Miller Forcing with Canjar Ultrafilters

Heike Mildenberger joint work with Christian Bräuninger

Hamburg Set Theory Workshop online Conference hosted by Hamburg June 20 – 21, 2020

The set of finite strictly increasing sequences of natural numbers is called $\omega^{\uparrow < \omega}$.

The length of $s \in \omega^{\uparrow < \omega}$, |s|, is its domain.

For $s, t \in \omega^{<\omega}$, we say "t extends s" or "s is an initial segment of t" and write $s \leq t$ if $\operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ and $s = t \upharpoonright \operatorname{dom}(s)$.

The set of finite strictly increasing sequences of natural numbers is called $\omega^{\uparrow < \omega}$.

The length of $s \in \omega^{\uparrow < \omega}$, |s|, is its domain. For $s, t \in \omega^{<\omega}$, we say "t extends s" or "s is an initial segment of t" and write $s \trianglelefteq t$ if $\operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ and $s = t \upharpoonright \operatorname{dom}(s)$. For $s, t \in \omega^{\uparrow < \omega}$ we have

$$s \leq t \Leftrightarrow \operatorname{range}(s) \sqsubseteq \operatorname{range}(t)$$

and vice versa, going from finite subsets of ω to their increasing enumerations.

A subset $p\subseteq\omega^{\uparrow<\omega}$ that is closed under initial segments is called a tree.

The elements of a tree are called nodes.

A node $s \in p$ is called a splitting node of p if s has more than one direct \triangleleft -successor in p and ω -splitting node of p if s has infinitely many direct \triangleleft -successors in p. The set of splitting nodes of p is denoted by $\operatorname{sp}(p)$ while ω - $\operatorname{sp}(p)$ denotes the set of ω -splitting nodes of p.

(1) For any set A we write [A]^{<ω} = {t : t ⊆ A, |t| < ω}. The elements of Fin = [ω]^{<ω} \ {∅} are called *blocks*.
 (2) L = T L = CL

(2) Let
$$\mathcal{F}$$
 be a filter over ω . We let

$$\mathcal{F}^{<\omega} = \{ [A]^{<\omega} \setminus \{ \emptyset \} : A \in \mathcal{F} \}$$
$$(\mathcal{F}^{<\omega})^+ = \{ B \subseteq \operatorname{Fin} : \forall A \in \mathcal{F}([A]^{<\omega} \cap B \neq \emptyset) \}$$

Families of Superperfect Trees

Guzmán and Kalajdzievski introduced a family of Miller forcings $\mathbb{PT}(\mathcal{F})$, \mathcal{F} a filter over ω , extending the Fréchet filter.

Definition

Let \mathcal{F} be a filter over ω . The forcing $\mathbb{PT}(\mathcal{F})$ consists of all $p \subseteq \omega^{\uparrow < \omega}$ such that for each $s \in p$ there is $t \trianglerighteq s$, such that $t \in \omega \operatorname{-sp}(p)$ and

 $\operatorname{sucspl}_p(t) := \{\operatorname{range}(r) \setminus \operatorname{range}(t) : r \text{ a } \operatorname{derinimal}$ infinitely splitting node of p above $t\} \in (\mathcal{F}^{<\omega})^+$.

Families of Superperfect Trees

Guzmán and Kalajdzievski introduced a family of Miller forcings $\mathbb{PT}(\mathcal{F})$, \mathcal{F} a filter over ω , extending the Fréchet filter.

Definition

Let \mathcal{F} be a filter over ω . The forcing $\mathbb{PT}(\mathcal{F})$ consists of all $p \subseteq \omega^{\uparrow < \omega}$ such that for each $s \in p$ there is $t \trianglerighteq s$, such that $t \in \omega \operatorname{-sp}(p)$ and

 $\operatorname{sucspl}_p(t) := \{\operatorname{range}(r) \setminus \operatorname{range}(t) : r \text{ a } \operatorname{d-minimal}$ infinitely splitting node of p above $t\} \in (\mathcal{F}^{<\omega})^+$.

Such a *t* is called an \mathcal{F} -splitting node. We furthermore require of *p* that each ω -splitting node is an \mathcal{F} -splitting node and there is a unique \triangleleft -minimal ω -splitting node called the trunk of *p*, tr(*p*). The set of \mathcal{F} -splitting nodes of *p* is denoted by \mathcal{F} -sp(*p*).

Plain slide for a sketch

The forcing $\mathbb{PT}(\mathcal{F})$ has the pure decision property.

 $p\in \mathbb{PT}(\mathcal{F}),\ s\in \mathcal{F}\text{-}\operatorname{sp}(p),\ D\subseteq \mathbb{PT}(\mathcal{F})$ open dense. Then

 $E(p,s,D) = \sqsubseteq -\min\{\operatorname{range}(t) \setminus \operatorname{range}(s) \ : \ \exists q \leq p(\operatorname{tr}(q) = t \wedge q \in D)\}$

is in $(\mathcal{F}^{<\omega})^+$. Let $f \in \mathcal{F}$. $p \upharpoonright F$ contains only those nodes $t \in p$ for which $\operatorname{range}(t) \setminus \operatorname{tr}(p) \subseteq F$. We have $p \upharpoonright F \leq_0 p$.

The forcing $\mathbb{PT}(\mathcal{F})$ has the pure decision property.

 $p\in \mathbb{PT}(\mathcal{F}),\ s\in \mathcal{F}\text{-}\operatorname{sp}(p),\ D\subseteq \mathbb{PT}(\mathcal{F})$ open dense. Then

 $E(p,s,D) = \sqsubseteq -\min\{\operatorname{range}(t) \setminus \operatorname{range}(s) \ : \ \exists q \leq p(\operatorname{tr}(q) = t \wedge q \in D)\}$

is in $(\mathcal{F}^{<\omega})^+$. Let $f \in \mathcal{F}$. $p \upharpoonright F$ contains only those nodes $t \in p$ for which range $(t) \setminus \operatorname{tr}(p) \subseteq F$. We have $p \upharpoonright F \leq_0 p$.

- (1) The partial order \mathbb{F}_{σ} is the forcing with F_{σ} -filters over ω . Stronger filters are superfilters.
- (2) If \mathcal{F} is a filter, then $\mathbb{F}_{\sigma}(\mathcal{F})$ is the forcing with F_{σ} -filters that are compatible with \mathcal{F} , i.e. $\mathscr{G} \in \mathbb{F}_{\sigma}(\mathcal{F})$ iff \mathscr{G} is an F_{σ} -filter and $\mathscr{G} \subseteq \mathcal{F}^+ = \{X \subseteq \omega : \forall (F \in \mathcal{F})(X \cap F \neq \emptyset)\}.$

Definition

Let G be an $\mathbb{F}_{\sigma}(\mathcal{F})$ -generic filter. We let \mathcal{U} be a $\mathbb{F}_{\sigma}(\mathcal{F})$ -name for the union of G. By a density argument, the poset $\mathbb{F}_{\sigma}(\mathcal{F})$ forces that \mathcal{U} is an ultrafilter that contains \mathcal{F} as a subset.

 \mathcal{F} is called a Canjar filter if for any sequence $\langle X_n : n < \omega \rangle$ of elements of $(\mathcal{F}^{<\omega})^+$ there is a sequence $Y_n \in [X_n]^{<\omega}$ such that $\bigcup \{Y_n : n < \omega\} \in (\mathcal{F}^{<\omega})^+.$

Hrušák and Minami showed: A filter is Canjar iff Mathias forcing with second components in the filter does not add a dominating real.

More equivalent formulations are given by Blass Hrusak Verner, Chodounsky Repovs Zdomskyy, Guzmán Hrušák Martinez.

Canjar. The generic filter \mathcal{U} of the forcing \mathbb{F}_{σ} is such that Mathias forcing with it does not add a dominating real.

Another important concept is the following.

Definition

- A function h: ω → ω is called finite-to-one if for any n, the preimage of {n}, i.e. h⁻¹[{n}], is finite (this includes the possibility of being empty).
- (2) Let *F* and *U* be ultrafilters over ω. *F* and *U* are called nearly coherent if there is a finite-to-one function h such that h(*F*) = h(U) where h(U) = {X ⊆ ω : h⁻¹[X] ∈ U}.
- (3) A filter \mathcal{F} is called almost ultra if there is a finite-to-one mapping h such that $h(\mathcal{F})$ is an ultrafilter.

Let \mathcal{W} be a P-point.

- (a) If U is a Canjar ultrafilter that is not nearly coherent to W, then forcing with PT(U) preserves W.
- (b) If a Canjar filter \mathcal{F} is not almost ultra (see Def. 2.3(3)), then $\mathbb{F}_{\sigma}(\mathcal{F}) * \mathbb{PT}(\mathcal{U})$ preserves \mathcal{W} .

Let $f: \omega \to \omega$ be a strictly increasing function with f(0) = 0. A condition $p \in \mathbb{PT}(\mathcal{F})$ is said to have *f*-blockstructure if

$$(\forall t \in \mathcal{F}\text{-}\operatorname{sp}(p))(\forall r \in \operatorname{sucspl}_p(t)) (\exists k \in \omega)(\operatorname{range}(r) \setminus \operatorname{range}(t) \subseteq [f(k), f(k+1))).$$
 (0.1)

Let \mathcal{F} be Canjar and $p \in \mathbb{PT}(\mathcal{F})$. There is an $f \in \omega^{\uparrow \omega}$ with f(0) = 0 and there is a $q \leq_0 p$ with f-blockstructure.

Predecessor lemma by Guzmán and Kalajdzievski

Lemma

Let \mathcal{F} be Canjar and $\langle X_n : n < \omega \rangle$, $X_n \in (\mathcal{F}^{<\omega})^+$. There is an $f \in \omega^{\uparrow \omega}$ with f(0) = 0 such that $\bigcup \{X_n \cap \mathcal{P}(f(n)) : n < \omega\} \in (\mathcal{F}^{<\omega})^+$.

Premise

Theorem

Let $\alpha \leq \omega_1$ and let $\mathbb{P} = \langle \mathbb{P}_{\gamma}, \mathbb{Q}_{\beta} : \gamma \leq \alpha, \beta < \alpha \rangle$ be defined by induction on $\alpha \leq \omega_1$ as follows:

(1)
$$\mathbb{P}_0 = \{0\}$$
, and

(2) For
$$\beta < \alpha$$
 we have: If

- for $\gamma < \beta$, r_{γ} is the $\mathbb{PT}(\mathcal{U}_{\gamma})$ -generic real over $\mathbf{V}^{\mathbb{P}_{\gamma}*\mathbb{F}_{\sigma}(\mathcal{F}_{\gamma})}$,
- $\mathbb{P}_{\beta} \Vdash \mathcal{F}_{\beta} = \operatorname{filter}(\{\operatorname{range}(r_{\gamma}) : \gamma < \beta\})$, and
- \mathcal{U}_{eta} the $\mathbb{F}_{\sigma}(\mathcal{F}_{eta})$ -generic filter over $\mathbf{V}^{\mathbb{P}_{eta}}$,

then $\mathbb{P}_{\beta} \Vdash \mathbb{Q}_{\beta} = \mathbb{F}_{\sigma}(\mathcal{F}_{\beta}) * \mathbb{PT}(\mathcal{U}_{\beta}).$

(3) $\mathbb{P}_{\alpha} \Vdash \mathcal{F}_{\alpha} = \operatorname{filter}(\{\operatorname{range}(r_{\gamma}) : \gamma < \alpha\}).$

Conclusion

Then

the following holds

(A) \mathbb{P}_{α} is proper and forcing with \mathbb{P}_{α} preserves any *P*-point in $\bigcup \{ \mathbf{V}^{\mathbb{P}_{\beta}} : \beta < \alpha \}$. For $\alpha < \omega_2$, we have $|\mathbb{P}_{\alpha}| \leq \aleph_1$.

(B) For any $\beta < \alpha$ if $\mathrm{cf}(\beta) \leq \omega$ then

 $\mathbb{P}_{\beta} \Vdash \mathcal{F}_{\beta}$ is not nearly ultra.

and

 $\mathbb{P}_{\beta} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta}) \Vdash \mathcal{U}_{\beta} \text{ is a Canjar ultrafilter}$ and not nearly coherent \mathcal{W} for any $\mathcal{W} \in \mathbf{V}^{\mathbb{P}_{\beta}}$.

(C) Let
$$\alpha = \omega_1$$
.

 $\mathbb{P}_{\alpha} \Vdash \mathcal{F}_{\alpha} = \mathcal{U}_{\alpha}$ is a Canjar ultrafilter

and not nearly coherent any P-point $\mathcal{W} \in \bigcup \{ \mathbf{V}^{\mathbb{P}_{\gamma}} \, : \, \gamma < \alpha \}.$

(D)
$$\forall \gamma < \beta < \alpha$$
, $\mathbb{P}_{\beta+1} \Vdash r_{\beta} \subseteq^* r_{\gamma}$.

We prove the lemma by induction on α .

First suppose that $\alpha \leq \omega_2$ is a limit ordinal and the lemma is proved for $\gamma < \alpha$. For conclusion (A) we cite:

Theorem

(Blass, Shelah) If W is a P-point, α is a limit ordinal and $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\gamma} : \gamma < \alpha \rangle$ is the countable support limit and for $\gamma < \alpha$, the forcing \mathbb{P}_{γ} is proper and preserves W, then \mathbb{P}_{α} is proper and preserves W.

Also the statement on the size of the forcing order is in the proper forcing book.

Let \mathcal{F} be Canjar and $p \in \mathbb{PT}(\mathcal{F})$. There is an $f \in \omega^{\uparrow \omega}$ with f(0) = 0 and there is a $q \leq_0 p$ with f-blockstructure.

${\cal F}$ is Canjar iff I does not have a Winning Strategy in the Canjar Game for ${\cal F}$

Definition

For a filter \mathcal{F} we consider the *Canjar Game* $\mathscr{G}(\mathcal{F})$. Player I and player II alternately play sets $X_0, Y_0, X_1, Y_1, \ldots$ The rules are $X_i \in (\mathcal{F}^{<\omega})^+$, $Y_i \in [X_i]^{<\omega} \setminus \{\emptyset\}$ for every $i \in \omega$.

Ι	X_0		X_1		X_2		
		Y_0		Y_1		Y_2	

After ω rounds, player II wins if $\bigcup_{n \in \omega} Y_n \in (\mathcal{F}^{<\omega})^+$.

Let W be a P-point. If U is a Canjar ultrafilter that is not nearly coherent to W, then forcing with $\mathbb{PT}(U)$ preserves W.

If a filter \mathcal{F} is not almost ultra (see Def. 2.3(3)) and $\mathbb{F}_{\sigma}(\mathcal{F}) \Vdash \mathcal{U}$ is Canjar, then $\mathbb{F}_{\sigma}(\mathcal{F}) * \mathbb{PT}(\mathcal{U})$ preserves \mathcal{W} .

Definition Let $X \subseteq Fin$. We let

$$C(X) = \{ A \subseteq \omega : \forall s \in X (s \cap A \neq \emptyset) \}.$$

Lemma by Guzman and Kalajdziesvky

Let
$$\mathscr{G}$$
 be a filter. $\mathcal{F} \Vdash_{\mathbb{F}_{\sigma}(\mathscr{G})} X \in (\mathcal{U}(\mathscr{G})^{<\omega})^+$ iff $C(X) \subseteq \operatorname{filter}(\mathcal{F} \cup \mathscr{G})$

"⇒" Let $H \notin \operatorname{filter}(\mathcal{F} \cup \mathscr{G})$. Then H^c is $\operatorname{filter}(\mathcal{F} \cup \mathscr{G})$ -positive and $\mathcal{F} \geq \mathcal{F} \cup \{H^c\}$ is a condition in $\mathbb{F}_{\sigma}(\mathscr{G})$. Then $\exists s \in X, s \subseteq H^c$. Thus $H \notin C(X)$.

" \Leftarrow " Suppose $C(X) \subseteq \text{filter}(\mathcal{F} \cup \mathscr{G})$. Then $\forall A \in C(X)$, $A^c \notin \mathcal{U}(\mathscr{G})$. Hence for any $D \in \mathcal{U}(\mathscr{G})$, $D^c \notin C(X)$ and hence $\exists s \in X(s \subseteq D)$.

Let $\alpha = \omega_1$. \mathbb{P}_{α} forces that \mathcal{F}_{α} is a Canjar ultrafilter that is not nearly coherent to any *P*-point in $\bigcup_{\gamma < \alpha} V^{\mathbb{P}_{\gamma}}$.

An easy density argument shows that for $cf(\alpha) = \omega_1$, $\mathbb{P}_{\alpha} \Vdash \mathcal{F}_{\alpha} = \mathcal{U}_{\alpha}$ is ultra since any name for a subset of ω appears in some $V^{\mathbb{P}_{\gamma}}$, $\gamma < \alpha$. Any name h for a finite-to-one function appears at some \mathbb{P}_{β} , $\beta < \alpha$. Let \mathcal{W} be also in $\mathbf{V}^{\mathbb{P}_{\beta}}$. Then $\mathbb{P}_{\beta+1} \Vdash \exists X \in \mathcal{U}_{\beta} \exists Y \in \mathcal{W}h[X] \cap h[Y] = \emptyset$ and by Lemma VII, 7.13b Kunen this is preserved upwards. Hence \mathbb{P}_{α} forces that \mathcal{U}_{α} is not nearly coherent to any P-point in $V^{\mathbb{P}_{\gamma}}$, $\gamma < \alpha$.

Sketch of a Proof

The only not so easy statement is: \mathbb{P}_{α} forces that \mathcal{U}_{α} is Canjar. By induction hypothesis we know that for $\beta < \alpha$ the name \mathcal{U}_{β} is forced by $\mathbb{P}_{\beta} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta})$ to be a Canjar ultrafilter. Every name for an ω -sequence of sets of blocks appears for the first time at an iteration stage of countable cofinality.

Suppose we have $p\in \mathbb{P}_{lpha}$ and a \mathbb{P}_{lpha} -name $\langle X_n\,:\,n<\omega
angle$ such that

$$p \Vdash (\forall n) (X_n \in ((\mathcal{U}_\alpha)^{<\omega})^+).$$

Thus for some $\beta_0 < \alpha$, we have that $\langle X_n : n < \omega \rangle$ is equivalent to an \mathbb{P}_{β_0} -name. W.l.o.g., let $\langle X_n : n < \omega \rangle$ be a \mathbb{P}_{β_0} -name.

$$(p \upharpoonright \beta_0, p_1(\beta_0)) \Vdash_{\mathbb{P}_{\beta_0 * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta_0})}} (\forall n) (X_n \in ((\mathcal{U}_{\beta_0})^{<\omega})^+).$$

Since $\mathbb{P}_{\beta_0} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta_0})$ forces that \mathcal{U}_{β_0} is Canjar, there is a \mathbb{P}_{β_0} -name for a sequence $\langle Y_n : n < \omega \rangle$ such that

$$(p \upharpoonright \beta_0, p_1(\beta_0)) \Vdash_{\mathbb{P}_{\beta_0} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta_0})} (\forall n) (Y_n \in [X_n]^{<\omega} \land \bigcup \{Y_n : n < \omega\} \in ((\mathcal{U}_{\beta_0})^{<\omega})^+.$$

But then by the characterisation of \mathbb{F}_{σ} -forcing

 $(p \upharpoonright \beta_0, p_1(\beta_0)) \Vdash_{\mathbb{P}_\alpha} (\forall n) (Y_n \in [X_n]^{<\omega} \land \bigcup \{Y_n : n < \omega\} \in ((\mathcal{U}_\alpha)^{<\omega})^+.$

This is seen as follows: We assume that $q \ge p$, $q \in \mathbb{P}_{\alpha}$ and $q \Vdash Y \in \mathcal{U}_{\alpha}$. Again there is $\beta_1 < \alpha$ such that $q \in \mathbb{P}_{\beta_1}$ and Y is a \mathbb{P}_{β_1} -name and

$$(q \upharpoonright \beta_1, q_1(\beta_1)) \Vdash_{\mathbb{P}_{\beta_1} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta_1}))} Y \in \mathcal{U}_{\beta_1}.$$

We assume that $\beta_1 \geq \beta_0$.

We let $Z = \bigcup \{Y_n : n < \omega\}$. By the characterisation of \mathbb{F}_{σ} -forcing we have in $\mathbf{V}^{\mathbb{P}_{\beta_0} \restriction (p \restriction \beta_0)}$,

$$C(Z) \subseteq \operatorname{filter}(p_1(\beta_0) \cup \{r_\gamma : \gamma \in \beta_0\}).$$

This is a Π_1^1 -relation of Z and p, and hence holds, again by Lemma VII, 7.13b Kunen, also in $\mathbf{V}^{\mathbb{P}_{\beta_1} \upharpoonright (q \upharpoonright \beta_1)}$. So in $\mathbf{V}^{\mathbb{P}_{\beta_1} \upharpoonright (p \upharpoonright \beta_0)}$,

$$C(Z) \subseteq \operatorname{filter}(p_1(\beta_0) \cup \{r_\gamma : \gamma \in \beta_0\}).$$

In the same model we can increase the filter as follows:

$$C(Z) \subseteq \operatorname{filter}(q_1(\beta_1) \cup \{r_{\gamma} : \gamma \in \beta_1\}).$$

Hence by the characterisation of \mathbb{F}_{σ} forcing, $q \upharpoonright \beta_1 \Vdash_{\mathbb{P}_{\beta_1} * \mathbb{F}_{\sigma}(\mathcal{F}_{\beta_1})} Z \in (\mathcal{U}_{\beta_1}^{<\omega})^+$, and since q and Y and β_1 were arbitrary, and we are done.

Thank you!