The distributivity spectrum

Wolfgang Wohofsky joint work with Vera Fischer and Marlene Koelbing

Universität Wien (Kurt Gödel Research Center)

wolfgang.wohofsky@gmx.at

Hamburg Set Theory Workshop 2020 (online from Vienna via Zoom)

20 June 2020

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

For maximal antichains A and B,

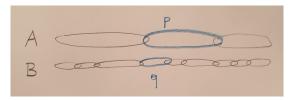
B refines
$$A :\iff \forall q \in B \exists p \in A (q \leq p)$$
.

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

For maximal antichains A and B,

$$B \text{ refines } A :\iff \forall q \in B \exists p \in A \ (q \leq p).$$



Proposition

 \mathbb{P} is λ -distributive if and only if for each family $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ of maximal antichains in \mathbb{P} , there exists a common refinement (i.e., a maximal antichain B such that B refines A_{ξ} for each $\xi < \lambda$).

 \mathbb{P} is λ -distributive if it does not add a function $f : \lambda \to Ord$ with $f \notin V$.

 $\mathfrak{h}(\mathbb{P}) := \text{least } \lambda \text{ such that } \mathbb{P} \text{ is not } \lambda \text{-distributive (the distributivity of } \mathbb{P}).$

- $\omega \leq \mathfrak{h}(\mathbb{P}) \leq |\mathbb{P}|$
- $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$ ("the distributivity number")
 - $\omega_1 \leq \mathfrak{h} \leq \mathfrak{c}$ (since $\mathcal{P}(\omega)/\text{fin}$ is σ -closed and hence ω -distributive)
- Is there a generalization of \mathfrak{h} to regular uncountable κ ?
 - ... what about $\mathfrak{h}_{\kappa} := \mathfrak{h}(\mathcal{P}(\kappa)/{<}\kappa)$??
 - note that $\mathcal{P}(\kappa)/{<}\kappa$ is NOT σ -closed
 - in fact, $\mathcal{P}(\kappa)/{<\kappa}$ is NOT even ω -distributive; in other words: $\mathfrak{h}_{\kappa} = \omega$
 - so this definition is not interesting :-(
- The tower number t has been generalized to κ :
 - $\mathcal{P}(\kappa)/{<\kappa}$ is not σ -closed, so straightforward generalization of \mathfrak{t} yields ω
 - $\mathfrak{t}_{\kappa} :=$ shortest (regular) length above κ of a tower in $\mathcal{P}(\kappa)/{<\!\kappa}$

•
$$\kappa^+ \leq \mathfrak{t}_{\kappa} \leq 2^{\kappa}$$

• So let us look at the (distributivity) spectrum instead!

Definition (Distributivity spectrum (with respect to fresh functions))

We say that $\lambda \in FRESH(\mathbb{P})$ if in some extension of V by \mathbb{P} ,

there exists a fresh function on λ ,

i.e., a function $f : \lambda \to Ord$ with a $f \notin V$, but a $f \upharpoonright \gamma \in V$ for every $\gamma < \lambda$.

Note: $\lambda \in FRESH(\mathbb{P}) \iff cf(\lambda) \in FRESH(\mathbb{P})$

So from now on, we only talk about regular cardinals λ .

Some basic facts:

- $\min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$
- $FRESH(\mathbb{P}) \subseteq [\mathfrak{h}(\mathbb{P}), |\mathbb{P}|]$

Let \mathbb{C}_{μ} be the forcing for adding μ many Cohen reals (μ arbitrarily large). $FRESH(\mathbb{C}_{\mu}) = ?$ Let \mathbb{C}_{μ} be the forcing for adding μ many Cohen reals (μ arbitrarily large). $FRESH(\mathbb{C}_{\mu}) = \{\omega\}$

Theorem

If \mathbb{P} satisfies $\mathbb{P} \times \mathbb{P}$ is δ -c.c. and $\lambda \geq \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Is \mathbb{P} being δ -c.c. sufficient? No: consider a Suslin tree T (on ω_1)

- *T* is c.c.c. (i.e., ω₁-c.c.)
- BUT: $\omega_1 \in FRESH(T)$
- $\omega_2, \omega_3, \ldots \notin FRESH(T)$

Theorem

If \mathbb{P} is δ -c.c. and $\lambda > \delta$, then $\lambda \notin FRESH(\mathbb{P})$.

Recall: $\mathfrak{h}(\mathbb{P}) = \min(FRESH(\mathbb{P}))$

Lemma

If \mathbb{P} collapses λ to $\mathfrak{h}(\mathbb{P})$, then $\lambda \in FRESH(\mathbb{P})$.

Recall: $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\mathsf{fin})$

Theorem (Balcar-Pelant-Simon (Base Matrix Theorem))

 $\mathcal{P}(\omega)/\mathsf{fin} \text{ collapses } \mathfrak{c} \text{ to } \mathfrak{h}.$

Corollary

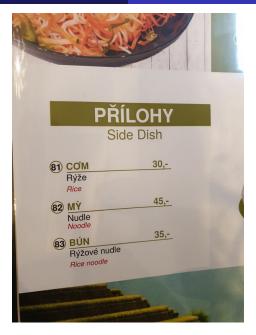
 $FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}].$

Theorem (Balcar-Simon; Shelah)

$$\mathcal{P}(\kappa)/{<\kappa}$$
 collapses 2^{κ} to ω (assuming $2^{<\kappa} = \kappa$).

Corollary

$$\mathsf{FRESH}(\mathcal{P}(\kappa)/{<}\kappa) = [\omega, 2^{\kappa}] ext{ (assuming } 2^{<\kappa} = \kappa).$$



We say $\mathcal{A} = \{A_{\xi} : \xi < \lambda\}$ is a distributivity matrix of height λ (for \mathbb{P}) if

• A_{ξ} is a maximal antichain in \mathbb{P} (for each $\xi < \lambda$),

•
$$A_\eta$$
 refines A_ξ (for each $\xi < \eta < \lambda$),

- $\blacktriangleright \ A_\eta \text{ refines } A_\xi : \Longleftrightarrow \forall q \in A_\eta \ \exists p \in A_\xi \ (q \le p)$
- the set $\{q \in \mathbb{P} : q \text{ intersects } \mathcal{A}\}$ is not dense in \mathbb{P} .
 - ► q intersects A : $\iff \forall \xi < \lambda \exists p \in A_{\xi} (q \le p)$

Let $COM(\mathbb{P})$ denote the combinatorial distributivity spectrum of \mathbb{P} :

 $\lambda \in COM(\mathbb{P}) :\iff$ there exists a distributivity matrix of height λ for \mathbb{P} .

Proposition

$$\min(COM(\mathbb{P})) = \min(FRESH(\mathbb{P})) = \mathfrak{h}(\mathbb{P})$$

Is
$$COM(\mathbb{P}) = FRESH(\mathbb{P})$$
?

 $\textit{COM}(\mathbb{P}) \subseteq \textit{FRESH}(\mathbb{P})$

Proposition

 $COM(\mathbb{P}) = FRESH(\mathbb{P})$ in case \mathbb{P} is a complete Boolean Algebra

Recall:

•
$$FRESH(\mathcal{P}(\omega)/fin) = [\mathfrak{h}, \mathfrak{c}]$$

•
$$FRESH(\mathcal{P}(\kappa)/{<\kappa}) = [\omega, 2^{\kappa}]$$
 (assuming $2^{<\kappa} = \kappa$)

But note:

The Boolean algebra $\mathcal{P}(\omega)/\text{fin}$ is NOT complete!!

The same is true in the κ -case: $\mathcal{P}(\kappa)/\langle \kappa$ is NOT complete.

$$\{\mathfrak{h}\}\subseteq \mathit{COM}(\mathcal{P}(\omega)/\mathsf{fin})\subseteq [\mathfrak{h},\mathfrak{c}]$$

Observe that $\mathfrak{h} = \mathfrak{c}$ implies that

$$\{\mathfrak{h}\} = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin).$$

Theorem

It is consistent that $\mathfrak{h} < \mathfrak{c} = \omega_2$, and

$$[\mathfrak{h},\mathfrak{c}] = FRESH(\mathcal{P}(\omega)/fin) = COM(\mathcal{P}(\omega)/fin) = \{\omega_1,\omega_2\}.$$

To get a model in which both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$,

- we use a forcing (iteration) which adds a distributivity matrix of height ω₂, and
- we show that $\mathfrak{h} = \omega_1$ in the final model.

Definition (The forcing for ω_2)

Let $T := \mathfrak{c}^{<\omega_2}$ and let $T^+ := \{\sigma \in T : |\sigma| \text{ is a successor}\}$. Define the forcing as follows: p is a condition if

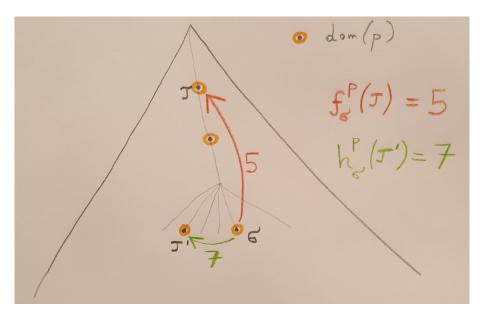
- p is a finite function with $\operatorname{dom}(p) \subseteq T^+$,
- for each $\sigma \in \operatorname{dom}(\rho)$, $p(\sigma) = (s_{\sigma}^{\rho}, f_{\sigma}^{\rho}, h_{\sigma}^{\rho})$, with $s_{\sigma}^{\rho} \in 2^{<\omega}$.

If G is a generic filter, let $a_{\sigma} := \bigcup_{p \in G} s_{\sigma}^{p}$, the matrix is $\{a_{\sigma} \mid \sigma \in T^{+}\}$.

- $f_{\sigma}^{p}: \{\tau \in \operatorname{dom}(p): \tau \triangleleft \sigma\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(f_{\sigma}^{p})$ and $n = f_{\sigma}^{p}(\tau)$, we have $p \Vdash a_{\sigma} \setminus n \subseteq a_{\tau}$,
- $(\sigma = \rho^{\frown} \alpha) h_{\sigma}^{p} : \{\rho^{\frown} \beta \in \operatorname{dom}(p) : \beta < \alpha\} \to \omega$ is a partial function,
- whenever $\tau \in \operatorname{dom}(h^p_\sigma)$ and $n = h^p_\sigma(\tau)$, we have $p \Vdash a_\tau \cap a_\sigma \subseteq n$,

• for each
$$\tau \in \operatorname{dom}(p)$$
 with $\tau \triangleleft \sigma$, $|s_{\tau}^{p}| \ge |s_{\sigma}^{p}|$.

 $q \leq p$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$, and for each $\sigma \in \operatorname{dom}(p)$, we have $s_{\sigma}^p \leq s_{\sigma}^q$, $f_{\sigma}^p \subseteq f_{\sigma}^q$ and $h_{\sigma}^p \subseteq h_{\sigma}^q$. Forcing FRESH = COM



Problem

The rows of the generic matrix are not mad families (new reals are added).

Problem

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

Problem

The rows of the generic matrix are not mad families (new reals are added).

Solution

Use iterated forcing to make sure that the rows are maximal in the end.

In each step of the iteration we force sets a_{σ} for all $\sigma \in \mathfrak{c}^{<\omega_2}$ for which they are not defined yet, and make sure that they are \subseteq^* of the a_{τ} above (we get for free that they are almost disjoint to old sets in the same row). The iterands are defined as the forcing above, with the following changes:

Definition

- dom(p) ⊆ {σ ∈ c^{<ω}₂ | a_σ is not defined yet}, i.e., dom(p) is a finite subset of the new nodes of c^{<ω}₂.
- $\operatorname{dom}(f^p_{\sigma}) \subseteq \{\tau \triangleleft \sigma \mid \tau \in \operatorname{dom}(p) \text{ or } a_{\tau} \text{ is already defined}\}$ finite

We iterate for ω_2 many steps, hence all nodes of $\mathfrak{c}^{<\omega_2}$ appear at some intermediate stage of the iteration, thus a_σ is defined for all $\sigma \in \mathfrak{c}^{<\omega_2}$.

Lemma

The forcing has the c.c.c.

Proof.

This is an easy Δ -system argument.

Lemma

In the final model, the following holds for the generic matrix:

() along branches through $c^{<\omega_2}$ we have \subseteq^* -decreasing sequences,

Prows are almost disjoint families.

Proof.

This follows directly from the definition of the forcing, because the f's and h's ensure it.

Lemma

In the final model, the following holds for the generic matrix:

- along branches through $c^{<\omega_2}$ we have towers, i.e., maximal \subseteq^* -decreasing sequences,
- rows are mad families.

Sketch of the proof.

Let $b \subseteq \omega$ infinite in the final model. Show that b is not a pseudointersection of any branch, and that b has infinite intersection with one element of each row.

Tower Assume σ is a branch through $c^{<\omega_2}$ and b is a pseudointersection of the sets along this branch. Use that all the information which is needed to decide something about b is bounded in $c^{<\omega_2}$, thus there exists some $\gamma < \omega_2$ such that the information at $\sigma \upharpoonright \gamma$ is not relevant for b. So it is possible to decide that $m \in b$ and that $m \notin a_{\sigma \upharpoonright \gamma}$ for arbitrarily large m. Thus b is not \subseteq^* of $a_{\sigma \upharpoonright \gamma}$.

Sketch of the proof continued.

Mad We show the following claim, which directly implies that the rows are mad families:

If $\sigma \in \mathfrak{c}^{\alpha}$ for some $\alpha < \omega_2$ and $b \cap a_{\sigma \restriction \beta}$ is infinite for each $\beta \leq \alpha$, then there exists some $i < \mathfrak{c}$ such that $b \cap a_{\sigma \frown i}$ is infinite.

To show this claim, we use a similar argument as for the towers: this time, we use the node $\sigma^{\gamma}\gamma$ (which is not relevant for *b*); it is possible to decide that $m \in b$ and that $m \in a_{\sigma^{\gamma}\gamma}$ for arbitrarily large *m*.

This finishes the generic construction of the distributivity matrix of height ω_2 .

The matrix witnesses that (in the final model) ω_2 is in $COM(\mathcal{P}(\omega)/\text{fin})$.

To prove that (in the final model) both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$,

- it remains to show that $\omega_1 \in COM(\mathcal{P}(\omega)/fin)$.
 - In other words, we have to show that $\mathfrak{h} = \omega_1$;
 - recall that 𝔥 ≤ 𝔥,
 - so it is enough to just show that $\mathfrak{b} = \omega_1$.
- In fact, we aim at showing that the ground model reals $\mathcal{B} := \omega^{\omega} \cap V$ are still unbounded in our final model:
- we represent our finite support iteration as a "finer" finite support iteration all of whose iterands are eqivalent to

Mathias forcing $\mathbb{M}(\mathcal{F})$ with respect to a filter \mathcal{F} ;

To prove that (in the final model) both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$,

- it remains to show that $\omega_1 \in COM(\mathcal{P}(\omega)/fin)$.
 - In other words, we have to show that $\mathfrak{h} = \omega_1$;
 - recall that 𝔥 ≤ 𝔥,
 - so it is enough to just show that $\mathfrak{b} = \omega_1$.
- In fact, we aim at showing that the ground model reals B := ω^ω ∩ V are still unbounded in our final model:
- we represent our finite support iteration as a "finer" finite support iteration all of whose iterands are eqivalent to

Mathias forcing $\mathbb{M}(\mathcal{F})$ with respect to a filter \mathcal{F} ;

To prove that (in the final model) both ω_1 and ω_2 are in $COM(\mathcal{P}(\omega)/\text{fin})$,

- it remains to show that $\omega_1 \in COM(\mathcal{P}(\omega)/fin)$.
 - In other words, we have to show that $\mathfrak{h} = \omega_1$;
 - recall that 𝔥 ≤ 𝔅,
 - so it is enough to just show that $\mathfrak{b} = \omega_1$.
- In fact, we aim at showing that the ground model reals $\mathcal{B} := \omega^{\omega} \cap V$ are still unbounded in our final model:
- we represent our finite support iteration as a "finer" finite support iteration all of whose iterands are eqivalent to

Mathias forcing $\mathbb{M}(\mathcal{F})$ with respect to a filter \mathcal{F} ;

- we will show that B remains unbounded at every successor step (i.e., the filtered Mathias forcings we use preserve the unboundedness of B);
- due to a general theorem by Judah-Shelah for finite support iterations, the unboundedness of B is preserved at limit steps as well, finishing the argument that b is small in the final model.

A filter \mathcal{F} on ω is Canjar if $\mathbb{M}(\mathcal{F})$ does not add a dominating real.

Definition

A filter \mathcal{F} on ω is \mathcal{B} -Canjar if $\mathbb{M}(\mathcal{F})$ preserves the unboundedness of \mathcal{B} .

Let X be a collection of finite subsets of ω . We say that

$$X \in (\mathcal{F}^{<\omega})^+ : \iff \forall A \in \mathcal{F} \; \exists s \in X \; (s \subseteq A).$$

Theorem (Hrušák-Minami)

A filter \mathcal{F} on ω is Canjar if and only if the following holds: whenever $X_n \in (\mathcal{F}^{<\omega})^+$ for each $n \in \omega$, there exists an $f \in \omega^{\omega}$ such that

$$\bigcup_{n\in\omega}X_n\cap\mathcal{P}(f(n))\in(\mathcal{F}^{<\omega})^+.$$

A filter \mathcal{F} on ω is Canjar if $\mathbb{M}(\mathcal{F})$ does not add a dominating real.

Definition

A filter \mathcal{F} on ω is \mathcal{B} -Canjar if $\mathbb{M}(\mathcal{F})$ preserves the unboundedness of \mathcal{B} .

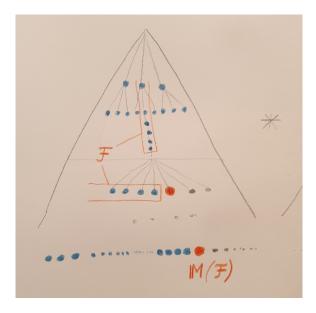
Let X be a collection of finite subsets of ω . We say that

$$X \in (\mathcal{F}^{<\omega})^+ : \iff \forall A \in \mathcal{F} \; \exists s \in X \; (s \subseteq A).$$

Theorem (Guzmán-Hrušák-Martínez)

A filter \mathcal{F} on ω is \mathcal{B} -Canjar if and only if the following holds: whenever $X_n \in (\mathcal{F}^{<\omega})^+$ for each $n \in \omega$, there exists an $f \in \mathcal{B}$ such that

$$\bigcup_{n\in\omega}X_n\cap\mathcal{P}(f(n))\in(\mathcal{F}^{<\omega})^+.$$



View from my "subway" to university in Hamburg, near Kellinghusenstraße, June 2017

Wohofsky (KGRC)

HSTW 2020 29 / 32

Binnenalster in Hamburg, June 2017

Binnenalster in Hamburg, June 2017

Planten un Blomen in Hamburg, May 2017

Wohofsky (KGRC)

The distributivity spectrum

HSTW 2020 32 / 32