)$ implies the open graph dichotomy $OGD_{\kappa}(X)$.

Theorem (R. Carroy, B. Miller, D. Soukup) OGD $_{\omega}^{\omega}(X)$ holds for all Σ_1^1 subsets X of $^{\omega}\omega$

Theorem (R. Carroy, B. Miller, D. Soukup) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

 X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).

Theorem (R. Carroy, B. Miller, D. Soukup) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).

Theorem (R. Carroy, B. Miller, D. Soukup) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).
- A theorem of Lecomte and Zeleny holds for X, which characterizes when a graph on X has Δ⁰₂-measurable ℵ₀-coloring.

Theorem (R. Carroy, B. Miller, D. Soukup) $OGD_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$ (and more generally, for all analytic Hausdorff spaces).

Theorem (R. Carroy, B. Miller, D. Soukup)

Suppose X is a separable metric space such that $OGD_{\omega}^{\omega}(X)$ holds.

- X satisfies the Hurewicz dichotomy (characterizes when X is contained in a K_σ subset of ^ωω).
- The Jayne-Rogers theorem holds for X (characterizes when a given function from X to a separable metric space is Δ_2^0 -measurable).
- A theorem of Lecomte and Zeleny holds for X, which characterizes when a graph on X has Δ⁰₂-measurable ℵ₀-coloring.
- Several other applications . . .

Theorem (Schlicht, Sz.)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

• OGD $_{\kappa}^{\delta}(X)$, where $2 \leq \delta < \kappa$.

Theorem (Schlicht, Sz.)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

- OGD $^{\delta}_{\kappa}(X)$, where $2 \leq \delta < \kappa$.
- OGD^κ_κ(X,H) for all κ-dimensional box-open dihypergraphs H on X which are definable from an element of ^κOrd.

Theorem (Schlicht, Sz.)

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$:

- OGD $^{\delta}_{\kappa}(X)$, where $2 \leq \delta < \kappa$.
- OGD^κ_κ(X,H) for all κ-dimensional box-open dihypergraphs H on X which are definable from an element of ^κOrd.

This theorem gives the exact consistency strength of these statements.

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V.

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$.

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

• $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}\text{Ord.}$ That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

• $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$

• R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$
$\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a_X, b_R \in V$.

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a_X, b_R \in V$.

 $X - \bigcup \{ [T] : T \in V \text{ is a subtree of } ^{<\kappa}\kappa, [T] \text{ is } R \text{-independent} \}.$

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a_X, b_R \in V$.

Let $x \in X - \bigcup \{ [T] : T \in V \text{ is a subtree of } {}^{<\kappa}\kappa, [T] \text{ is } R\text{-independent} \}.$

 $\kappa^{<\kappa} = \kappa \ge \omega$. Let $\lambda > \kappa$ be inaccessible, let G be $\operatorname{Col}(\kappa, <\lambda)$ -generic over V. For all $\alpha \le \lambda$, let $\mathbb{P}_{\alpha} = \operatorname{Col}(\kappa, <\alpha)$ and $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. In V[G], assume:

- $X \subseteq {}^{\kappa}\kappa$ is defined by a formula φ_X with a parameter $a_X \in {}^{\kappa}Ord$. That is, $X = \{x \in ({}^{\kappa}\kappa)^{V[G]} : V[G] \models \varphi_X(x, a_X)\}.$
- R is a δ -dimensional box-open dihypergraph on X which has no κ -coloring.
- R is defined by a formula ψ_R with a parameter $b_R \in {}^{\kappa}\text{Ord.}$ That is, $R = \{ \overline{x} \in ({}^{\delta}({}^{\kappa}\kappa))^{V[G]} : V[G] \models \psi_R(\overline{x}, b_R) \}).$

(When $\delta < \kappa$, this can be assumed whenever R is box-open.)

• We can also assume that $a_X, b_R \in V$.

Let $x \in X - \bigcup \{ [T] : T \in V \text{ is a subtree of } <\kappa, [T] \text{ is } R\text{-independent} \}.$ Then $x \in V[G_{\alpha}]$ for some $\alpha < \lambda$. Let \dot{x} be a \mathbb{P}_{α} -name for x.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's. These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's. These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

We construct a \subsetneq -preserving map $e : {}^{<\kappa}\delta \to \mathbb{P}_{\alpha}$ such that for all $y \in {}^{\kappa}\delta$,

 $g_y = \{q \in \mathbb{P}_{\alpha} : q \ge e(t) \text{ for some } t \subsetneq y\}$ is a \mathbb{P}_{α} -generic filter.

For $\kappa = \omega$, the theorem can be proved using an argument similar to Feng's proof, and to an argument of Solovay's. These arguments rely on the following lemma.

Lemma 1 (Solovay)

For all countable sequences y of ordinals in V[G], V[G] is a \mathbb{P}_{λ} -generic extension of V[y].

• This lemma fails when $\kappa > \omega$ (Schlicht).

We construct a \subsetneq -preserving map $e : {}^{<\kappa}\delta \to \mathbb{P}_{\alpha}$ such that for all $y \in {}^{\kappa}\delta$,

 $g_y = \{q \in \mathbb{P}_{\alpha} : q \ge e(t) \text{ for some } t \subsetneq y\}$ is a \mathbb{P}_{α} -generic filter.

By the next lemma, e can be defined in such a way that $\dot{x}^{g_y} \in X$ for all $y \in {}^{\kappa}\delta$, and the (continuous) map

$$f: {}^{\kappa}\delta \to X; \ y \mapsto \dot{x}^{g_y}$$

is a homomorphism from \mathbb{H}_{δ} to H.

For any forcing $\mathbbm{Q},$ any $q\in\mathbbm{Q}$ and any $\mathbbm{Q}\text{-name }\sigma\text{,}$ define

$$T_{\mathbb{Q}}^{\sigma,q} = \{ t \in {}^{<\kappa}\kappa : (\exists r \leq q) \, r \Vdash_{\mathbb{Q}}^{V} t \subseteq \sigma \},$$

the tree of possible values for σ below q.

For any forcing $\mathbbm{Q},$ any $q\in \mathbbm{Q}$ and any $\mathbbm{Q}\text{-name }\sigma,$ define

$$T_{\mathbb{Q}}^{\sigma,q} = \{ t \in {}^{<\kappa}\kappa : (\exists r \le q) \, r \Vdash_{\mathbb{Q}}^{V} t \subseteq \sigma \},$$

the tree of possible values for σ below q.

 $\dot{x}^{G_{\alpha}} \in X$; if $T \in V$ is a subtree of ${}^{<\kappa}\kappa$ and [T] is *R*-independent, then $\dot{x}^{G_{\alpha}} \notin [T]$.

Lemma 2

There exists $p \in \mathbb{P}_{\alpha}$ such that the following hold.

- $\ \, {\mathbb Q} \ \, p \Vdash_{\mathbb P_\alpha}^V ``\varphi_X(\dot x,a_X) \text{ holds in every further } \mathbb P_\lambda \text{-generic extension of } V[\dot x]."$
- ② For all $r \in \mathbb{P}_{\alpha}$ below p, there exists (in V[G]) a sequence $\langle t_i \in T^{\dot{x},r}_{\mathbb{P}_{\alpha}} : i < \delta \rangle$ such that (in V[G])

$$\prod_{i<\delta} N_{t_i} \cap X \subseteq R.$$

Assume $\kappa = \kappa^{<\kappa}$ is uncountable.

Lemma 3

There exist $\gamma < \lambda$ and an $Add(\kappa, 1)$ -name $\tau \in V[G_{\gamma}]$ which satisfy a strong version of Lemma 2:

Assume $\kappa = \kappa^{<\kappa}$ is uncountable.

Lemma 3

There exist $\gamma < \lambda$ and an $Add(\kappa, 1)$ -name $\tau \in V[G_{\gamma}]$ which satisfy a strong version of Lemma 2:

Assume $\kappa = \kappa^{<\kappa}$ is uncountable.

Lemma 3

There exist $\gamma < \lambda$ and an $Add(\kappa, 1)$ -name $\tau \in V[G_{\gamma}]$ which satisfy a strong version of Lemma 2:

2 For all $r \in Add(\kappa, 1)$, there exists a sequence

$$\bar{t}(r) = \langle t_i(r) \in T^{\tau,r}_{\mathrm{Add}(\kappa,1)} : i < \delta \rangle \in V[G_{\gamma}]$$

such that in V[G],

$$\prod_{i<\delta} N_{t_i(r)} \cap X \subseteq R.$$

Let ${\mathbb Q}$ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

- **1** dom(p) is a subtree of ${}^{<\kappa}\delta$ of size $<\kappa$.
- **2** For all $u, v \in \text{dom}(p)$, $u \subsetneq v$ implies $p(u) \subsetneq p(v)$.

Let ${\mathbb Q}$ consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

- **1** dom(p) is a subtree of ${}^{<\kappa}\delta$ of size $<\kappa$.
- **2** For all $u, v \in dom(p)$, $u \subsetneq v$ implies $p(u) \subsetneq p(v)$.
- $If i < \delta and u^{\frown}\langle i \rangle \in \operatorname{dom}(p), then p(u^{\frown}\langle i \rangle) \Vdash_{\operatorname{Add}(\kappa,1)} t_i(p(u)) \subseteq \tau.$

Let \mathbbm{Q} consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

$$on (p) is a subtree of < \kappa \delta of size < \kappa.$$

2 For all
$$u, v \in dom(p)$$
, $u \subsetneq v$ implies $p(u) \subsetneq p(v)$.

 $If i < \delta and u^{\frown}\langle i \rangle \in \operatorname{dom}(p), then p(u^{\frown}\langle i \rangle) \Vdash_{\operatorname{Add}(\kappa,1)} t_i(p(u)) \subseteq \tau.$

We let $p \leq_{\mathbb{Q}} q$ if and only if $\operatorname{dom}(p) \supseteq \operatorname{dom}(q)$, and

- p(u) = q(u) for every non-terminal node $u \in \operatorname{dom}(q)$, and
- $p(u) \supseteq q(u)$ for every terminal node u of dom(q).

Let \mathbbm{Q} consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

$$on (p) is a subtree of < \kappa \delta of size < \kappa.$$

2 For all
$$u, v \in dom(p)$$
, $u \subsetneq v$ implies $p(u) \subsetneq p(v)$.

 $If i < \delta and u^{\frown}\langle i \rangle \in \operatorname{dom}(p), then p(u^{\frown}\langle i \rangle) \Vdash_{\operatorname{Add}(\kappa,1)} t_i(p(u)) \subseteq \tau.$

We let $p \leq_{\mathbb{Q}} q$ if and only if $\operatorname{dom}(p) \supseteq \operatorname{dom}(q)$, and

- p(u) = q(u) for every non-terminal node $u \in dom(q)$, and
- $p(u) \supseteq q(u)$ for every terminal node u of dom(q).
- A Q-generic filter H adds a \subsetneq -preserving map $e_H : {}^{<\kappa}\delta \to {}^{<\kappa}\kappa;$

$$e_H(u) = \bigcup \{ p(u) : p \in H \}.$$

Let \mathbbm{Q} consist of those partial maps p from ${}^{<\kappa}\delta$ to ${}^{<\kappa}\kappa$ such that

$$on (p) is a subtree of < \kappa \delta of size < \kappa.$$

2 For all
$$u, v \in dom(p)$$
, $u \subsetneq v$ implies $p(u) \subsetneq p(v)$.

 $If i < \delta and u^{\frown}\langle i \rangle \in \operatorname{dom}(p), then p(u^{\frown}\langle i \rangle) \Vdash_{\operatorname{Add}(\kappa,1)} t_i(p(u)) \subseteq \tau.$

We let $p \leq_{\mathbb{Q}} q$ if and only if $\operatorname{dom}(p) \supseteq \operatorname{dom}(q)$, and

- p(u) = q(u) for every non-terminal node $u \in dom(q)$, and
- $p(u) \supseteq q(u)$ for every terminal node u of dom(q).

A Q-generic filter H adds a \subsetneq -preserving map $e_H : {}^{<\kappa}\delta \to {}^{<\kappa}\kappa;$

$$e_H(u) = \bigcup \{ p(u) : p \in H \}.$$

 \mathbb{Q} is equivalent to $Add(\kappa, 1)$, since it is $<\kappa$ -closed, nonatomic, and of size κ .

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \mathrm{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$.

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \operatorname{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$. Replace H' with a \mathbb{Q} -generic H over $V[G_{\gamma} \times K]$ such that $V[G] = V[G_{\gamma} \times K \times H]$.

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \operatorname{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$. Replace H' with a Q-generic H over $V[G_{\gamma} \times K]$ such that $V[G] = V[G_{\gamma} \times K \times H]$. In V[G], let $g : {}^{\kappa} \delta \to {}^{\kappa} \kappa$;

$$g(y) = \bigcup \{ e_H(u) : u \subsetneq y \}.$$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

1 g(y) is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \operatorname{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$. Replace H' with a Q-generic H over $V[G_{\gamma} \times K]$ such that $V[G] = V[G_{\gamma} \times K \times H]$. In V[G], let $g : {}^{\kappa} \delta \to {}^{\kappa} \kappa$;

$$g(y) = \bigcup \{ e_H(u) : u \subsetneq y \}.$$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

- **1** g(y) is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.
- 2 V[G] is a \mathbb{P}_{λ} -generic extension of $V[G_{\gamma}][g(y)]$.

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \operatorname{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$. Replace H' with a Q-generic H over $V[G_{\gamma} \times K]$ such that $V[G] = V[G_{\gamma} \times K \times H]$. In V[G], let $g : {}^{\kappa} \delta \to {}^{\kappa} \kappa$;

$$g(y) = \bigcup \{ e_H(u) : u \subsetneq y \}.$$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

1
$$g(y)$$
 is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.

2 V[G] is a \mathbb{P}_{λ} -generic extension of $V[G_{\gamma}][g(y)]$.

3 Therefore $\tau^{g(y)} \in X$.

Let $K \times H'$ be $\mathbb{P}_{\lambda} \times \operatorname{Add}(\kappa, 1)$ -generic over $V[G_{\gamma}]$ with $V[G] = V[G_{\gamma} \times K \times H']$. Replace H' with a Q-generic H over $V[G_{\gamma} \times K]$ such that $V[G] = V[G_{\gamma} \times K \times H]$. In V[G], let $g : {}^{\kappa} \delta \to {}^{\kappa} \kappa$;

$$g(y) = \bigcup \{ e_H(u) : u \subsetneq y \}.$$

Lemma 4

Let $y \in {}^{\kappa}\delta$.

- **1** g(y) is $Add(\kappa, 1)$ -generic over $V[G_{\gamma}]$.
- 2 V[G] is a \mathbb{P}_{λ} -generic extension of $V[G_{\gamma}][g(y)]$.

• Therefore $\tau^{g(y)} \in X$.

Let $f : {}^{\kappa}\delta \to X;$

$$f(y) = \tau^{g(y)}.$$

f is a continuous map and is a homomorphism from \mathbb{H}_{δ} to R. (Item 3 in the definition of \mathbb{Q} guarantees this).

The Hurewicz dichotomy for definable subsets of ${}^\kappa\kappa$

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

X is κ -compact iff every open cover of X has a subcover of size $<\kappa$. X is K_{κ} iff X is the union of κ -many κ -compact sets.

X satisfies the Hurewicz dichotomy iff either X is contained in a K_{κ} subset of ${}^{\kappa}\kappa$ or there is a closed set $Y \subseteq X$ homeomorphic to ${}^{\kappa}\kappa$.

The Hurewicz dichotomy for definable subsets of ${}^\kappa\kappa$

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

X is κ -compact iff every open cover of X has a subcover of size $<\kappa$. X is K_{κ} iff X is the union of κ -many κ -compact sets.

X satisfies the Hurewicz dichotomy iff either X is contained in a K_{κ} subset of ${}^{\kappa}\kappa$ or there is a closed set $Y \subseteq X$ homeomorphic to ${}^{\kappa}\kappa$.

Proposition

The Hurewicz dichotomy for X is implied by $OGD_{\kappa}^{\kappa}(X, R)$ for the class of κ -dimensional box-open dihypergraphs R on X which are definable from an element of $^{\kappa}Ord$.

The Hurewicz dichotomy for definable subsets of ${}^\kappa\kappa$

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

X is κ -compact iff every open cover of X has a subcover of size $<\kappa$. X is K_{κ} iff X is the union of κ -many κ -compact sets.

X satisfies the Hurewicz dichotomy iff either X is contained in a K_{κ} subset of ${}^{\kappa}\kappa$ or there is a closed set $Y \subseteq X$ homeomorphic to ${}^{\kappa}\kappa$.

Proposition

The Hurewicz dichotomy for X is implied by $OGD_{\kappa}^{\kappa}(X, R)$ for the class of κ -dimensional box-open dihypergraphs R on X which are definable from an element of $^{\kappa}Ord$.

Corollary (Lücke, Motto Ros, Schlicht)

If $\lambda > \kappa$ is inaccessible, then in any $\operatorname{Col}(\kappa, <\lambda)$ -generic extension V[G], the Hurewicz dichotomy holds for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from an element of ${}^{\kappa}\operatorname{Ord}$.

• Suppose $\kappa > \omega$. Is it consistent with ZFC that $OGD_{\kappa}^{\kappa}(X)$ (i.e., for all box-open κ -dimensional dihypergraphs) holds for $\Sigma_{1}^{1}(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$?

Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?

For all subsets of $\kappa \kappa$ which are definable using parameters in κOrd ?

- Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?
 For all subsets of ^κκ which are definable using parameters in ^κOrd?
- Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

- Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?
 For all subsets of ^κκ which are definable using parameters in ^κOrd?
- Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

Conjecture: all of them do.

- Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?
 For all subsets of ^κκ which are definable using parameters in ^κOrd?
- Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

Conjecture: all of them do.

• Which other applications of $OGD_{\omega}^{\omega}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?

- Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?
 For all subsets of ^κκ which are definable using parameters in ^κOrd?
- Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

Conjecture: all of them do.

- Which other applications of $OGD_{\omega}^{\omega}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- OGA_κ: if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺.

Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?

For all subsets of $\kappa \kappa$ which are definable using parameters in κOrd ?

• Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

Conjecture: all of them do.

- Which other applications of $OGD_{\omega}^{\omega}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- OGA_κ: if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺.

Is OGA_{κ} consistent when $\kappa > \omega$?

Suppose κ > ω. Is it consistent with ZFC that OGD^κ_κ(X) (i.e., for all box-open κ-dimensional dihypergraphs) holds for Σ¹₁(κ) subsets X ⊆ ^κκ?

For all subsets of ${}^\kappa\kappa$ which are definable using parameters in ${}^\kappa\mathrm{Ord}?$

• Which applications follow already from " $\mathrm{OGD}_{\omega}^{\omega}(X,R)$ for all definable R"?

Conjecture: all of them do.

- Which other applications of $OGD_{\omega}^{\omega}(X)$ can be generalized to the setting of κ -Baire spaces for $\kappa > \omega$?
- OGA_κ: if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺.

Is OGA_{κ} consistent when $\kappa > \omega$? If so, how does it influence the structure of the κ -Baire space?
Thank you!

Dorottya Sziráki The Open Dihypergraph Dichotomy for Definable Subsets of $\kappa \kappa$