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Zusammenfassung

Die Regularitätsmethode für Graphen wurde vor über 30 Jahren von Szemeré-
di, für den Beweis seines Dichteresultates über Teilmengen der natürlichen Zahlen,
welche keine arithmetischen Progressionen enthalten, entwickelt. Grob gesprochen
besagt das Regularitätslemma, dass die Knotenmenge eines beliebigen Graphen in
konstant viele Klassen so zerlegt werden kann, dass fast alle induzierten bipartiten
Graphen quasi-zufällig sind, d.h. sie verhalten sich wie zufällige bipartite Graphen
mit derselben Dichte.
Das Regularitätslemma hatte viele weitere Anwendungen, vor allem in der extre-

malen Graphentheorie, aber auch in der theoretischen Informatik und der kombina-
torischen Zahlentheorie, und gilt mittlerweile als eines der zentralen Hilfsmittel in
der modernen Graphentheorie. Vor wenigen Jahren wurden Regularitätslemmata für
andere diskrete Strukturen entwickelt. Insbesondere wurde die Regularitätsmethode
für uniforme Hypergraphen und dünne Graphen verallgemeinert.
Ziel der vorliegenden Arbeit ist die Weiterentwicklung der Regularitätsmethode

und deren Anwendung auf Probleme der theoretischen Informatik. Im Besonderen
wird gezeigt, dass vererbbare (entscheidbare) Hypergrapheneigenschaften, das sind
Familien von Hypergraphen, welche unter Isomorphie und induzierten Untergraphen
abgeschlossen sind, testbar sind. D.h. es existiert ein randomisierter Algorithmus,
der in konstanter Laufzeit mit hoher Wahrscheinlichkeit zwischen Hypergraphen,
welche solche Eigenschaften haben und solchen die „weit“ davon entfernt sind, un-
terscheidet.
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Abstract

About 30 years ago Szemerédi developed the regularity method for graphs, which
was a key ingredient in the proof of his famous density result concerning the upper
density of subsets of the integers which contain no arithmetic progression of fixed
length. Roughly speaking, the regularity lemma asserts, that the vertex set of every
graph can be partitioned into a constant number of classes such that almost all
of the induced bipartite graphs are quasi-random, i.e., they mimic the behavior of
random bipartite graphs of the same density.
The regularity lemma had have many applications mainly in extremal graph the-

ory, but also in theoretical computer science and additive number theory, and it is
considered one of the central tools in modern graph theory. A few years ago the reg-
ularity method was extended to other discrete structures. In particular extensions
for uniform hypergraphs and sparse graphs were obtained.
The main goal of this thesis is the further development of the regularity method

and its application to problems in theoretical computer science. In particular, we will
show that hereditary, decidable properties of hypergraphs, that are properties closed
under isomorphism and vertex removal, are testable. I.e., there exists a randomised
algorithm with constant running time, which distinguishes between Hypergraphs
displaying the property and those which are “far” from it.
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1 Introduction

1.1 Background
The main focus of this thesis concerns the development of the so-called regularity method
and its applications. Szemerédi’s regularity lemma for graphs is one of the most impor-
tant tools in extremal graph theory. It has many applications not only in graph theory,
but also in combinatorial number theory, discrete geometry, and theoretical computer
science.
The first form of this lemma was invented by Szemerédi [Sze75] as a tool for the

resolution of a famous conjecture of Erdős and Turán [ET36], stating that any sequence
of integers with a positive upper density must contain arithmetic progressions of any
finite length.

Theorem 1.1 (Szemerédi’s theorem). For every integer k ≥ 3 and every δ > 0 there
exists an integer n0 such that for every n ≥ n0 every subset A ⊆ [n] = {1, . . . , n} with

|A| ≥ δn

contains an arithmetic progression of length k, i.e., there exist elements a1, . . . , ak ∈ A
such that a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0.

Szemerédi’s theorem led to a lot of research in several branches of mathematics and
by now several different proofs of Theorem 1.1 are known.
In 1977 Furstenberg [Fur77] found a proof based on ergodic theory. Generalizations

and extensions of this approach, due to Furstenberg and Katznelson [FK78, FK85,
FK91], yielded several other density results including a multidimensional version of The-
orem 1.1 and a density version of the Hales-Jewett theorem [HJ63]. Another proof of
Theorem 1.1 based on harmonic analysis and additive number theory was found by
Gowers [Gow01]. This approach, which can be viewed as an extension of the proof
of Roth [Rot53] for the case k = 3, also gives the best quantitative bounds on n0 in
Theorem 1.1. In [Gow01] a bound for n0 was derived, which grows doubly exponential
in poly(1/δ) for fixed k and better bounds for k = 3 and 4 were established by Bour-
gain [Bou08] and Green and Tao [GT09]. A few years ago a new proof of Theorem 1.1
and its multidimensional version based on the regularity method for hypergraphs was
found independently by Nagle, Rödl, Schacht, and Skokan [NRS06a, RS04, RS06] and
Gowers [Gow07] (see also [Tao06b] for a more concise proof given subsequently by Tao).
Many of the key ideas and techniques which appeared in these different proofs of Theo-
rem 1.1 were very fruitful and could be applied to other problems in the respective areas.
Moreover, Theorem 1.1 itself had several interesting applications. For example it was
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1 Introduction

one of the key ingredients for the proof of the Green-Tao theorem [GT08] which states
the the set of primes contains arbitrarily long arithmetic progressions.

1.1.1 Regularity lemma for graphs

One of the central lemmas in the original proof of Theorem 1.1 of Szemerédi was the
regularity lemma for graphs. Since its invention it became an important and widely
used tool in modern graph theory. This lemma roughly states that every graph may be
approximated by a union of induced random-like (quasi-random) bipartite subgraphs.
The quasi-randomness brings important additional information and allows one to import
probabilistic intuition to deterministic problems and in many applications the original
problems did not suggest a probabilistic approach.
More precisely, for a graph G = (V,E) and two disjoint subsets X and Y ⊆ V we

denote by
d(X,Y ) = e(X,Y )

|X||Y |
the density of the bipartite subgraph G[X,Y ] induced on X and Y . We say a the pair
(X,Y ) is ε-regular for some ε > 0, if

|d(X ′, Y ′)− d(X,Y )| ≤ ε (1.1)

for all subsets X ′ ⊆ X and Y ′ ⊆ Y satisfying |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |. The modern
form of the regularity lemma, which first appeared in [Sze78], states that every graph
admits a vertex partition into a bounded number of classes such that most induced
bipartite graphs are ε-regular. We call a partition P = {Vi : i ∈ [t]} of V t-equitable (or
simply equitable) if

|V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1 .

Moreover, we say the graph G = (V,E) is ε-regular w.r.t. P if all but at most εt2 pairs
(Vi, Vj) are ε-regular.

Theorem 1.2 (Szemerédi’s regularity lemma). For any positive real ε and any integer t0,
there exist positive integers tSz = tSz(ε, t0) and nSz = nSz(ε, t0) such that the following
holds.
For every graph G = (V,E) with |V | = n ≥ nSz vertices there exists a partition P of

V such that

(i ) P = {Vi : i ∈ [t]} is t-equitable, where t0 ≤ t ≤ tSz and

(ii ) G is ε-regular w.r.t. P.

We refer to the surveys of Komlós and Simonovits [KS96] and Komlós, Shokoufan-
deh, Simonovits, and Szemerédi [KSSS02] for a detailed overview on the applications of
Theorem 1.2.
In one of the first applications Ruzsa and Szemerédi answered a question of Brown,

Erdős, and T. Sós, [BES73, SEB73] established the so-called triangle removal lemma for

2



1.1 Background

graphs. They proved that every graph which does not contain many triangles can be
made triangle free by removing few edges.

Theorem 1.3 (Triangle removal lemma). For every η > 0 there exists c > 0 and an
integer n0 such that the following holds.
If a graph G on n ≥ n0 vertices contains at most cn3 triangles, then G can be made

triangle free by removing at most η
(n

2
)
edges.

More general statements of that type concerning graphs were successively proved by
several authors in [AFKS00, AS08a, AS08b, EFR86, Für95]. In particular, the result of
Alon and Shapira in [AS08a] is a generalization, which extends all the previous results
of this type, where the triangle is replaced by a possibly infinite family of graphs and
containment is induced. One of the main results of this thesis, Theorem 1.19, is an
extension of the result of Alon and Shapira from graphs to hypergraphs.

1.1.2 Removal lemma

A k-uniform hypergraph H(k) on the vertex set V is some family of k-element subsets
of V , i.e.,

H(k) ⊆
(
V

k

)
= {K ⊆ V : |K| = k} .

Note that we identify hypergraphs with their set of edges. For a given k-uniform hyper-
graph H(k), we denote by V (H(k)) and E(H(k)) its vertex and edge set, respectively. We
only consider uniform hypergraphs, where the uniformity is some fixed number indepen-
dent of the size of the hypergraph. We usually indicate the uniformity by a superscript.
It was shown by Ruzsa and Szemerédi [RS78] that Theorem 1.3 can be used to deduce

Theorem 1.1 for progressions of length 3, which was earlier (and with better quantita-
tive bounds) proved by Roth [Rot53]. This connection was generalized by Frankl and
Rödl [FR02, Röd91], who showed that a removal lemma (see Theorem 1.4 below) for
the complete k-uniform hypergraph with k + 1 vertices implies Szemerédi’s theorem for
arithmetic progressions of length k+ 1. Moreover, Frankl and Rödl [FR02] verified such
a removal lemma for k = 3 (see also [NR03] for the general removal lemma for 3-uniform
hypergraphs) and Rödl and Skokan [RS05] for k = 4. The general result for k-uniform
hypergraphs Theorem 1.19, based on generalizations of the regularity lemma and the
local counting lemma for hypergraphs, was obtained independently by Gowers [Gow07]
and by Nagle, Rödl, Schacht, and Skokan [NRS06a, RS04, RS06].
Furthermore, Solymosi [Sol04] and Tengan, Tokushige, Rödl, and Schacht [RSTT06]

showed that this result also implies multidimensional versions of Szemerédi’s theorem
first obtained by Furstenberg and Katznelson [FK78, FK85] (see also [Gow07, RNS+05,
RS06, Sol05, Tao06b] for more details).

Theorem 1.4 (Removal lemma). For all k-uniform hypergraphs F (k) on ` vertices and
every η > 0 there exists a c > 0 and an integer n0 such that the following holds.

3



1 Introduction

Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If H(k) contains at
most cn` copies of F (k), then one can delete η

(n
k

)
edges from H(k) so that the resulting

sub-hypergraph contains no copy of F (k).

We present a proof of Theorem 1.4 for graphs (i.e., for k = 2) in Section 2.10 (see
Theorem 2.20).

1.2 Summary of results

The main results in this work concern generalizations and applications of the regularity
lemma (Theorem 1.2) and the removal lemma (Theorem 1.4). The results in Chap-
ters 2, 4, and 5 are joint work with Vojtěch Rödl [RS, RS07b, RS07c]. Chapter 3 is based
on joint work with Yoshiharu Kohayakawa, Brendan Nagle, and Vojtěch Rödl [KNRS]
and the results in Chapter 6 are joint work with Yoshiharu Kohayakawa, Vojtěch Rödl,
and Endre Szemerédi [KRSS].

1.2.1 Variants of the regularity lemma for graphs

For some applications variants of the regularity lemma were considered by several re-
searchers. In Chapter 2 we revisit several of those variants of Theorem 1.2 and their
relation to each other. We focus mainly on the lemmas proved by Frieze and Kan-
nan [FK99] and by Alon, Fischer, Krivelevich, and M. Szegedy [AFKS00]. We show
how these lemmas compare to Szemerédi’s original lemma and how they relate to some
other variants. Another thorough discussion of the connections of those regularity lem-
mas, from an analytical and geometrical perspective was given recently by Lovász and
B. Szegedy in [LS07]. In Section 2.7 we discuss the so-called counting lemmas. We close
this chapter with a brief discussion of the limit approach of Lovász and B. Szegedy and
its relation to the regularity lemmas.

1.2.2 The weak regularity lemma for hypergraphs

In Chapter 3 we focus on an application of the so-called weak regularity lemma for
hypergraphs, Theorem 3.1. This regularity lemma can be viewed as the straight forward
extension of Theorem 1.2. Although the quasi-randomness provided by this lemma does
not suffice to embed hypergraphs in general, it turns out that this lemma is well suited
for embedding problems concerning linear hypergraphs (see, e.g., [CHPS, LPRS09, PS09]
for more applications). In Chapter 3 we focus on an application related to the notion of
quasi-random hypergraphs.
A graph G = (V,E) is said to be (%, d)-quasi-random if any subset U ⊆ V of size
|U | ≥ %|V | induces (d± %)

(|U |
2
)
edges, i.e,

(d− %)
(
|U |
2

)
≤ e(U) ≤ (d+ %)

(
|U |
2

)
.
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1.2 Summary of results

Such graphs, first systematically studied by Thomason [Tho87a, Tho87b] and Chung,
Graham, and Wilson [CGW89], share several properties with genuine random graphs
of the same edge density. For example, it was shown that if % = %(d, `) is sufficiently
small, then any (%, d)-quasi-random graph G is `-universal, meaning that G contains
approximately the same number of copies of any `-vertex graph F as the random graph
of the same density.

Theorem 1.5. For every graph F , every d > 0 and every γ > 0, there exists a % > 0
and an integer n0 such that the following holds.
If G is a (%, d)-quasi-random on n ≥ n0 vertices, then G contains (1±γ)deF nvF labeled

copies of F .

As usual, in the result above we write eF for the number of edges in F and we
write vF for the number of vertices in F . In Chapter 3, we address the extent to which
Theorem 1.5 can be generalized to hypergraphs.
Definition 1.6. A k-uniform hypergraph H(k) is (%, d)-quasi-random if for any subset
U ⊆ V (H(k)) of size |U | ≥ %|V |, we have e(U) = (d± %)

(|U |
k

)
.

It is known that Theorem 1.5 does not generally extend to k-uniform hypergraphs,
for k ≥ 3. Indeed, let F (3)

0 be the 3-uniform hypergraph consisting of two triples in-
tersecting in two vertices, and consider the following two (%, d)-quasi-random n-vertex
hypergraphs H(3)

1 and H
(3)
2 . Let H(3)

1 = G(3)(n, 1/8) be the random 3-uniform hy-
pergraph on n vertices whose triples appear independently with probability 1/8. Let
H

(3)
2 = K3(G(n, 1/2)) be the 3-uniform hypergraph whose triples correspond to trian-

gles of the random graph G(n, 1/2) on n vertices, where the edges of G(n, 1/2) appear
independently with probability 1/2. It is easy to check that, w.h.p., both H(3)

1 and H(3)
2

are (%, 1/8)-quasi-random for any % > 0. However, w.h.p., H(3)
1 contains (1± o(1))n4/64

copies of F (3)
0 , while H(3)

2 contains (1± o(1))n4/32 such copies, approximately twice as
many.
The hypergraph F (3)

0 , while very elementary, has one property which causes the ex-
tension of Theorem 1.5 to fail: it contains two vertices belonging to more than one edge.
We will show that removing this “obstacle” allows an extension of Theorem 1.5.
Definition 1.7. We say a k-uniform hypergraph F (k) is linear if |e ∩ f | ≤ 1 for all
distinct edges e and f of F (k). We denote by L (k) the family of all k-uniform, linear
hypergraphs and set L

(k)
` = {F (k) ∈ L (k) : |V (F (k))| = `}.

Theorem 1.8. For every integer k ≥ 2, d > 0 and γ > 0, and every F (k) ∈ L
(k)
` , there

exist % > 0 and n0 so that any (%, d)-quasi-random k-uniform hypergraph H(k) on n ≥ n0
vertices contains (1± γ)de(F (k))n` labeled copies of F (k).

We will also consider some other related results that extend known graph results to
hypergraphs in a similar way to how Theorem 1.8 extends Theorem 1.5.
Definition 1.9. A k-uniform hypergraph H(k) is (%, d)-dense if for any subset U ⊆
V (H(k)) of size |U | ≥ %|V |, we have e(U) ≥ d

(|U |
k

)
.

5



1 Introduction

For graphs, a simple induction on ` ≥ 2 shows that every (%, d)-dense graph on suffi-
ciently many vertices contains a copy of K`, as long as % ≤ d`−2. However, the analogous
statement for k ≥ 3 fails. Indeed, the following simple construction was considered by
several researchers and can be traced back to Erdős and Hajnal [EH72]. Let Tn be a
tournament on n vertices chosen uniformly at random, and let H(3) = H(3)(Tn) be the
3-uniform hypergraph whose triples correspond to cyclically oriented triangles of Tn.
Then, w.h.p., H(3) is (%, d)-dense for any % > 0 and 0 < d < 1/4. (In fact, H(3) is
(%, 1/4)-quasi-random.) However, since every tournament on four vertices contains at
most two cyclically oriented triangles, H(3) is K(3)

4 -free. (In fact, H(3) does not even con-
tain three triples on any four vertices.) We prove that, on the other hand, a (%, d)-dense
hypergraph H(3) will contain (many) copies of linear hypergraphs of fixed size.

Definition 1.10. For integers ` ≥ k and ξ > 0, we say a k-uniform hypergraph H(k)

with n vertices is (ξ,L (k)
` )-universal if the number of copies of any F (k) ∈ L

(k)
` is at

least ξn`|.

Theorem 1.11. For all integers ` ≥ k ≥ 2 and every d > 0, there exist % = %(`, k, d), ξ =
ξ(`, k, d) > 0, and n0 = n0(`, k, d) so that every (%, d)-dense k-uniform hypergraph H(k)

on n ≥ n0 vertices is (ξ,L (k)
` )-universal.

We shall also prove an easy corollary of Theorem 1.11 (upcoming Corollary 1.12),
which roughly asserts the following. Suppose H(k) is a ‘non-universal’ hypergraph of
density d. We prove that V may be partitioned into nearly equal-sized classes V1, . . . , Vt
so that the number of edges of H(k) crossing at least two such classes is slightly larger
than it would be expected if V = V1 ∪ . . . ∪ Vt were a random partition. More precisely,
for t ∈ N, let τt(H) be the maximal t-cut-density of H, defined by

τt(H(k)) = max
{
d̂(U1, . . . , Ut) : U1 ∪ . . . ∪ Ut = V (H(k))

and |U1| ≤ · · · ≤ |Ut| ≤ |U1|+ 1
}
,

where

d̂(U1, . . . , Ut) =
∣∣E(H(k)) \

⋃t
i=1

(Ui
k

)∣∣(|V (H(k))|
k

)
−
∑t
i=1

(|Ui|
k

) .
Corollary 1.12. For all integers ` ≥ k ≥ 2 and every d > 0, there exist t ∈ N, β =
β(`, k, d), ξ = ξ(`, k, d) > 0 and n0 = n0(`, k, d) so that every k-uniform hypergraph H(k)

on n ≥ n0 vertices and e(H(k)) ≥ d
(n
k

)
edges satisfies the following. If H(k) is not

(ξ,L (k)
` )-universal, then τt(H(k)) ≥ d+ β.

Corollary 1.12 is related to a result from [Röd86] and its strengthening due to Niki-
forov [Nik06]. The proofs of Theorems 1.8 and 1.11 and Corollary 1.12 are presented in
Chapter 3.
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1.2 Summary of results

Related problems

Subgraphs of locally dense graphs. The following question seems interesting al-
ready for graphs. Recall from Theorem 1.5 that a (%, d)-quasi-random n-vertex graph H
contains (1 ± o(1))deF nvF labeled copies of any fixed graph F . It is conceivable that
replacing (%, d)-quasi-randomness by (%, d)-denseness would not decrease this number.
We believe the following question has an affirmative answer.

Question 1.13. Is it true that for any γ, d > 0 and any graph F , there exist % > 0 and
n0 so that any (%, d)-dense graph H on n ≥ n0 vertices contains at least (1− γ)deF nvF

labeled copies of F?

One may check that the answer to Question 1.13 is positive when F is a clique or
more generally, a complete `-partite graph for some fixed `. If F is the line graph of a
Boolean cube, then a result in [CHPS] shows that the same follows.
Sidorenko [Sid91, Sid93] made a related conjecture stating that any graph G with at

least d
(n

2
)
edges contains at least (1− o(1))deF nvF labeled copies of any given bipartite

graph F . Sidorenko’s conjecture is known to be true for even cycles, complete bipar-
tite graphs and was recently proved for a certain family of graphs including Boolean
cubes [Hat]. Since our assumption in Question 1.13 is stronger than that made in
Sidorenko’s conjecture, the positive answer to Sidorenko’s conjecture would also vali-
date Question 1.13 for all bipartite graphs. To our knowledge, the smallest non-bipartite
graph for which Question 1.13 is open is the 5-cycle.
Regularity and partial Steiner systems. In this chapter, we established that a fairly
weak concept of regularity provides a counting lemma for linear hypergraphs. In order
to extend this result to partial Steiner (r, k)-systems (k-uniform hypergraphs in which
every r-set is covered at most once), a stronger concept of regularity will be needed.
For example, when r = 3 ≤ k, one will need a concept of regularity for k-uniform
hypergraphs H(k) which relates the edges of H(k) to certain subgraphs of K(2)

|V (H(k))|
(rather than to subsets of V (H(k))). Such concepts of regularity for k = 3 were considered
in [FR02, Gow06]. For arbitrary r ≤ k, one will need that H(k) should be regular with
respect to certain sub-hypergraphs G(r) of K(r)

|V (H(k))|, where G
(r) has to be regular with

respect to certain sub-hypergraphs G(r−1) ofK(r−1)
|V (H(k))|, and so on. This stronger concept

of regularity is related to the hypergraph regularity lemmas from [Gow07, RS04, Tao06b]
(see also Chapters 4 and 5).
Remark on Theorem 1.8. Note that the parameter % in the concept of (%, d)-quasi-
randomness plays two roles. On the one hand, it “governs the locality”, i.e., the size of
the subsets to which the condition of uniform edge distribution applies. On the other
hand, it “governs the precision” of that condition. The following result shows that, in
fact, one can (formally) relax the condition on the locality, if the precision remains high
enough (for graphs, a result similar in nature was proved in [Röd86, Theorem 2]).

Theorem 1.14. For all integers k ≥ 2, γ, d > 0, 1/k > ε > 0 and every F ∈ L (k),
there exist δ > 0 and n0 so that any k-uniform hypergraph H = (V,E) on n ≥ n0 vertices

7
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with the property that eH(U) = (d ± δ)
(|U |
k

)
for every U ⊆ V with |U | ≥ ε|V | contains

(1± γ)deF nvF labeled copies of F .

Theorem 1.14 can be proved in a similar way to Theorem 1.8, and so we omit the
details. The main idea, however, is to show first that a hypergraph satisfying the as-
sumptions of Theorem 1.14 is, in fact, (%, d)-quasi-random for some % = %(δ) with
%(δ)→ 0 as δ → 0.
Non-universality and large cuts. For graphs, Corollary 1.12 has the consequence
that if one selects, uniformly at random, a set I ∈

( [t]
t/2
)
(say, w.l.o.g., that t is even), then

the set U =
⋃
i∈I Vi induces a cut larger than (d+β)(n/2)2 = (d+β− o(1))(1/2)

(n
2
)
, for

some small β > 0 independent of n (see [KR03b, Nik06] for related results). For k ≥ 3,
Corollary 1.12 does not seem to yield immediately a similar result, and the following
question remains open.
Question 1.15. Is it true that for all integers ` ≥ k ≥ 3 and d, ξ > 0, there exist β > 0
and n0 so that if H(k) is a k-uniform hypergraph on n ≥ n0 vertices and d

(n
k

)
edges

which is not (ξ,L (k)
` )-universal, then there exists a set U ⊆ V of size bn/2c such that

∣∣∣{e ∈ E(H(k)) : 1 ≤ |e ∩ U | ≤ k − 1
}∣∣∣ ≥ (d+ β)

(
1− 1

2k−1

)(
n

k

)
?

1.2.3 Strong regular partitions of hypergraphs
Chapter 4 contains the main part of this thesis. In this chapter we continue the line of
research from [FR02, NRS06a, RS04] and obtain a stronger and easier to use regularity
lemma for hypergraphs – Theorem 4.15. We also give a proof of the corresponding
counting lemma – Theorem 4.18. A standard application of those theorems, following
the lines of [EFR86, FR02, Gow07, RS06] (see also proof of Theorem 2.20), yields a
proof of Theorem 1.4.
As a byproduct we obtain a result for hypergraphs, Theorem 4.12 (see also Theo-

rem 2.11 in Chapter 2), which might be of independent interest. Roughly speaking,
in the context of graphs Theorem 4.12 says that for every fixed ν > 0 any graph on n
vertices can be approximated, by adding and deleting at most νn2 edges, by an ε-regular
graph on a vertex partition into t parts, where ε = ε(t) is an arbitrary function of t, and
thus we may have ε(t)� 1

t . This may perhaps be somewhat surprising, since it follows
from the work of Gowers [Gow97], that there are graphs which if not changed admit only
an ε-regular partition with t classes, where t � 1

ε . In fact Gowers constructed graphs
with number of partition classes in any ε-regular partition being bigger than a tower
of height polynomial in 1/ε. We defer the somewhat technical statement of the main
results in that chapter to Section 4.1.

1.2.4 Generalizations of the removal lemma
One possible generalization of Theorem 1.4 is to replace the single hypergraph F (k) by a
possibly infinite family F of k-uniform hypergraphs. Such a result was first proved
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1.2 Summary of results

for graphs by Alon and Shapira [AS05b, AS08b] in the context of property testing
(see Section 1.2.5 below). For a family of graphs F consider the class Forb(F ) of
all graphs H containing no member of F as a subgraph. Clearly Forb(F ) is monotone,
i.e., if H ∈ Forb(F ) and H ′ is a subgraph of H (obtained from H by successive vertex
and edge deletions), then H ′ ∈ Forb(F ). Moreover, it is easy to see that for every
monotone family of graphs P (so-called monotone property P) there exists a family F
such that P = Forb(F ). Alon and Shapira proved the following in [AS08b].

Theorem 1.16. For every (possibly infinite) family of graphs F of graphs and every
η > 0 there exist constants c > 0, C > 0, and n0 such that the following holds.
Suppose H is a graph on n ≥ n0 vertices. If for every ` = 1, . . . , C and every F ∈

F on ` vertices, H contains at most cn` copies of F , then one can delete η
(n

2
)
edges

from H so that the resulting subgraph H ′ contains no copy of any member of F , i.e.,
H ′ ∈ Forb(F ).

Clearly, Theorem 1.4 for k = 2 is equivalent to Theorem 1.16 in the special case
when F consists of only one graph. While for finite families F Theorem 1.16 can be
proved along the lines of the proof of Theorem 1.4 (alternatively, it can easily be deduced
from Theorem 1.4 directly), for infinite families F the proof of Theorem 1.16 is more
sophisticated.
Perhaps one of the earliest results of this nature was obtained by Bollobás, Erdős,

Simonovits, and Szemerédi [BESS78], who essentially proved Theorem 1.16 for the spe-
cial family F of blow-up’s of odd cycles. In [DR85] answering a question of Erdős (see,
e.g., [Erd90]) Duke and Rödl generalized the result from [BESS78] and proved Theo-
rem 1.16 for the families of (r + 1)-chromatic graphs r ≥ 2.
The proof of Theorem 1.16 for arbitrary families F relies on a strengthened version

of Szemerédi’s regularity lemma, which was obtained by Alon, Fischer, Krivelevich, and
M. Szegedy [AFKS00] by iterating the regularity lemma for graphs (see Section 2.1 for
details).
Theorem 1.16 was extended by Avart, Rödl, and Schacht in [ARS07] from graphs to

hypergraphs. The proof in [ARS07] follows the approach of Alon and Shapira and is
based on two successive applications of the hypergraph regularity lemma from Chapter 4.
Another very natural variant of Theorem 1.4 would be an induced version. For graphs

this was first considered by Alon, Fischer, Krivelevich, and M. Szegedy [AFKS00]. Note
that in this case in order to obtain an induced F -free graph, we may need to not only
remove, but also to add edges.

Theorem 1.17. For all graphs F on ` vertices and and every η > 0 there exist c > 0
and n0 so that the following holds.
Suppose H is a graph on n ≥ n0 vertices. If H contains at most cn` induced copies

of F , then one can change η
(n

2
)
pairs from V (H) (deleting or adding the edge) so that

the resulting graph H ′ contains no induced copy of F .

An extension of Theorem 1.17 from graphs to 3-uniform hypergraphs was obtained by
Kohayakawa, Nagle, and Rödl in [KNR02].

9
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Recently, in [AS05a, AS08a] Alon and Shapira proved a common generalization of
Theorem 1.16 and Theorem 1.17, extending Theorem 1.17 from one forbidden induced
graph F to a forbidden family of induced graphs F (see Theorem 2.21). In Chapter 5
we extend their result to k-uniform hypergraphs and prove Theorem 1.19.
For a family of k-uniform hypergraphs F , let Forbind(F ) be the family of all hyper-

graphs H(k) which contain no induced copy of any member of F . Clearly, Forbind(F )
is a hereditary family (or hereditary property) of hypergraphs, i.e., if H(k) ∈ Forbind(F )
and H̃(k) is an induced sub-hypergraph of H(k), then H̃(k) ∈ Forbind(F ).
Definition 1.18 (η-far). For a constant η ≥ 0 and a possibly infinite family of k-
uniform hypergraphs P we say a given hypergraph H(k) is η-far from P if every
hypergraph G(k) on the same vertex set V (H(k)) with

∣∣G(k)4H(k)∣∣ ≤ η(|V (H(k))|
k

)

satisfies G(k) 6∈ P, where G(k)4H(k) denotes the symmetric difference of the edge sets
of G(k) and H(k).
The main objective of Chapter 5 is to prove the following.

Theorem 1.19. For every (possibly infinite) family F of k-uniform hypergraphs and
every η > 0 there exist constants c > 0, C > 0, and n0 such that the following holds.
Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If for every ` = 1, . . . , C

and every F (k) ∈ F on ` vertices, H(k) contains at most cn` induced copies of F (k),
then H(k) is not η-far from Forbind(F ).
In other words one can change (add/delete) up to at most η

(n
k

)
k-tuples in V (H(k))

(to/from H(k)) so that the resulting hypergraph G(k) contains no induced copy of any
member of F , i.e., so that G(k) ∈ Forbind(F ).
Moreover, since Forbind(F ) is a subset of the family F of all hypergraphs not con-

tained in F , such a hypergraph H(k) is also not η-far from F .

For graphs Theorem 1.19 was first obtained by Alon and Shapira [AS08a]. The proof
presented in [AS08a] is again based on the strong version of Szemerédi’s regularity lemma
from [AFKS00]. Another proof of Theorem 1.19 for graphs was found by Lovász and
B. Szegedy [LS05] (see also [BCL+06]). Below we discuss a few consequences of Theo-
rem 1.19, which motivated the original work for graphs.

1.2.5 Property Testing

Recall that for every hereditary property P of k-uniform hypergraphs, there exists a
family of k-uniform hypergraphs F such that P = Forbind(F ). Consequently, Theo-
rem 1.19 states that if H(k) is η-far from some hereditary property P = Forbind(F ),
then it must contain many (at least cn|V (F (k))|) induced copies of some “forbidden” hy-
pergraph F (k) ∈ F of size at most C, which “proves” that H(k) is not in P. In other

10



1.2 Summary of results

words, if H(k) is η-far from some given hereditary property P, then it is “easy” to detect
that H(k) 6∈P. This implies Corollary 1.20, which we discuss after the following remark.
Note that if P is F , the complement of some family F , then P is not necessarily

hereditary. IfH(k) is η-far from P in this case, then the “moreover-part” of Theorem 1.19
still implies thatH(k) contains many induced copies of some forbidden hypergraph F (k) ∈
F of bounded size. In this case, however, containing a forbidden hypergraph does not
necessarily imply that H(k) 6∈ P. Hence, an analogous statement of Corollary 1.20 for
arbitrary properties P (which is known to be false) is not implied.
Let us return to hereditary properties P. For such properties Theorem 1.19 has

an interesting consequence in the area of property testing (see, e.g., [GGR98] for the
definitions). We say a property P of hypergraphs (i.e., a family of hypergraphs) is
testable with one-sided error if for every η > 0 there exists a constant q = q(P, η) and
a randomized algorithm A which does the following:
For a given hypergraph H(k) the algorithm A can query some oracle whether a k-

tuple K of V (H(k)) spans and edge in H(k) or not. After at most q queries the algorithm
outputs

1. H(k) ∈P with probability 1 if H(k) ∈P and

2. H(k) 6∈P with probability at least 2/3 if H(k) is η-far from P.

If H(k) 6∈P and H(k) is not η-far from P, then there are no guarantees for the output
of A .
Furthermore, we say a property P is decidable if there exists an algorithm which for

every hypergraph H(k) distinguishes in finite time if H(k) ∈ P or H(k) 6∈ P. In this
context Theorem 1.19 implies the following.

Corollary 1.20. Every decidable and hereditary property of k-uniform hypergraphs is
testable with one-sided error.

Proof. Let a decidable and monotone property P = Forbind(F ) and some η > 0 be
given. By Theorem 1.19, there are some constants c > 0, C > 0, and n0 ∈ N such that
any k-uniform hypergraph on n ≥ n0 vertices, which is η-far from exhibiting P contains
at least cn|V (F (k)

0 )| induced copies of some F (k)
0 ∈ F with |V (F (k)

0 )| ≤ C.
Let s ∈ N be such that (1 − c)s/C < 1/3 and set m0 = max{s, n0}. We claim that

there exists a one-sided tester with query complexity
(m0
k

)
for P. For that let H(k) be a

k-uniform hypergraph on n vertices. If n ≤ m0, then the tester simply queries all edges
of H(k) and since P is decidable, there is an exact algorithm with running time only
depending on the fixed m0, which determines correctly if H(k) ∈P or not.
Consequently, let n > m0. Then we choose uniformly at random a set S of s vertices

from H. Consider the hypergraph H(k)[S] = H(k)∩
(S
k

)
induced on S. If H(k)[S] has P,

then the tester says “yes” and otherwise “no.” Since P is decidable and s is fixed
the algorithm decides whether or not H(k)[S] is in P in constant time (constant only
depending on s and P).
Clearly, if H(k) ∈ P or n ≤ m0, then the output of the tester is correct and hence

it is one-sided. On the other hand, if H(k) is η-far from P and n > m0, then due to

11
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Theorem 1.19 the random set S spans a copy of F (k)
0 for some F (k)

0 ∈ F on f0 ≤ C
vertices, with probability at least

cnf0(n
f0

) ≥ c. (1.2)

Hence the probability that S does not span any copy of F (k)
0 is at most

(1− c)s/f0 ≤ (1− c)s/C < 1
3 .

In other words, S spans a copy of F (k)
0 with probability at least 2/3, which shows that

the tester works as specified.

1.2.6 Regularity method for sparse graphs

As we discussed above, the regularity method has proved to be a powerful tool in asymp-
totic combinatorics. Regular decompositions of graphs and hypergraphs reveal much of
the structure of such objects, and have been fundamental in approaching diverse prob-
lems in the area. The regularity method for dense graphs is the best developed direction
in this line of research, with a long history of applications and such surprising tools as the
blow-up lemma [KSS97, KSS98] and due to the recent advances [Gow07, NRS06a, RS04],
one is now able to apply the regularity method to hypergraphs.
The regularity method for sparse graphs is, however, still under development: it ap-

pears that even the embedding or counting lemma for graphs of constant size has not
been proved in its full generality or strength (see, e.g., [GS05, Koh97, KR03b]). In this
work we contribute to the development of the regularity method for sparse graphs, pro-
viding an embedding strategy for large graphs of bounded degree in the sparse setting.
As an application, we prove a numerical result in Ramsey theory: we prove an upper
bound for a variant of the Ramsey number for graphs of bounded degree (for numbers
in Ramsey theory, see [GR87]).
For graphs G and H, write G −→ H if G contains a monochromatic copy of H for

every 2-coloring of the edges of G. Erdős, Faudree, Rousseau and Schelp [EFRS78]
considered the question of how few edges G may have if G −→ H. Following [EFRS78]
we denote the size-Ramsey number

r̂(H) = min{e(G) : G −→ H} ,

where e(G) denotes the cardinality of the edge set of G.
For example r̂(K1,n) = 2n − 1 for the star K1,n on n + 1 vertices. In [Bec83] Beck

disproved a conjecture of Erdős [Erd81] and showed that

r̂(Pn) ≤ 900n .

More generally, it follows from the result of Friedman and Pippenger [FP87] that the
size-Ramsey number of bounded degree trees grows linearly with the size of the tree (for
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further results in this direction, see [Bec90, HK95]). Moreover, it was proved by Haxell,
Kohayakawa, and Łuczak [HKŁ95] that cycles also have linear size-Ramsey numbers.
Beck asked in [Bec90] if r̂(H) is always linear in the number of vertices of H for graphs H
of bounded degree. This was disproved by Rödl and Szemerédi [RS00], who proved that
there are graphs of order n, maximum degree three, and

r̂(H) ≥ n logc n

for some constant c > 0. These authors also conjectured that, for every ∆ ≥ 3, there
exists ε = ε(∆) > 0 such that

n1+ε ≤ r̂∆,n := max{r̂(H) : H ∈ H∆,n} ≤ n2−ε , (1.3)

where H∆,n is the class of all n-vertex graphs with maximum degree at most ∆, up to
isomorphism. In Chapter 6 we prove the upper bound conjectured in (1.3).
In fact, our proof method yields a stronger result. Let us say that a graph is H∆,n-

universal if it contains every member of H∆,n as a subgraph. Furthermore, let us say
that a graph is partition universal for the class of graphs H∆,n if any 2-coloring of its
edges contains a monochromatic H∆,n-universal graph. We shall establish for every ∆
the existence of a graph G with O(n2−1/∆ log1/∆ n) edges that is partition universal
for H∆,n.

Theorem 1.21. For every ∆ ≥ 2 there exist constants B and C such that for ev-
ery n and N satisfying N ≥ Bn there exists a graph G on N vertices and with at
most CN2−1/∆ log1/∆N edges that is partition universal for H∆,n. In particular, we
have G −→ H for every H ∈ H∆,n.

Remark 1.22. (i ) As observed in [ACK+00], one can show that the number of edges
in any H∆,n-universal graph is Ω(n2−2/∆) and, hence, the exponent 2− 1/∆ of N
in Theorem 1.21 cannot be reduced to 2 − 2/∆ − ε for any given ε > 0. For
completeness, let us quickly see how to obtain this lower bound on the number of
edgesM in an H∆,n-universal graph G. Let us suppose first that n∆ is even. Note
that we must have (

M

n∆/2

)
≥ 1
n!L∆,n, (1.4)

where L∆,n denotes the number of labeled graphs on n vertices that are ∆-regular.
Bender and Canfield [BC78] showed that, for any fixed ∆, as n → ∞ with n∆
even, we have

L∆,n = (1 + o(1))
√

2e−(∆2−1)/4
(

∆∆/2

e∆/2∆!

)n
n∆n/2.

Therefore, for n∆ even, L∆,n = Ω(cnnn∆/2) for a constant c = c(∆). Combining
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this with (1.4), we see that(2eM
n∆

)n∆/2
≥
(

M

n∆/2

)
≥
L∆,n
n! = Ω

(
cnnn∆/2

nn

)
,

whence M = Ω(n2−2/∆), as required. If n∆ is odd, simply observe that an H∆,n-
universal graph is also H∆−1,n-universal.

A recent, remarkable result of Alon and Capalbo [AC08] confirms the existence of
H∆,n-universal graphs with O(n2−2/∆) edges (see also [ACK+00, ACK+01, AC07]
for more results).

(ii ) A weaker version of Theorem 1.21, with

|E(G)| = N2− 1
2∆ +o(1) ,

was proved earlier by Kohayakawa, Rödl, and Szemerédi (unpublished).

Let G(N, p) be the standard random graph on N vertices, with all the edges present
with probability p, independently of one another (see [Bol01, JŁR00] for the theory of
random graphs). To prove Theorem 1.21, we shall show that G(N, p) with an appropriate
choice of p = p(N) is as required with high probability.

Theorem 1.23. For every ∆ ≥ 2 there exist constants B and C for which the following
holds. Let p = p(N) = C(logN/N)1/∆. Then

lim
N→∞

P

(
G(N, p) is partition universal for H∆,N/B

)
= 1. (1.5)

Remark 1.24. (i ) In Theorem 1.21, we have restricted ourselves to the 2-color case for
simplicity. One may easily prove the same result for more than two colors (the
constants B and C would then depend on both ∆ and on the number of colors).
Similarly, Theorem 1.23 holds as stated for any fixed number of colors, that is, we
may generalize the notion of partition universality to any fixed number of colors r
and prove the same result (the constant C would then depend on both ∆ and r).

(ii ) Theorem 1.21 follows from Theorem 1.23. In Chapter 6, we focus our attention on
the proof of Theorem 1.23.

The main tool in our proof of Theorem 1.23 is the regularity method, adapted to the
appropriate sparse and random setting. The key novel ingredient in our approach is an
embedding strategy that allows one to embed bounded degree graphs of linear order in
suitably pseudorandom graphs (see the proof of Lemma 6.14). Crucial in the proof is a
rather surprising phenomenon, namely, the fact that regularity is typically inherited at
a scale that is much finer than the scale at which it is assumed. This phenomenon was
first spelt out in full in [KR03a], but we use an improved version proved in [GKRS07].
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Open Questions

Theorem 1.21 asserts the existence of a partition universal graph G for the class of
graphs H∆,n with G having O(n2−1/∆ log1/∆ n) edges. We believe it would be rather
interesting to decide whether one can substantially improve on this upper bound. In
particular, we believe that bringing this bound down to a bound of the form O(n2−1/∆−ε)
for some ε > 0 would require a completely new idea. The only lower bound that we
know is of the form Ω(n2−2/∆) (see Remark 1.22(i )).
Our proof of Theorem 1.21 is heavily based on random graphs, and we do not know how

to prove this result or anything numerically similar by constructive means. In particular,
for instance, we do not know whether (N, d, λ)-graphs with reasonable parameters are
partition universal for H∆,n.
Another interesting question is whether one can prove Theorem 1.21 without the

regularity method.
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2 Regularity lemmas for graphs

In this Chapter we discuss several regularity lemmas for graphs. We start our discussion
with the regularity lemma of Frieze and Kannan [FK99] in the next section. In Section 2.2
we show how Szemerédi’s regularity lemma, Theorem 1.2, can be deduced from the
weaker lemma of Frieze and Kannan by iterated applications. In Section 2.3 we discuss
the (ε, r)-regularity lemma, whose analog for 3-uniform hypergraphs was introduced
by Frankl and Rödl [FR02]. We continue in Section 2.4 with the regularity lemma
of Alon, Fischer, Krivelevich, and M. Szegedy [AFKS00], which can be viewed as an
iterated version of Szemerédi’s regularity lemma. In Section 2.5 we introduce the regular
approximation lemma whose hypergraph variant will be proved in Chapter 4. Finally,
in Section 2.6 we briefly discuss the original regularity lemma of Szemerédi [Sze75] for
bipartite graphs and a multipartite version of it from [DLR95].

2.1 The Frieze-Kannan lemma
The following variant of Szemerédi’s regularity lemma was introduced by Frieze and
Kannan [FK99] for the design of an efficient approximation algorithm for the MAX-
CUT problem in dense graphs.

Theorem 2.1. For every ε > 0 and every t0 ∈ N there exist TFK = TFK(ε, t0) and n0
such that for every graph G = (V,E) with at least |V | = n ≥ n0 vertices the following
holds. There exists a partition P of V such that

(i ) P = {Vi : i ∈ [t]} is t-equitable, where t0 ≤ t ≤ TFK, and

(ii ) for every U ⊆ V ∣∣∣∣∣∣e(U)−
t−1∑
i=1

t∑
j=i+1

d(Vi, Vj)|U ∩ Vi||U ∩ Vj |

∣∣∣∣∣∣ ≤ εn2 , (2.1)

where e(U) denotes the number of edges of G contained in U .

Definition 2.2. A partition that satisfies properties (i ) and (ii ) will be referred to as
(ε, t0, TFK)-FK-partition. Sometimes we may omit t0 and TFK and simply refer to such
a partition as ε-FK-partition.
The essential properties of the partition provided by Theorem 2.1 are property the

boundedness of t and (ii ). Property (i ) bounds the number of partition classes by a
constant independent of G and n and, roughly speaking, property (ii ) asserts that the
number of edges of any large set U can be fairly well approximated by the densities

17



2 Regularity lemmas for graphs

d(Vi, Vj) given by the partition V1 ∪ . . . ∪ Vt = V . More precisely, e(U) ≈ e(U ′) for any
choice of U and U ′ satisfying for example |U ∩ Vi| ≈ |U ′ ∩ Vi| for all i ∈ [t]. Moreover,
we note that conclusion (ii ) can be replaced by the following:

(ii ′) for all (not necessarily disjoint) sets U,W ⊆ V∣∣∣∣∣∣e(U,W )−
t∑
i=1

∑
j∈[t]\{i}

d(Vi, Vj)|U ∩ Vi||W ∩ Vj |

∣∣∣∣∣∣ ≤ 6εn2 , (2.2)

where edges contained in U ∩W are counted twice in e(U,W ).

Indeed, if (ii ) holds, then we infer (ii ′) from the identity

e(U,W ) = e(U ∪W )− e(U)− e(W ) + 3e(U ∩W ) .

The proof of Theorem 2.1 relies on the index of a partition, a concept which was first
introduced and used by Szemerédi.
Definition 2.3. For a partition P = {Vi : i ∈ [t]} of the vertex sets of a graph G =
(V,E), i.e., V1 ∪ . . . ∪ Vt = V we define the index of P by

ind(P) = 1(|V |
2
) t−1∑
i=1

t∑
j=i+1

d2(Vi, Vj)|Vi||Vj | .

Note that it follows directly from the definition of the index that for any partition P
we have

0 ≤ ind(P) ≤ 1 .

For the proof of Theorem 2.1 we will use the following consequence of the Cauchy-
Schwarz inequality.

Lemma 2.4. Let 1 ≤M < N , let σ1, . . . , σN be positive and d1, . . . , dN , and d be reals.
If
∑N
i=1 σi = 1 and d =

∑N
i=1 diσi then

N∑
i=1

d2
iσi ≥ d2 +

(
d−

∑M
i=1 diσi∑M
i=1 σi

)2 ∑M
i=1 σi

1−
∑M
i=1 σi

.

For completeness we include the short proof of Lemma 2.4.

Proof. For M = 1 and N = 2 the statement follows from the identity

d̂2
1σ̂1 + d̂2

2σ̂2 = d̂2 + (d̂− d̂1)2 σ̂1
σ̂2
. (2.3)

which is valid for positive σ̂1, σ̂2 with σ̂1 + σ̂2 = 1 and d̂ = d̂1σ̂1 + d̂2σ̂2.

18



2.1 The Frieze-Kannan lemma

For general 1 ≤ M < N we infer from the Cauchy-Schwarz inequality applied twice
in the form (

∑
diσi)2 ≤

∑
d2
iσi

∑
σi

N∑
i=1

d2
iσi =

M∑
i=1

d2
iσi +

N∑
i=M+1

d2
iσi

≥

(∑M
i=1 diσi

)2

∑M
i=1 σi

+

(∑N
i=M+1 diσi

)2

∑N
i=M+1 σi

=
(∑M

i=1 diσi∑M
i=1 σi

)2 M∑
i=1

σi +
(∑N

i=M+1 diσi∑N
i=M+1 σi

)2 N∑
i=M+1

σi .

Setting

σ̂1 =
M∑
i=1

σi, σ̂2 =
N∑

i=M+1
σi,

d̂1 =
∑M
i=1 diσi∑M
i=1 σi

, d̂2 =
∑N
i=M+1 diσi∑N
i=M+1 σi

,

and
d̂ = d̂1σ̂1 + d̂2σ̂2

we have d̂ =
∑N
i=1 diσi = d and from (2.3) we infer

N∑
i=1

d2
iσi ≥

(
N∑
i=1

diσi

)2

+
(

N∑
i=1

diσi −
∑M
i=1 diσi∑M
i=1 σi

)2 ∑M
i=1 σi∑N

i=M+1 σi
,

which is what we claimed.

After those preparations we prove Theorem 2.1.

Proof of Theorem 2.1. The proof is based on an idea which was already present in the
original work of Szemerédi. Starting with an arbitrary equitable vertex partition P0
with t0 classes, we consider a sequence of partitions P0,P1, . . . such that Pj always
satisfies property (i ). As soon as Pj also satisfies (ii ) we can stop. On the other
hand, if Pj does not satisfy (ii ) we will show that there exists a partition Pj+1 whose
index increased by ε2/2. Since ind(P) ≤ 1 for any partition P, we infer that after
at most 2/ε2 steps this procedure must end with a partition satisfying properties (i )
and (ii ) of the theorem.
So suppose Pj = P = {Vi : i ∈ [t]} is a partition of V which satisfies (i ) and (ii ),

but there exists a set U ⊆ V such that (2.1) fails. We are going to construct a partition
R = Pj+1 satisfying

ind(R) ≥ ind(P) + ε2/2 . (2.4)
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2 Regularity lemmas for graphs

For that set
Ui = Vi ∩ U and Ūi = Vi \ U .

We define a new partition Q by replacing every vertex class Vi by Ui and Ūi

Q = {U1, Ū1 . . . , Ut, Ūt} .

Next we show that the index of Q increased by ε2 compared to ind(P). For every
1 ≤ i < j ≤ t we set

εij = d(Ui, Uj)− d(Vi, Vj) .

Since we may assume t ≥ t0 ≥ 1/ε, which yields
∑t
i=1 e(Vi) ≤ εn2/2, we infer from the

assumption that (2.1) fails, that

∣∣∣∑
i<j

εij |Ui||Uj |
∣∣∣ ≥ εn2 −

t∑
i=1

e(Ui) ≥ εn2 −
t∑
i=1

e(Vi) ≥
ε

2n
2 , (2.5)

Since Vi = Ui ∪ Ūi for every i ∈ [t] we obtain

d(Vi, Vj)|Vi||Vj | = d(Ui, Uj)|Ui||Uj |+ d(Ūi, Uj)|Ūi||Uj |
+ d(Ui, Ūj)|Ui||Ūj |+ d(Ūi, Ūj)|Ūi||Ūj |

and
|Vi||Vj | = |Ui||Uj |+ |Ūi||Uj |+ |Ui||Ūj |+ |Ūi||Ūj | .

Combining those identities with Lemma 2.4, we obtain

d2(Ui, Uj)|Ui||Uj |+ d2(Ūi, Uj)|Ūi||Uj |+ d2(Ui, Ūj)|Ui||Ūj |+ d2(Ūi, Ūj)|Ūi||Ūj |

≥ d2(Vi, Vj)|Vi||Vj |+ ε2
ij

 |Ui||Uj |
1− |Ui||Uj |

|Vi||Vj |


≥ d2(Vi, Vj)|Vi||Vj |+ ε2

ij |Ui||Uj | .

Summing over all 1 ≤ i < j ≤ t we obtain

ind(Q) ≥ ind(P) + 1(n
2
) ∑
i<j

ε2
ij |Ui||Uj |

≥ ind(P) +
(∑

i<j εij |Ui||Uj |
)2(n

2
)∑

i<j |Ui||Uj |
(2.5)
≥ ind(P) + (εn2/2)2(n

2
)(n

2
)

≥ ind(P) + ε2. (2.6)

We now find an equitable partition R which is a refinement of P (and almost a refine-
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2.2 Szemerédi’s regularity lemma

ment of Q) for which (2.4) holds. For that subdivide each vertex class Vi of P into
sets Wi,a of size bε2n/(5t)c or bε2n/(5t)c+ 1 in such a way that for all but at most one
of these sets either Wi,a ⊆ Ui or Wi,a ⊆ Ūi holds. For every i ∈ [t] let Wi,0 denote the
exceptional set if it exists and let Wi,0 be arbitrary otherwise. Let R be the resulting
partition. Moreover, we consider the partition R∗ which is a refinement of R obtained
by replacing Wi,0 by possibly two classes Ui ∩Wi,0 and Ūi ∩Wi,0. Since the contribution
of the index of R and R∗ may differ only on pairs with at least one vertex in Wi,0 for
some i ∈ [t] and since |Wi,0| ≤ bε2n/(5t)c+ 1 for every i ∈ [t] we infer that

ind(R∗)− ind(R) ≤
(
n

2

)−1 t∑
i=1

(
ε2n

5t + 1
)
n ≤ ε2

2 .

for sufficiently large n. Furthermore, since R∗ is a refinement of Q it follows from the
Cauchy-Schwarz inequality that ind(Q) ≤ ind(R∗) and, consequently,

ind(R) ≥ ind(R∗)− ε2

2 ≥ ind(Q)− ε2

2
(2.6)
≥ ind(P) + ε2

2 ,

which concludes the proof of the theorem.

The proof of Theorem 2.1 shows that choosing

TFK(ε, t0) = max{t0, 1/ε} · (6/ε2)2/ε2 = t02poly(1/ε)

suffices. In fact, in each refinement step we split the vertex classes Vi into at most
b5/ε2 + 1c ≤ 6/ε2 classes Wi,a, when we construct R. Hence, each time property (ii )
fails the number of vertex classes of the new partition increases by a factor of 6/ε2 and
in total there are at most 2/ε2 iterations.
On the other hand, it was shown by Lovász and B. Szegedy [LS07] that for every ε

with 0 < ε ≤ 1/3 there are graphs for which every partition into t classes satisfying
property (ii ) of Theorem 2.1 requires t ≥ 21/(8ε)/4 and, hence, t � 1/ε. As a conse-
quence Theorem 2.1 does not allow to obtain useful bounds for e(U ∩ Vi, U ∩ Vj), since
for such a graph εn2 � n2/t2 = |Vi||Vj |. Property (ii ) of Theorem 2.1 only implies

e(U ∩ Vi, U ∩ Vj) ≈ d(Vi, Vj)|U ∩ Vi||U ∩ Vj |

on average over all pairs i < j for every “large” set U . However, Szemerédi’s regularity
lemma (which was proved long before Theorem 2.1) allows to control e(U ∩ Vi, U ∩ Vj)
for most i < j. The price of this is, however, a significantly larger upper bound for the
number of partition classes t.

2.2 Szemerédi’s regularity lemma

In this section we show how Szemerédi’s regularity lemma from [Sze78] can be obtained
from Theorem 2.1 by iterated applications. For that we consider the following simple
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2 Regularity lemmas for graphs

corollary of Theorem 2.1, which was first considered by Tao [Tao06a].
Corollary 2.5. For all ν, ε > 0, every function δ : N → (0, 1], and every t0 ∈ N

there exist T0 = T0(ν, ε, δ(·), t0) and n0 such that for every graph G = (V,E) with
at least |V | = n ≥ n0 vertices the following holds. There exists a vertex partition
P = {Vi : i ∈ [t]} with V1 ∪ . . . ∪ Vt = V and a refinement Q = {Wi,j : i ∈ [t], j ∈ [s]}
with Wi,1 ∪ . . . ∪Wi,s = Vi for every i ∈ [t] such that
(i ) P is an (ε, t0, T0)-FK-partition,

(ii ) Q is a (δ(t), t0, T0)-FK-partition, and

(iii ) ind(Q) ≤ ind(P) + ν.
Before we deduce Corollary 2.5 from Theorem 2.1, we discuss property (iii ). Roughly

speaking, if two refining partitions P and Q satisfy property (iii ), then this implies
that d(Wi,a,Wj,b) and d(Vi, Vj) are “relatively close” for “most” choices of i < j and
a, b ∈ [s]. More precisely, we have the following, which was already observed by Alon,
Fischer, Krivelevich, and M. Szegedy [AFKS00].
Lemma 2.6. Let γ, ν > 0, let G = (V,E) be a graph with n vertices, and for some
positive integers t and s let P = {Vi : i ∈ [t]} with V1∪ . . .∪Vt = V be a vertex partition
and let Q = {Wi,j : i ∈ [t], j ∈ [s]} be a refinement with Wi,1 ∪ . . .∪Wi,s = Vi for every
i ∈ [t]. If ind(Q) ≤ ind(P) + ν, then∑

1≤i<j≤t

∑
a,b∈[s]

{
|Wi,a||Wj,b| : |d(Wi,a,Wj,b)− d(Vi, Vj)| ≥ γ

}
≤ ν

γ2n
2 .

Proof. For 1 ≤ i < j ≤ t let

A+
ij = {(a, b) ∈ [s]× [s] : d(Wi,a,Wj,b)− d(Vi, Vj) ≥ γ} .

Since

d(Vi, Vj)|Vi||Vj | =
∑
a,b∈[s]

d(Wi,a,Wj,b)|Wi,a||Wj,b|

=
∑

(a,b)∈A+
ij

d(Wi,a,Wj,b)|Wi,a||Wj,b|+
∑

(a,b)6∈A+
ij

d(Wi,a,Wj,b)|Wi,a||Wj,b| ,

we obtain from the defect form of Cauchy-Schwarz (Lemma 2.4), that∑
a,b∈[s]

d2(Wi,a,Wj,b)|Wi,a||Wj,b| ≥ d2(Vi, Vj)|Vi||Vj |+ γ2 ∑
(a,b)∈A+

ij

|Wi,a||Wj,b| .

Summing over all 1 ≤ i < j ≤ t we get

ind(Q) ≥ ind(P) + γ2(n
2
) ∑

1≤i<j≤t

∑
(a,b)∈A+

ij

|Wi,a||Wj,b| .
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2.2 Szemerédi’s regularity lemma

Since, by assumption ind(Q) ≤ ind(P) + ν, we have

∑
1≤i<j≤t

∑
(a,b)∈A+

ij

|Wi,a||Wj,b| ≤
ν

γ2

(
n

2

)
≤ νn2

2γ2 .

Repeating the argument with the appropriate definition of A−ij yields the claim.

Proof of Corollary 2.5. For the proof of the corollary we iterate Theorem 2.1. Without
loss of generality we may assume that δ(t) ≤ ε for every t ∈ N. For given ν, ε, δ(·), and t0,
we apply Theorem 2.1 and obtain an (ε, t0, T0)-FK-partition P with t classes. Since in
the proof of Theorem 2.1 the initial partition was an arbitrary equitable partition, we
infer that after another application of Theorem 2.1 with δ(t) (in place of ε) and t0 we
obtain an equitable refinement Q of P which is a (δ(t), t0, T0)-FK-partition with st
classes. In other words, P and Q satisfy properties (i ) and (ii ) of Corollary 2.5 and
if (iii ) also holds, then we are done. On the other hand, if (iii ) fails, then we replace P
by Q and iterate, i.e., we apply Theorem 2.1 with δ(ts) and t0 = ts to obtain an equitable
refinement Q′ of P ′ = Q. Since we only iterate as long as (iii ) of Corollary 2.5 fails
and since ν is fixed throughout the proof, this procedure must end after at most 1/ν
iterations. Therefore the upper bound T0 on the number of classes is in fact independent
of G and n and can be given by a recursive formula depending on ν, ε, δ(·), and t0.

We now show that Corollary 2.5 applied with the right choice of parameters yields the
following theorem, which is essentially Szemerédi’s regularity lemma from [Sze78].

Theorem 2.7. For every ε > 0 and every t0 ∈ N there exist TSz = TSz(ε, t0) and n0
such that for every graph G = (V,E) with at least |V | = n ≥ n0 vertices the following
holds. There exists a partition P of V such that

(i ) P = {Vi : i ∈ [t]} is t-equitable, where t0 ≤ t ≤ tSz, and

(ii ) for all but at most εt2 pairs (Vi, Vj) with i < j we have that for all subsets Ui ⊆ Vi
and Uj ⊆ Vj ∣∣e(Ui, Uj)− d(Vi, Vj)|Ui||Uj |

∣∣ ≤ ε|Vi||Vj | . (2.7)

We note that the usual statement of Szemerédi’s regularity lemma (cf. Theorem 1.2)
is slightly different from the one above. Usually ε|Vi||Vj | on the right-hand side of (2.7)
is replaced by ε|Ui||Uj | and for (ii ) it is assumed that |Ui| ≥ ε|Vi| and |Uj | ≥ ε|Vj |.
However, applying Theorem 2.7 with ε′ = ε3 would yield a partition with comparable
regular properties (cf. definition of ε-regular pairs in (1.1)).
Definition 2.8. Pairs (Vi, Vj) for which (2.7) holds for every Ui ⊆ Vi and Uj ⊆ Vj are
called ε-uniform. Partitions satisfying all three properties (i )-(ii ) of Theorem 2.7, we
will refer to as (ε, t0, TSz)-Szemerédi-partition. Again we may sometimes omit t0 and
TSz and simply refer to such partitions as ε-Szemerédi-partitions.
Below we deduce Theorem 2.7 from Corollary 2.5 and Lemma 2.6.
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2 Regularity lemmas for graphs

Proof of Theorem 2.7. For given ε > 0 and t0, we apply Corollary 2.5 with

ν ′ = ε4

362 , ε′ = 1, δ′(t) = ε

36t2 , and t′0 = t0

and obtain constants T ′0 and n′0 which define TSz = T ′0 and n0 = n′0. (We remark that the
choice for ε′ has no bearing for the proof and therefore we set it equal to 1.) For a given
graph G = (V,E) with n vertices Corollary 2.5 yields two partitions P = {Vi : i ∈ [t]}
and Q = {Wi,j : i ∈ [t], j ∈ [s]} satisfying properties (i )-(iii ) of Corollary 2.5. We
will show that, in fact, the coarser partition P also satisfies properties (i ) and (ii )
of Theorem 2.7. Since P is an (ε′, t′0, T ′0)-FK-partition by our choice of t′0 = t0 and
TSz = T ′0 the partition P obviously satisfies property (i ) of Theorem 2.7 and we only
have to verify property (ii ).

For that we consider for every 1 ≤ i < j ≤ t the set

Aij =
{

(a, b) ∈ [s]× [s] : |d(Wi,a,Wj,b)− d(Vi, Vj)| ≥
ε

6

}
and we let

I =

{i, j} : 1 ≤ i < j ≤ t such that
∑

(a,b)∈Aij

|Wi,a||Wj,b| ≥
ε

6 |Vi||Vj |

 .

We will first show that |I| ≤ εt2 and then we will verify that if {i, j} 6∈ I, then (2.7)
holds. Indeed, due to property (iii ) of Corollary 2.5 we have ind(Q) ≤ ind(P) +ν ′ and,
consequently, it follows from Lemma 2.6 (applied with ν ′ = ε4/362 and γ′ = ε/6) that

ε2n2

36 ≥
∑
i<j

∑
(a,b)∈Aij

|Wi,a||Wj,b| ≥
∑
{i,j}∈I

∑
(a,b)∈Aij

|Wi,a||Wj,b| ≥
ε

6
∑
{i,j}∈I

|Vi||Vj | .

Moreover, since |Vi| ≥ bn/tc ≥ n/(2t) for every i ∈ [t] we have εn2/6 ≥ |I|n2/(4t2) and,
consequently,

|I| ≤ 2
3εt

2 < εt2 . (2.8)

Next we will show that if {i, j} 6∈ I then the pair (Vi, Vj) is ε-regular, i.e., we show
that (2.7) holds for every Ui ⊆ Vi and Uj ⊆ Vj . For given sets Ui ⊆ Vi and Uj ⊆ Vj and
a, b ∈ [s] we set

Ui,a = Ui ∩Wi,a and Uj,b = Uj ∩Wj,b

and have
e(Ui, Uj) =

∑
a,b∈[s]

e(Ui,a, Uj,b) .
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Appealing to the fact that Q is a (δ′(t), t′0, T ′0)-FK-partition and to (2.2) we obtain

e(Ui, Uj) =
∑
a,b∈[s]

d(Wi,a,Wj,b)|Ui,a||Uj,b| ± 6δ′(t)n2 .

From the assumption {i, j} 6∈ I we infer∑
(a,b)∈Aij

d(Wi,a,Wj,b)|Ui,a||Uj,b| ≤
∑

(a,b)∈Aij

|Wi,a||Wj,b| ≤
ε

6 |Vi||Vj |

and, furthermore, for (a, b) 6∈ Aij we have

d(Wi,a,Wj,b)|Ui,a||Uj,b| =
(
d(Vi, Vj)±

ε

6

)
|Ui,a||Uj,b| .

Combining, those three estimates we infer

e(Ui, Uj) =
∑
a,b∈[s]

d(Vi, Vj)|Ui,a||Uj,b| ±
ε

6 |Ui||Uj | ±
ε

6 |Vi||Vj | ± 6δ′(t)n2 .

Hence from our choice of δ′(t) and Vi ≥ bn/tc ≥ n/(2t) we deduce

∣∣e(Ui, Uj)− d(Vi, Vj)|Ui||Uj |
∣∣ ≤ ε

3 |Vi||Vj |+
ε

6

(
n

t

)2
≤ ε|Vi||Vj | ,

which concludes the proof of Theorem 2.7.

In contrast to Theorem 2.1 the upper bound TSz = TSz(ε, t0) we obtain from the proof
of Theorem 2.7 is not exponential, but of tower-type. In fact, we use Corollary 2.5 with
ν = ε4/362 and δ(t) = ε/(36t2). Due to the choice of ν we iterate Theorem 2.1 at most
362/ε4 times and each time the number of classes grows exponentially, i.e., ti classes from
the i-th iteration may split into 2O(t4i /ε

2) classes for the next step. As a consequence,
the upper bound TSz = TSz(ε, t0), which we obtain from this proof, is a tower of 4’s of
height O(ε−4) with t0 as the last exponent. The proof of Szemerédi’s regularity lemma
from [Sze78] yields a similar upper bound of a tower of 2’s of height proportional to ε−5.
However, recall that the statement from [Sze78] is slightly different from the version
proved here, by having a smaller error term in (2.7). A lower bound of similar type was
obtained by Gowers [Gow97]. In fact, Gowers showed an example of a graph for which
any partition satisfying even only a considerably weaker version of property (ii ) requires
at least t classes, where t is a tower of 2’s of height proportional to 1/ε1/16.

2.3 The (ε, r)-regularity lemma

As we have just discussed in the previous section, the example of Gowers shows that
we cannot prevent the situation when the number of parts t of a Szemerédi-partition
is much larger than, say, 1/ε. For several applications this presents an obstacle which
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2 Regularity lemmas for graphs

one would like to overcome. More precisely one would like to obtain some control of
the densities of subgraphs which are of size much smaller than, say, n/t2. The (ε, r)-
regularity lemma (Theorem 2.9), the regularity lemma of Alon, Fischer, Krivelevich,
and M. Szegedy (Theorem 2.10), and the regular approximation lemma (Theorem 2.11),
were partly developed to address such issues.
A version for 3-uniform hypergraphs of the following regularity lemma was obtained

by Frankl and Rödl in [FR02] (see Chapter 4).

Theorem 2.9. For every ε > 0, every function r : N → N, and every t0 ∈ N there
exist TFR = TFR(ε, r(·), t0) and n0 such that for every graph G = (V,E) with at least
|V | = n ≥ n0 vertices the following holds. There exists a partition P of V such that

(i ) P = {Vi : i ∈ [t]} is t-equitable, where t0 ≤ t ≤ TFR, and

(ii ) for all but at most εt2 pairs (Vi, Vj) with i < j we have that for all sequences of
subsets U1

i , . . . , U
r(t)
i ⊆ Vi and U1

j , . . . , U
r(t)
j ⊆ Vj∣∣∣∣∣ ⋃r(t)q=1E(U qi , U

q
j )
∣∣− d(Vi, Vj)

∣∣ ⋃r(t)
q=1 U

q
i × U

q
j

∣∣∣∣∣ ≤ ε|Vi||Vj | . (2.9)

Note that if r(t) ≡ 1 then Theorem 2.9 is identical to Theorem 2.7 and if r(t) ≡ k for
some constant k ∈ N (independent of t), then it is a direct consequence of Theorem 2.7.
We remark that for arbitrary functions r(·), Theorem 2.9 can be proved along the lines of
Szemerédi’s proof of Theorem 2.7 from [Sze78]. Below we deduce Theorem 2.9, using a
slightly different approach, namely we infer Theorem 2.9 from Corollary 2.5 in a similar
way as we proved Theorem 2.7.

Proof. For given ε, r(·), and t0 we follow the lines of the proof of Theorem 2.7. This
time we apply Corollary 2.5 with a smaller choice of δ′(·)

ν ′ = ε4

362 , ε′ = 1, δ′(t) = ε

36t2(4r(t) − 3r(t))
, and t′0 = t0

and obtain T ′0 and n′0, which determines TFR and n0. We define the sets Aij and I
identical as in the proof of Theorem 2.7, i.e., for 1 ≤ i < j ≤ t we set

Aij =
{

(a, b) ∈ [s]× [s] : |d(Wi,a,Wj,b)− d(Vi, Vj)| ≥
ε

6

}
and we let

I =

{i, j} : 1 ≤ i < j ≤ t such that
∑

(a,b)∈Aij

|Wi,a||Wj,b| ≥
ε

6 |Vi||Vj |

 .

Again we obtain (2.8) and the rest of the proof requires some small straightforward
adjustments.

26
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We set r = r(t) and we will show that if {i, j} 6∈ I, then (2.9) holds for every se-
quence Û1

i , . . . , Û
r
i ⊆ Vi and Û1

j , . . . , Û
r
j ⊆ Vj . For such given sequences we consider new

sequences U1
i , . . . , U

R
i ⊆ Vi and U1

j , . . . , U
R
j ⊆ Vj satisfying the disjointness property

(see (2.10) below). For that let R = 4r − 3r and for a non-empty set ∅ 6= L ⊆ [r] let

Ûi(L) =
⋂
`∈L

Û `i \
⋃
`∈L

Û `i and Ûj(L) =
⋂
`∈L

Û `j \
⋃
`∈L

Û `j

and for two sets L, L′ with non-empty intersection we set

Ui(L,L′) = Ûi(L) and Uj(L,L′) = Ûj(L′).

Note that there are R = 4r−3r such pairs of sets L, L′ and we can relabel the sequences
(Ui(L,L′))L∩L′ 6=∅ and (Uj(L,L′))L∩L′ 6=∅ to U1

i , . . . , U
R
i ⊆ Vi and U1

j , . . . , U
R
j ⊆ Vj . Note

that for all p 6= q the sets Upi and U qi may either be equal or disjoint. Moreover, due to
this definition we obtain for all 1 ≤ p < q ≤ R

(U qi × U
q
j ) ∩ (Upi × U

p
j ) = ∅ and

⋃
q∈[R]

U qi × U
q
j =

⋃
q∈[r]

Û qi × Û
q
j . (2.10)

Furthermore, for q ∈ [R] and a, b ∈ [s] we set

U qi,a = U qi ∩Wi,a and U qj,b = U qj ∩Wj,b

and we get for every q ∈ [R]

e(U qi , U
q
j ) =

∑
a,b∈[s]

e(U qi,a, U
q
j,b) .

Appealing to the fact that Q is a (δ′(t), t′0, T ′0)-FK-partition and to (2.2) we obtain

e(U qi , U
q
j ) =

∑
a,b∈[s]

d(Wi,a,Wj,b)|U qi,a||U
q
j,b| ± 6δ′(t)n2 .

From the assumption {i, j} 6∈ I and the disjointness property from (2.10) we infer∑
(a,b)∈Aij

∑
q∈[R]

d(Wi,a,Wj,b)|U qi,a||U
q
j,b| ≤

∑
(a,b)∈Aij

|Wi,a||Wj,b| ≤
ε

6 |Vi||Vj |

and, furthermore, for (a, b) 6∈ Aij we have

d(Wi,a,Wj,b)|U qi,a||U
q
j,b| =

(
d(Vi, Vj)±

ε

6

)
|U qi,a||U

q
j,b|

27



2 Regularity lemmas for graphs

for every q ∈ [R]. Combining, those three estimates we infer∣∣∣∣∣∣
⋃
q∈[r]

E(Û qi , Û
q
j )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
q∈[R]

E(U qi , U
q
j )

∣∣∣∣∣∣
=
(
d(Vi, Vj)±

ε

6

) ∑
q∈[R]

∑
a,b∈[s]

|U qi,a||U
q
j,b| ±

ε

6 |Vi||Vj | ± 6Rδ′(t)n2

= d(Vi, Vj)

∣∣∣∣∣∣
⋃
q∈[R]

E(U qi , U
q
j )

∣∣∣∣∣∣± ε

3 |Vi||Vj | ± 6Rδ′(t)n2 .

Hence from our choice of δ′(t), R = (4r − 3r), and Vi ≥ bn/tc ≥ n/(2t) we deduce
from (2.10) ∣∣∣∣∣ ⋃rq=1E(Û qi , Û

q
j )
∣∣− d(Vi, Vj)

∣∣ ⋃r
q=1 Û

q
i × Û

q
j

∣∣∣∣∣ ≤ ε|Vi||Vj | ,
which concludes the proof of Theorem 2.9.

2.4 The regularity lemma of Alon et al.

In the last two sections we iterated the regularity lemma of Frieze and Kannan and
obtained Corollary 2.5, from which we deduced Szemerédi’s regularity lemma (Theo-
rem 2.7) and the (ε, r)-regularity lemma (Theorem 2.9). From this point of view it
seems natural to iterate these stronger regularity lemmas. This was indeed first carried
out by Alon, Fischer, Krivelevich, and M. Szegedy [AFKS00] who iterated Szemerédi’s
regularity lemma for an application in the area of property testing.

Theorem 2.10. For every ν, ε > 0, every function δ : N → (0, 1], and every t0 ∈ N

there exist TAFKS = TAFKS(ν, ε, δ(·), t0) and n0 such that for every graph G = (V,E)
with at least |V | = n ≥ n0 vertices the following holds. There exists a vertex partition
P = {Vi : i ∈ [t]} with V1 ∪ . . . ∪ Vt = V and a refinement Q = {Wi,j : i ∈ [t], j ∈ [s]}
with Wi,1 ∪ . . . ∪Wi,s = Vi for every i ∈ [t] such that

(i ) P is an (ε, t0, TAFKS)-Szemerédi-partition,

(ii ) Q is a (δ(t), t0, TAFKS)-Szemerédi-partition, and

(iii ) ind(Q) ≤ ind(P) + ν.

Proof. The proof is identical to the proof of Corollary 2.5 with the only adjustment that
we iterate Theorem 2.7 instead of Theorem 2.1.

The price for the stronger properties of the partitions P and Q, in comparison to
Szemerédi’s regularity lemma, is again in the bound TAFKS. In general TAFKS can be
expressed as a recursive formula in ν, ε, δ(·), and t0, and for example, if δ(t) is given by
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2.5 The regular approximation lemma

a polynomial in 1/t, then TAFKS is an iterated tower-type function, which is sometimes
referred to as a wowzer-type function.
Theorem 2.9 relates to Theorem 2.10 in the following way. It is a direct consequence

of (2.9) that if (Vi, Vj) is not one of the exceptional pairs in (ii ) of Theorem 2.9, then
for any partition of Vi and Vj into at most

√
r(t) parts of equal size, “most” of the r(t)

pairs have the density “close” (up to an error of O(
√
ε)) to d(Vi, Vj). Hence, if we

set at the beginning r(t) = (TSz(δ(t), t))2 and then apply Theorem 2.7 to obtain a
(δ(t), t, TSz(δ(t), t))-Szemerédi-partition Q, which refines the given partition, then we
arrive to a similar situation as in Theorem 2.10. In fact, we have two Szemerédi-partitions
satisfying (i ) and (ii ) of Theorem 2.10 and (iii ) would be replaced by the fact that
d(Wi,a,Wj,b) ≈ d(Vi, Vj) for “most” pairs from the finer partition Q.

2.5 The regular approximation lemma

The following lemma is another byproduct of the hypergraph generalizations of the
regularity lemma for graphs and the general form will be presented in Chapter 4 (see
Theorem 4.12). In a different context, Theorem 2.11 also appeared in the work of Lovász
and B. Szegedy [LS07, Lemma 5.2].

Theorem 2.11. For every ν > 0, every function ε : N → (0, 1], and every t0 ∈ N

there exist T0 = T0(ν, ε(·), t0) and n0 such that for every graph G = (V,E) with at least
|V | = n ≥ n0 vertices the following holds. There exists a partition P = {Vi : i ∈ [t]}
with V1 ∪ . . .∪Vt = V and a graph H = (V,E′) on the same vertex set V as G such that

(a ) P is an (ε(t), t0, T0)-Szemerédi-partition for H and

(b ) |E4E′| = |E \ E′|+ |E′ \ E| ≤ νn2.

The main difference between Theorem 2.11 and Theorem 2.7 is in the choice of ε being
a function of t. As already mentioned, it follows from the work of Gowers [Gow97] (or
alternatively from the work of Lovász and B. Szegedy [LS07, Proposition 7.1]) that it
is not possible to obtain a Szemerédi (or even a Frieze-Kannan) partition for certain
graphs G with ε of order 1/t. Property (a ) of Theorem 2.11 asserts, however, that by
adding and deleting at most νn2 edges from/to G we can obtain another graph H which
admits a “much more” regular partition, e.g., with ε(t)� 1/t.
Below we deduce Theorem 2.11 from the iterated regularity lemma of Alon, Fischer,

Krivelevich and M. Szegedy (Theorem 2.10). The idea is to apply Theorem 2.10 with
appropriate parameters to obtain Szemerédi-partitions P = {Vi : i ∈ [t]} and Q =
{Wi,j : i ∈ [t], j ∈ [s]} for which Q refines P and ind(Q) ≤ ind(P) + ν ′. The last
condition and Lemma 2.6 imply that d(Wi,a,Wj,b) ≈ d(Vi, Vj) (with an error depending
on ν ′) for “most” i < j and a, b ∈ [s]. The strong regularity of the finer partition Q will
then be used to adjust G (by adding and removing a few edges randomly) to obtain H
for which P will have the desired properties. We now give the details of this outline.
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Proof of Theorem 2.11. For given ν, ε(·), and t0 we apply Theorem 2.10 with

ν ′ = ν3

16 ,

some arbitrary ε′, say ε′ = 1, δ′(t) = min{ε(t)/2, ν/4}, and t′0 = t0. We also fix
an auxiliary constant γ′ = ν/2. We then set T0 = T ′AFKS and n0 = n′0. After we
apply Theorem 2.10 to the given graph G = (V,E), we obtain an (ε′, t0, T0)-Szemerédi-
partition P and a (δ′(t), t0, T0)-Szemerédi-partition Q which refines P such that

ind(Q) ≤ ind(P) + ν ′ .

Next we will change G and obtain the graph H, which will satisfy (a ) and (b ) of
Theorem 2.11. For that:

(A ) we replace every subgraph G[Wi,a,Wj,b] which is not δ′(t)-regular by a random
bipartite graph of density d(Vi, Vj) and

(B ) for every 1 ≤ i < j ≤ t and a, b ∈ [s] we add or remove edges randomly to change
the density of G[Wi,a,Wj,b] to d(Vi, Vj) + o(1).

It follows from the Chernoff bound that the resulting graph H = (V,E′) has the property
that for every 1 ≤ i < j ≤ t and a, b ∈ [s] the induced subgraph H[Wi,a,Wj,b] is
(δ′(t)+o(1))-uniform and dH(Wi,a,Wj,b) = dH(Vi, Vj)+o(1), where o(1)→ 0 as n→∞.
(Recall that for G from Lemma 2.6 we can only infer that dG(Wi,a,Wj,b) = dG(Vi, Vj)±γ′
for “most” pairs for some γ′ � δ′(t).) Hence for every 1 ≤ i < j ≤ t and arbitrary sets
Ui ⊆ Vi and Uj ⊆ Vj we have

eH(Ui, Uj) =
∑
a,b∈[s]

(
dH(Wi,a,Wj,b)|Ui ∩Wi,a||Uj ∩Wj,b| ± (δ′(t) + o(1))|Wi,a||Wj,b|

)
= dH(Vi, Vj)|Ui||Uj | ± 2δ′(t)|Vi||Vj | .

In other words, the partition P is a (2δ′(t) ≤ ε(t), t0, T0)-Szemerédi-partition for H,
which is assertion (a ) of Theorem 2.11. For part (b ) we will estimate the symmetric
difference of E and E′. Since Q is a (δ′(t), t0, T0)-Szemerédi-partition for G the changes
in Step (A ) contributed at most

δ′(t)t2s2
⌈
n

ts

⌉2
≤ ν

2n
2 (2.11)

to that difference.
In order to estimate the number of changed pairs introduced in Step (B ) we appeal

to Lemma 2.6. From that we infer that, since ind(Q) ≤ ind(P) + ν ′, we “typically”
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changed only γ′|Wi,a||Wj,b| pairs. More precisely, in Step (B ) we changed at most

∑
i<j

∑
a,b∈[s]

γ′|Wi,a||Wj,b|+
∑
i<j

∑
a,b∈[s]

{
|Wi,a||Wj,b| : |dG(Wi,a,Wj,b)− dG(Vi, Vj)| ≥ γ′

}

≤
(
γ′

2 + ν ′

(γ′)2

)
n2 ≤ ν

2n
2 . (2.12)

Finally, from (2.11) and (2.12) we infer |E4E′| ≤ νn2, which shows that H satisfies
property (b ) of Theorem 2.11.

2.6 An early version of the regularity lemma
In this section we state an early version of Szemerédi’s regularity lemma, which was
introduced in [Sze75] and one of the key components in the proof of Theorem 1.1.
Another application of that lemma lead to the upper bound for the Ramsey-Turán
problem for K4 due to Szemerédi [Sze72] and to the resolution of the (6, 3)-problem,
which was raised by Brown, Erdős and Sós [BES73, SEB73], and solved by Ruzsa and
Szemerédi [RS78] (cf. Theorem 1.3).

Theorem 2.12. For all positive ε1, ε2, δ, %, and σ there exist T0, S0, M , and N such
that for every bipartite graph G = (X ∪ Y,E) satisfying |X| = m ≥M and |Y | = n ≥ N
there exists a partition X0 ∪ X1 ∪ . . . ∪ Xt = X with t ≤ T0 and for every i = 1, . . . , t
there exists a partition Yi,0 ∪ Yi,1 ∪ . . . ∪ Yi,si = Y with si ≤ S0 such that

(a ) |X0| ≤ %m and |Yi,0| ≤ σn for every i = 1, . . . , t, and

(b ) for every i = 1, . . . , t, every j = 1, . . . , si, and all sets U ⊆ Xi and W ⊆ Yi,j with
|U | ≥ ε1|Xi| and |W | ≥ ε2|Yi,j | we have d(U,W ) ≥ d(Xi, Yi,j)− δ.

Note that this lemma does not ensure such an elegant and easy to use structure of the
partition as the later lemmas. More precisely, the partitions of Y may be very different
for every i = 1, . . . , t. On the other hand, the upper bounds T0 and S0 are of similar
type as those of Theorem 2.1, i.e., we have T0, S0 = 2poly(1/min{ε1,ε2,δ,%,σ}). We also point
out that for example in [RS78] Theorem 2.12 was applied iteratively, which in turn
lead to a tower-type bound for the (6, 3)-problem and up to now no better bound was
found. A multipartite version of Theorem 2.12 was developed by Duke, Lefmann, and
Rödl [DLR95] for efficiently approximating the subgraph frequencies in a given graph G
on n vertices for subgraphs of up to Ω(

√
log log(n)) vertices.

Theorem 2.13. For every ε > 0 and every integer k ≥ 2 there exist T0 = 4k2/ε5 such
that for every k-partite graph G = (V,E) with vertex classes V1 ∪ . . . ∪ Vk = V and
|V1| = · · · = |Vk| = N there exists a partition P of V1 × · · · × Vk such that

(i ) the number of elements W1 × · · · ×Wk in P is at most T0,

(ii ) |Wi| ≥ εk
2/ε5N for every i = 1, . . . , k and every W1 × · · · ×Wk in P, and
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(iii ) we have ∑
W1×···×Wk∈Pirr

k∏
i=1
|Wi| ≤ εNk .

for the subfamily Pirr ⊆ P containing those elements W1 × · · · × Wk from P
which contain an irregular pair (Wi,Wj), i.e., a pair (Wi,Wj) with i < j for which
there exist subsets Ui ⊆ Wi and Uj ⊆ Wj with |Ui| ≥ ε|Wi| and |Uj | ≥ ε|Wj | such
that |d(Ui, Uj)− d(Wi,Wj)| > ε.

The main advantage of Theorem 2.13, in comparison to Szemerédi’s regularity lemma
(Theorem 2.7), is the smaller upper bound T0. The partition in Theorem 2.13 still
conveys information if 1/ε and k tend slowly to infinity with n = |V |, for example, if
1/ε and k are of order logc(n) for some small constant c > 0. Due to the tower-type
bound of Theorem 2.7 there 1/ε can be at most of order log∗(n), where log∗ denotes the
iterated logarithm function.
On the other hand, the upper bound T0 in Theorem 2.13 is comparable to the one

from Theorem 2.1 and as we will see in the next section Theorem 2.1 would be also well
suited for the main application of Theorem 2.13 in [DLR95]. Moreover, the structure of
the partition provided by Theorem 2.1 seems to be simpler and easier to work with.

2.7 Reduced graph and counting lemmas
In this section we show how regular properties of the partitions given by the regularity
lemmas in the earlier sections can be applied to approximate the number of subgraphs
of fixed isomorphism type of a given graph G. More precisely, for graphs G and F
let NF (G) denote the number of labeled copies of F in G. Roughly speaking, we will
show that NF (G) can be fairly well approximated by only studying the so-called reduced
graph (or cluster-graph) of a regular partition.
Definition 2.14. Let ε > 0, G = (V,E) be a graph, and let P = {Vi : i ∈ [t]} be a
partition of V .

(i ) For an ε-FK-partition P the reduced graph R = RG(P) is defined to be the
weighted, complete, undirected graph with vertex set V (R) = [t] and with edge
weights wR(i, j) = d(Vi, Vj).

(ii ) For an ε-Szemerédi-partition P the reduced graph R = RG(P, ε) is defined to
be the weighted, undirected graph with vertex set V (R) = [t], edge set E(R) =
{{i, j} : (Vi, Vj) is ε-regular}, and edge weights wR(i, j) = d(Vi, Vj).

The reduced graph carries a lot of the structural information of the given graph G.
In fact, in many applications of the regularity lemma, the original problem for G one is
interested in can be turned into a “simpler” problem for the reduced graph.
Remark 2.15. Below we will consider (labeled) copies FR of a given graph F in a reduced
graph R. If R is the reduced graph of an FK-partition, then R is an edge-weighting of
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the complete graph and, consequently, any ordered set of |V (F )| vertices of V (R) spans
a copy of F . On the other hand, if R is the reduced graph of an ε-Szemerédi-partition,
then R is not a complete graph and for a labeled copy FR of F in R with V (FR) =
{i1, . . . , i`} we will have that (Vij , Vik) is ε-uniform for every edge {ij , ik} ∈ E(FR).

2.8 The global counting lemma

Here by a counting lemma we mean an assertion which enables us to deduce directly
from the reduced graph some useful information on the number NF (G) of labeled copies
of a fixed graph F in a large graph G. We will distinguish between two different settings
here. The first counting lemma will yield an estimate on NF (G) in the context of
Theorem 2.1. Since NF (G) concerns the total number of copies, we regard this result as
a global counting lemma.
In contrast, for an `-vertex graph F the local counting lemma (Theorem 2.18) will

yield estimates on NF (G[Vi1 , . . . , Vi` ]) for an induced `-partite subgraph of G given by
the regular partition P. However, for such a stronger assertion we will require that P
be a Szemerédi-partition.

Theorem 2.16. Let F be a graph with vertex set V (F ) = [`]. For every γ > 0 there
exists ε > 0 such that for every G = (V,E) with |V | = n and every ε-FK-partition
P = {Vi : i ∈ [t]} with reduced graph R = RG(P) we have

NF (G) =
∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

ij∈V (FR)
|Vij | ± γn` , (2.13)

where the sum runs over all labeled copies FR of F in R (cf. Remark 2.15).

For a simpler notation we denote here and below the vertices V (FR) of a given copy
of FR of the `-vertex graph F in R by {i1, . . . , i`} and omit the dependence of FR.

Proof. We follow an argument of Lovász and B. Szegedy from [LS06]. We prove The-
orem 2.18 by induction on the number of edges of F . Clearly, the theorem holds for
graphs with no edges and for graphs with one edge it follows from the definition of
ε-FK-partition with ε = γ.
For given F and γ we let ε ≤ γ/12 be sufficiently small, so that the statement for the

induction assumption holds with γ′ = γ/2. For two vertices x, y ∈ V we set

dP(x, y) =
{

0 if x, y ∈ Vi for some i ∈ [t],
d(Vi, Vj) if x ∈ Vi and y ∈ Vj for some 1 ≤ i < j ≤ t

and we denote by 1E(x, y) the indicator function for E, i.e., 1E(x, y) equals 1 if {x, y} ∈ E
and it equals 0 otherwise. We consider the difference of the left-hand side and the main
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term of the right-hand side in (2.13) and obtain∣∣∣∣∣∣NF (G)−
∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x1,...,x`∈(V )`

 ∏
{i,j}∈E(F )

1E(xi, xj)−
∏

{i,j}∈E(F )
dP(xi, xj)

∣∣∣∣∣∣ , (2.14)

where x1, . . . , x` ∈ (V )` is an arbitrary sequence of ` distinct vertices in V . Without loss
of generality we may assume that {` − 1, `} is an edge in F and we denote by F− the
spanning subgraph of F with the edge {` − 1, `} removed. Then, applying the identity
α1α2 − β1β2 = β2(α1 − β1) + α1(α2 − β2), we get the following upper bound for the
right-hand side of the last equation∣∣∣∣∣∣

∑
x1,...,x`∈(V )`

dP(x`−1, x`)

 ∏
{i,j}∈E(F−)

1E(xi, xj)−
∏

{i,j}∈E(F−)
dP(xi, xj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

x1,...,x`∈(V )`

 ∏
{i,j}∈E(F−)

1E(xi, xj)

(1E(x`−1, x`)− dP(x`−1, x`)
)∣∣∣∣∣∣ . (2.15)

By the induction assumption we can bound the first term by γ′n`, i.e., we have∣∣∣∣∣∣
∑

x1,...,x`∈(V )`

dP(x`−1, x`)

 ∏
{i,j}∈E(F−)

1E(xi, xj)−
∏

{i,j}∈E(F−)
dP(xi, xj)

∣∣∣∣∣∣
≤ γ′n`. (2.16)

We will verify a similar bound for the second term in (2.15). For that we will split the
second term of (2.15) into two parts and rewrite each of the parts (see (2.17) and (2.18)
below).
We consider the induced subgraph F ∗ of F , which we obtain by removing the vertices

labeled `− 1 and ` from F . For a copy F̃ ∗ of F ∗ in G let X`−1(F̃ ∗) and X`(F̃ ∗) be those
vertex sets such that for every pair x`−1 ∈ X`−1(F̃ ∗) and x` ∈ X`(F̃ ∗) of distinct vertices,
those two vertices extend F̃ ∗ in G to a copy of F−. More precisely, if x1, . . . , x`−2 is the
vertex set of F̃ ∗ then we set

X`−1(F̃ ∗) =
⋂

i : {i,`−1}∈E(F )
ΓG(xi)

and

X`(F̃ ∗) =
⋂

i : {i,`}∈E(F )
ΓG(xi) ,
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where ΓG(x) denotes the set of neighbours of x in G. To simplify the notation, below
we will write X`−1 or X` instead of X`−1(F̃ ∗) or X`(F̃ ∗) as F̃ ∗ will be clear from the
context. Since by definition edges contained inX`−1∩X` are counted twice in e(X`−1, X`)
(cf. (2.2)) we observe for the first part of the seond term in (2.15) that

∑
x1,...,x`∈(V )`

 ∏
{i,j}∈E(F−)

1E(xi, xj)

1E(x`−1, x`) =
∑
F̃ ∗

e(X`−1, X`) , (2.17)

Moreover, we have for the second part of the seond term in (2.15)

∑
x1,...,x`∈(V )`

 ∏
{i,j}∈E(F−)

1E(xi, xj)

 dP(x`−1, x`)

=
∑
F̃ ∗

∑
i 6=j∈[t]

d(Vi, Vj)|X`−1 ∩ Vi||X` ∩ Vj | (2.18)

and, consequently, we can bound the second term in (2.15) by∑
F̃ ∗

∣∣∣e(X`−1, X`)−
∑

i 6=j∈[t]
d(Vi, Vj)|X`−1 ∩ Vi||X` ∩ Vj |

∣∣∣ (2.19)

Finally, we can apply the fact that P is an ε-FK-partition in form of (2.2) and the fact
that NF ∗(G) ≤ n`−2 to bound (2.19) by n`−2 · 6εn2. Hence, from (2.14)–(2.19) we infer∣∣∣∣∣∣NF (G)−

∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

∣∣∣∣∣∣ ≤ (γ′ + 6ε)n` ≤ γn` ,

which concludes the proof of Theorem 2.18.

A simple argument based on the principle of inclusion and exclusion yields an induced
version of Theorem 2.16. Let N∗F (G) denote the number of labeled, induced copies of F
in G.

Corollary 2.17. Let F be a graph with vertex set V (F ) = [`]. For every γ > 0 there
exists ε > 0 such that for every G = (V,E) with |V | = n and every ε-FK-partition
P = {Vi : i ∈ [t]} with reduced graph R = RG(P) we have

N∗F (G) =
∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

{ij ,ik}∈E(FR)

(
1− wR(ij , ik)

) ∏
ij∈V (FR)

|Vij | ± γn`,

where the sum runs over all labeled copies FR of F in R and FR denotes the complement
graph of FR on the same ` vertices V (FR).

Proof. Let F be a graph with V (F ) = [`] and let K` be the complete graph on the
same vertex set. Let ε be sufficiently small, so that we can apply Theorem 2.16 with
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γ′ = γ/2(`
2)−e(F ) for every graph F ′ ⊆ K` which contains F . LetG, an ε-FK-partition P,

and a reduced graph R = RG(P) be given.
Due to the principle of inclusion and exclusion we have

N∗F (G) =
∑

F⊆F ′⊆K`

(−1)e(F ′)−e(F )NF ′(G) ,

where we sum over all supergraphs F ′ of F contained in K`. Applying Theorem 2.16
for every such F ′ we obtain

N∗F (G) =
∑
F ′

(−1)e(F ′)−e(F )

∑
F ′R

∏
{ij ,ik}∈E(F ′R)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

± γn` ,
where the outer sum runs over all F ′ with F ⊆ F ′ ⊆ K` and the inner sum is indexed
by all copies F ′R of F ′ in R. We can rewrite the main term by rearranging the sum in
the following way: First we sum over all possible labeled copies FR of F in R. Note that
this fixes a unique labeled copy K`(FR) of K` as well, and in the inner sum we consider
all graphs F ′R in R “sandwiched” between FR and K`(FR). This way we obtain

N∗F (G)± γn` =
∑
FR

∑
FR⊆F ′R⊆K`(FR)

(−1)e(F ′R)−e(FR) ∏
{ij ,ik}∈E(F ′R)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

=
∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

×
∑

FR⊆F ′R⊆K`(FR)
(−1)e(F ′R)−e(FR) ∏

{ij ,ik}∈E(F ′R)\E(FR)
wR(ij , ik)

=
∑
FR

∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

ij∈V (FR)
|Vij |

×
∏

{ij ,ik}∈E(K`(FR))\E(FR)

(
1− wR(ij , ik)

)
,

which concludes the proof.

2.9 The local counting lemma

For graphs F and G, a partition P = {Vi : i ∈ [t]} of V (G), and a labeled copy FR
of F in R with V (FR) = {i1, . . . , i`} we denote by NF (G[FR]) the number of partite
isomorphic-copies of FR (and hence of F ) in G induced on Vi1 ∪ . . .∪Vi` . In other words,
NF (G[FR]) is the number of edge preserving mappings ϕ from V (FR) to Vi1 ∪ . . . ∪ Vi`
such that ϕ(ij) ∈ Vij for every j = 1, . . . , `.
Roughly speaking, the global counting lemma from the last section asserts that if P

is a sufficiently regular ε-FK-partition, then NG(F ) can be estimated from the reduced
graph RG(P). In fact, it follows that the average ofNF (G[FR]) over all labeled copies FR
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of F in R is “close” to its expectation. The local counting lemma (Theorem 2.18), states
that if P is, in fact, a sufficiently regular Szemerédi-partition, then this is not only true
on average, but indeed for every copy FR of F in R.
Recall, that by definition the edge set E(R) of a reduced graph of a Szemerédi-

partition P corresponds to the regular pairs of P. Consequently, for a copy FR of F
in R we require that all edges of FR correspond to regular pairs.

Theorem 2.18. Let F be a graph with ` vertices. For every γ > 0 there exists ε > 0 such
that for every G = (V,E) with |V | = n and every ε-Szemerédi-partition P = {Vi : i ∈
[t]} with reduced graph R = RG(P, ε) we have for every labeled copy FR of F in R with
V (FR) = {i1, . . . , i`}

NF (G[FR]) =
∏

{ij ,ik}∈E(FR)
wR(ij , ik)

∏
ij∈V (FR)

|Vij | ± γ
∏

ij∈V (FR)
|Vij | .

Theorem 2.18 concerns the number of copies of a fixed graph F and will only give
interesting bounds if we can assert γ �

∏
{ij ,ik}∈E(FR)wR(ij , ik). Moreover, it was shown

by Chvátal, Rödl, Szemerédi, and Trotter [CRST83], that if H is a graph of bounded
degree with cn/t vertices (for some appropriately small constant c > 0 which depends on
min{ij ,ik}∈E(FR)wR(ij , ik) and ∆(H)) and there exists a homomorphism from H into FR,
then, under the same assumptions as in Theorem 2.18, G[FR] contains a copy of H. A
far reaching strengthening, the so-called blow-up lemma, was found by Komlós, Sárközy,
and Szemerédi [KSS97]. The blow-up lemma allows, under some slightly more restrictive
assumptions, to embed spanning graphs H of bounded degree.

Proof. We prove Theorem 2.18 by induction on the number of edges of F . Since the the-
orem is trivial for graphs with no edges and it follows from the definition of ε-Szemerédi-
partition for ε = γ for graphs with precisely one edge.
Let F be a graph with at least two edges and ` vertices. For given γ > 0 let ε ≤ γ/2

be sufficiently small, so that the theorem holds for F− with γ′ = γ/2. Let G = (V,E)
be given along with an ε-Szemerédi-partition P = {Vi : i ∈ [t]} and let FR be a labeled
copy of F in R. Without loss of generality we may assume that V (FR) = {1, . . . , `}
and that {` − 1, `} is an edge of FR. We denote by F−R the subgraph of FR which we
obtain after deleting the edge {`− 1, `} from FR. We can express the number of partite
isomorphic copies of FR through

NF (G[FR]) =
∑
x1∈V1

· · ·
∑
x`∈V`

∏
{i,j}∈E(FR)

1E(xi, xj)

=
∑
x1∈V1

· · ·
∑
x`∈V`

∏
{i,j}∈E(F−R )

(
1E(xi, xj)×

×
(
d(V`−1, V`) + 1E(x`−1, x`)− d(V`−1, V`)

))
.
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The last expression can be rewritten as

d(V`−1, V`)×NF−(G[F−R ])+

+
∑
x1∈V1

· · ·
∑
x`∈V`

( ∏
{i,j}∈E(F−R )

1E(xi, xj)
(
1E(x`−1, x`)− d(V`−1, V`)

))
.

From the induction assumption we then infer

d(V`−1, V`)NF (G[F−R ]) =
∏

{ij ,ik}∈E(FR)
wR(ij , ik)

∏
ij∈V (FR)

|Vij | ±
γ

2
∏

ij∈V (FR)
|Vij |

and, therefore, it suffices to verify∣∣∣∣∣∣∣
∑
x1∈V1

· · ·
∑
x`∈V`

( ∏
{i,j}∈E(F−R )

1E(xi, xj)
(
1E(x`−1, x`)− d(V`−1, V`)

))∣∣∣∣∣∣∣
≤ γ

2
∏

ij∈V (FR)
|Vij | (2.20)

For that we will appeal to the regularity of P. Let F ∗R be the induced subgraph of FR
which one obtains by removing the vertices `−1 and `. For a partite isomorphic copy F̃ ∗
of F ∗R, let X`−1(F̃ ∗) ⊆ V`−1 and X`(F̃ ∗) ⊆ V` be those sets of vertices for which any
choice of x`−1 ∈ X`−1(F̃ ∗) and x` ∈ X`(F̃ ∗) complete F̃ ∗ to a partite isomorphic copy
of F−R . Consequently, summing over all partite isomorphic copies F̃ ∗ of F ∗R in G we
obtain∣∣∣∣∣∣∣

∑
x1∈V1

· · ·
∑
x`∈V`

( ∏
{i,j}∈E(F−R )

1E(xi, xj)
(
1E(x`−1, x`)− d(V`−1, V`)

))∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
F̃ ∗

e
(
X`−1(F̃ ∗), X`(F̃ ∗)

)
− d(V`−1, V`)|X`−1(F̃ ∗)||X`(F̃ ∗)|

∣∣∣∣∣∣
≤
∑
F̃ ∗

∣∣∣e(X`−1(F̃ ∗), X`(F̃ ∗)
)
− d(V`−1, V`)|X`−1(F̃ ∗)||X`(F̃ ∗)|

∣∣∣
≤

`−2∏
i=1
|Vi| × ε|V`−1||V`| ,

where in the last estimate we used the ε-regularity of (V`−1, V`) and the obvious up-
per bound on the number of partite isomorphic copies F̃ ∗ of F ∗R. Since ε ≤ γ/2 the
assertion (2.20) follows and concludes the proof of Theorem 2.18.

We close this section by noting that an induced version of Theorem 2.18 can be derived
directly from Theorem 2.18 in a similar way as Corollary 2.17 (we omit the details).
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Corollary 2.19. Let F be a graph with ` vertices. For every γ > 0 there exists ε > 0
such that for every G = (V,E) with |V | = n and every ε-Szemerédi-partition P =
{Vi : i ∈ [t]} with reduced graph R = RG(P, ε) the following is true.
For every labeled copy FR of F contained in a clique K`

R ⊆ R with V (FR) = V (K`
R) =

{i1, . . . , i`}∏
{ij ,ik}∈E(FR)

wR(ij , ik)
∏

{ij ,ik}∈(V (FR)
2 )\E(FR)

(
1− wR(ij , ik)

) ∏
ij∈V (FR)

|Vij |

= N∗F (G[FR])± γ
∏

ij∈V (FR)
|Vij | ,

where N∗F (G[FR]) denotes the number of labeled, induced, partite isomorphic copies of FR
in the induced subgraph G[FR] = G[Vi1 ∪ . . . ∪ Vi` ].

Note that by assumption of Corollary 2.19 and the definition of the reduced graph for
Szemerédi-partitions we require for FR ⊆ R with V (FR) = {i1, . . . , i`}, that (Vij , Vik) is
ε-uniform for every pair {ij , ik} and not only for pairs corresponding to edges of FR.

2.10 The removal lemma for graphs
A direct consequence of the local counting lemma is the so-called removal lemma for
graphs, i.e., Theorem 1.4 for k = 2, which was first proved by Erdős, Frankl, and
Rödl [EFR86]. For completeness we include the short proof of removal lemma for graphs
based on Szemerédi’s regularity lemma and the local counting lemma. We first restate
Theorem 1.4 for k = 2.

Theorem 2.20 (Removal lemma for graphs (Theorem 1.4 for k = 2)). For every graph F
with ` vertices and every η > 0 there exists c > 0 and n0 such that every graph G = (V,E)
on n ≥ n0 vertices with NF (G) < cn`, there exists a subgraph H = (V,E′) such that
NF (H) = 0 and |E \ E′| ≤ η

(n
2
)
.

While the original proof of Ruzsa and Szemerédi was based on an iterated application
of the early version of the regularity lemma, Theorem 2.12, the proof given in [EFR86]
is based on Szemerédi’s regularity lemma, Theorem 2.7. We remark that even in the
triangle case both proofs give essentially the same tower-type dependency between c
and η, i.e., c is a polynomial in 1/T , where T is a tower of 2’s of height polynomial
in 1/η. It is an intriguing open problem to find a proof which gives a better dependency
between c and η.

Proof. Suppose that G = (V,E) is a graph which even after the deletion of any set of at
most η

(n
2
)
edges still contains a copy of F . We will show that such a graph G contains

at least cn` copies of F . For that we apply Szemerédi’s regularity lemma, Theorem 2.7,
with

ε = min
{
η

8`2 ,
ε′

3`2
}
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and
t0 = 5

η
,

where ε′ is given by the local counting lemma applied with F and

γ = 1
3

(
η

4

)e(F )
,

and obtain an ε-Szemerédi-partition P = {Vi : i ∈ [t]} of V . Next we delete all edges
e ∈ E for which at least one of the following holds:

1. e ⊆ Vi for some i ∈ [t],

2. e ∈ E(Vi, Vj) for some 1 ≤ i < j ≤ t such that (Vi, Vj) is not ε-regular,

3. e ∈ E(Vi, Vj) for some 1 ≤ i < j ≤ t such that d(Vi, Vj) ≤ η/2.

Simple calculations show that we delete at most η
(n

2
)
edges in total. Let G′ be the graph,

which we obtain after the deletion of those edges. Due to the assumption on G, the
graph G′ must still contain a copy F0 of F . Therefore the reduced graph R = RG′(P, ε)
must contain a copy of a homomorphic image F ′R of F for which wR(ij , jk) ≥ η/2 for all
{ij , jk} ∈ E(F ′R).
If F ′R is a copy of F , then the local counting lemma, Theorem 2.18, implies that G′

contains, for sufficiently large n at least(
η

2

)e(F ) ⌊n
t

⌋`
− γ

⌈
n

t

⌉`
≥ 1

2

(
η

2

)e(F ) (n
t

)`
copies of F . Consequently, NF (G) ≥ NF (G′) ≥ cn`, for some c only depending on η
and TSz(min{η/(8`2), ε′/(3`2)}, 1/η), where ε′ only depends on F and η. In other words,
there exists such a c which only depends on the graph F and η as claimed.
The case when F ′R is not isomorphic to F is very similar. For example, we may subdi-

vide every vertex class Vi into ` classes, Vi,1∪. . .∪Vi,` = Vi, and obtain a refinement Q. It
follows from the definition of ε-uniform pair, that if (Vi, Vj) is ε-regular, then (Vi,a, Vj,b)
is (3`2ε)-uniform for any a, b ∈ [`] and d(Vi,a, Vj,b) ≥ d(Vi, Vj) − 2`2ε. Since F ′R was
contained in R, the reduced graph S = SG′(Q, 3`2ε) must contain a full copy FR of F
for which wR(ij , jk) ≥ η/2− 2`2ε ≥ η/4 for all {ij , jk} ∈ E(FR) and the local counting
lemma yields NF (G) ≥ cn` for

c = 1
2``

(
η

4

)e(F )
TSz

(
min

{
η

8`2 ,
ε′

3`2
}
,

1
η

)−`
.

As we discussed in Section 1.2.4 generalizations of Theorem 2.20 for graphs were
obtained by several authors. In particular, the regularity lemma of Alon, Fischer, Kriv-
elevich, and M. Szegedy, Theorem 2.10, was introduced to prove the natural analog of
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the removal lemma for induced copies of F . In fact, the proof of this statement is already
considerably more involved. Later, Alon and Shapira [AS08b, AS08a] generalized those
results by replacing the fixed graph F by a possibly infinite family of graphs F .

Theorem 2.21. For every (possibly infinite) family of graphs F and every η > 0 there
exist constants c > 0, C > 0, and n0 such that the following holds. Suppose G = (V,E)
is a graph on n ≥ n0 vertices. If for every ` = 1, . . . , C and every F ∈ F on ` vertices
we have N∗F (G) ≤ cn`, then there exists a graph H = (V,E′) on the same vertex set as G
such that |E4E′| ≤ η

(n
2
)
and N∗F (H) = 0 for every F ∈ F .

Theorem 2.21 is the special case of Theorem 1.19 for k = 2 and the proof of Alon and
Shapira of Theorem 2.21 relied on Theorem 2.10. An alternative proof of Theorem 2.21
was found by Lovász and B. Szegedy in [LS05]. This new proof was based on the limit
approach for sequences of dense graphs of those authors [LS06], which can be viewed
as an infinitary iteration of Theorem 2.1. We will briefly explain this approach in the
next section. The proof of the generalization of Theorem 2.21 to k-uniform hypergraphs
presented in Chapter 5 followed similar ideas (see also [AT]).

2.11 Graph limits
We first introduced the (weak) regularity lemma of Frieze and Kannan and from an iter-
ated version we deduced Szemerédi’s regularity lemma and the (ε, r)-regularity lemma.
Iterating Szemerédi’s regularity lemma then resulted in the (strong) regularity lemma of
Alon, Fischer, Krivelevich, and M. Szegedy, which was the key ingredient for the proof
of Theorem 2.21.
It seems natural to further iterate any of those regularity lemmas. In fact, this was

studied by Lovász and B. Szegedy [LS06]. Roughly speaking, those authors iterated the
regularity lemma of Frieze and Kannan infinitely often. Below we will briefly outline
some of their ideas. Note that due to the discussion above it does not matter which
regularity lemma we iterate infinitely often, since we “pick up the other ones along the
way”.
Suppose (Gi)i∈N is an infinite sequence of graphs with |V (Gi)| → ∞ and (εi)i∈N is a

sequence of positive reals which tend to 0. Now we may apply Theorem 2.1 with ε1 and
t0 = 1 to every sufficiently large graph Gi of the sequence. This way we obtain for every
such graph Gi an ε1-FK-partition Pi,1 and a reduced graph Ri,1 = RGi(Pi,1). Note that
all those partitions have at most TFK(ε1) parts. Hence, if we discretize the weights of the
reduced graphs Ri,1 by quantities of up to ε1, we note that there are only d1/ε1e(

TFK(ε1)
2 )

different possible reduced graphs. Consequently, there exists a weighted graph R1 with
at most TFK(ε1) vertices such that Ri,1 = R1 for infinitely many choices i ∈ N. In
other words, there exists an infinite subsequence (Gij )j∈N such that for every member
there exists an ε1-FK-partition, which yields R1 as the reduced graph. We rename this
sequence to (G1

i )i∈N and let (P1
i )i∈N be the corresponding sequence of ε1-FK-partitions.

We then repeat the above procedure with ε2 for the infinite subsequence (G1
i )i∈N,

where the ε2-FK-partitions should refine the ε1-FK-partitions. This way we obtain a
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reduced graph R2, an infinite subsequence (G2
i )i∈N of (G1

i )i∈N, and a corresponding
sequence of (P2

i )i∈N of ε2-FK-partitions. Repeating this step for every εj with j ∈ N,
we obtain a sequence of subsequences (Gji )i∈N of graphs and a sequence of reduced
graphs (Rj)j∈N. To avoid sequences of sequences of graphs we may pass to the diagonal
sequence and let (Hj)j∈N = (Gjj)j∈N which is a subsequence of the original sequence of
graphs (Gi)i∈N.
Summarizing the above, we have argued that for every infinite sequence of graphs

(Gi)i∈N with |V (Gi)| → ∞ and every sequence of positive reals (εi)i∈N there exists a
subsequence (Hj)j∈N of (Gi)i∈N, and a sequence of reduced graphs (Rj)j∈N such that
for every j ∈ N and every k ∈ [j] the following holds:

(a ) There exists an εk-FK-partition Pk
j of Hj such that Rk = RHj (Pk

j ) and

(b ) if k < j, then Pk+1
j refines Pk

j .

In some sense the graphs in the sequence (Hj)j∈N become more and more similar, since
they have almost identical FK-partitions for smaller and smaller ε. On the other hand,
they may have very different sizes, which makes it hard to compare them directly. In
order to circumvent that we may scale them all to the same size, by viewing them as
functions on [0, 1]2. We will now make this more precise.
Let Rj be a reduced graph with tj vertices. We split [0, 1] into tj intervals Ij,1 ∪ . . . ∪

Ij,tj = [0, 1] each of size 1/tj . We then define the symmetric, step-function R̂j : [0, 1]2 →
[0, 1] by setting

R̂j(x, y) =
{
wR(k, `), if (x, y) belongs to the interior of Ij,k × Ij,`,
0, otherwise.

Recall that those reduced graphs came from refining partitions (see (b ) above) and it will
be important for us to assume that the partitions Ij,1∪. . .∪Ij,tj and Ij+1,1∪. . .∪Ij+1,tj+1

refine each other in the “same” way. More precisely, we assume that the first tj+1/tj
vertices of Rj+1 correspond in the εj+1-FK-partitions to those classes which were all
contained in the first class of the εj-FK-partitions, while the second set of tj+1/tj vertices
of Rj+1 correspond in the εj+1-FK-partitions to those classes which were all contained
in the second class of the εj-FK-partitions and so on. This way we embedded the
sequence of reduced graphs (Rj)j∈N into the family of symmetric step-functions from
[0, 1]2 → [0, 1]. Similarly, we may embed the graphs from the sequence (Hj)j∈N. Here
for a graph Hj on nj vertices we split [0, 1] into nj intervals Jj,1 ∪ . . . ∪ Jj,nj = [0, 1]
(identified by the vertices of Hj) and we set

Ĥj(x, y) =
{

1, if (x, y) is in the interior of Jj,u × Jj,v and {u, v} ∈ E(Hj),
0, otherwise.

Again we suppose that the labeling of the vertices of Hj is “consistent”, i.e., if u is a
vertex contained in the k-th vertex class of the fixed εj-FK-partition of Hj , then we
impose that Jj,u ⊆ Ij,k.
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After this embedding we can rewrite the property that Rj is the reduced graph of an
εj-FK-partition of Hj , by

sup
U⊆[0,1]

∣∣∣∣ ∫
U×U

Ĥj(x, y)− R̂j(x, y) dxdy
∣∣∣∣ ≤ ε̂j , (2.21)

for some ε̂j which tends to 0 as εj tends to 0. (Note that Ĥj and R̂j are piecewise
linear and, hence, (Lebesgue) measurable on [0, 1]2.) Moreover, we can rephrase the
global counting lemma, Theorem 2.16: Let F be a graph with V (F ) = [`] and let j be
sufficiently large (so that εj is sufficiently small). Then

NF (Hj)
n`j

=
∫

(x1,...,x`)∈[0,1]`

∏
{p,q}∈E(F )

R̂j(xp, xq) dx1 . . . dx` ± γ̂j , (2.22)

where for fixed F we have γ̂j → 0 as εj → 0.
It was proved by Lovász and B. Szegedy in [LS06] that, due to property (b ) above,

the sequence (R̂j)j∈N converges almost everywhere to a measurable, symmetric function
R̂ : [0, 1]2 → [0, 1] and that (2.21) and (2.22) stay valid in the limit. The function R̂ is
called the limit of the sequence (Hj)j∈N.

Theorem 2.22. For every sequence of graphs (Gi)i∈N with |V (Gi)| → ∞ there exists
a subsequence (Hj)j∈N and a sequence of reduced graphs (Rj)j∈N, and a measurable,
symmetric function R̂ : [0, 1]2 → [0, 1] such that

(i ) R̂j converges pointwise almost everywhere to R̂,

(ii )

lim
j→∞

sup
U⊆[0,1]

∣∣∣∣ ∫
U×U

Ĥj(x, y)− R̂(x, y) dxdy
∣∣∣∣ = 0 ,

and

(iii ) for every ` ∈ N and every graph F with V (F ) = [`]

lim
j→∞

NF (Hj)
n`j

=
∫

(x1,...,x`)∈[0,1]`

∏
{p,q}∈E(F )

R̂(xp, xq) dx1 . . . dx` .

The proof of Theorem 2.22 indicated above, essentially follows the lines of the proof of
the implication (a ) ⇒ (b ) of Theorem 2.2 in [LS06] (see Lemma 5.1 and 5.2 in [LS06]).
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3 The weak regularity lemma for
hypergraphs

In this chapter we consider conditions which allow the embedding of linear hypergraphs of
fixed size. In particular, we prove that any k-uniform hypergraph H of positive uniform
density contains all linear k-uniform hypergraphs of a given size (Theorem 1.11).
The main ingredient in the proof of this result is a counting lemma for linear hy-

pergraphs, which establishes that the straightforward extension of graph ε-regularity to
hypergraphs suffices for counting linear hypergraphs.

3.1 Counting lemma for linear hypergraphs
A key tool we use in this chapter is the so-called weak hypergraph regularity lemma. This
result is a straightforward extension of Theorem 1.2. LetH(k) be a k-uniform hypergraph
and let W1, . . . ,Wk be mutually disjoint non-empty subsets of V (H(k)). We denote by
d(W1, . . . ,Wk) the density of the k-partite induced sub-hypergraph H(k)[W1, . . . ,Wk] of
H(k), defined by

d(W1, . . . ,Wk) = e(W1, . . . ,Wk)
|W1| · . . . · |Wk|

.

We say the k-tuple (V1, . . . , Vk) of mutually disjoint subsets V1, . . . , Vk ⊆ V is (ε, d)-
regular, for positive constants ε and d, if

|dH(W1, . . . ,Wk)− d| ≤ ε

for all k-tuples of subsetsW1 ⊆ V1, . . . ,Wk ⊆ Vk satisfying |W1|·. . .·|Wk| ≥ ε|V1|·. . .·|Vk|.
Note, in particular, that if (V1, . . . , Vk) is (ε, d)-regular, then∣∣H(k)[W1, . . . ,Wk]− d|W1| · . . . · |Wk|

∣∣ ≤ ε|V1| · . . . · |Vk| (3.1)

holds for any W1 ⊆ V1, . . . ,Wk ⊆ Vk. We say the k-tuple (V1, . . . , Vk) is ε-regular if it is
(ε, d)-regular for some d ≥ 0. The weak regularity lemma then states the following.

Theorem 3.1. For all integers k ≥ 2 and t0 ≥ 1, and every ε > 0, there exist T0 =
T0(k, t0, ε) and n0 = n0(k, t0, ε) so that for every k-uniform hypergraph H(k) on n ≥ n0
vertices, there exists a partition V = V0 ∪ V1 ∪ . . . ∪ Vt so that the following hold:

(i ) t0 ≤ t ≤ T0,

(ii ) |V0| ≤ εn and |V1| = · · · = |Vt|, and
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3 The weak regularity lemma for hypergraphs

(iii ) for all but at most ε
(t
k

)
sets {i1, . . . , ik} ⊆ [t], the k-tuple (Vi1 , . . . , Vik) is ε-regular.

The proof of Theorem 3.1 follows the lines of the original proof of Szemerédi [Sze78]
(for details see e.g. [Chu91, FR92, Ste90]).
A key feature of the partition provided by Szemerédi’s regularity lemma is the so-

called local counting lemma (see Theorem 2.18). This lemma provides good estimates
on the number of subgraphs of a fixed isomorphism type in an appropriate collection
of ε-regular pairs. To be precise, let F be a graph (hypergraph) on the vertex set
[`] = {1, . . . , `} and let G be an `-partite graph (hypergraph) with vertex partition
V (G) = V1 ∪ . . . ∪ V`. A copy F0 of F in G, on the vertices v1 ∈ V1, . . . , v` ∈ V`, is
said to be partite-isomorphic to F if i 7→ vi defines a homomorphism. The counting
lemma for graphs asserts that if (Vi, Vj) is (ε, dij)-regular, where d`ij � ε > 0 whenever
{i, j} ∈ E(F ), then the number of labeled partite-isomorphic copies F0 of F inG is within
the interval (1 ± γ)

∏
{i,j}∈E(F ) dij

∏
i∈[`] |Vi|, where γ → 0 as ε → 0. It is known that

this fact does not extend to k-uniform hypergraphs (k ≥ 3), and that stronger regularity
lemmas are needed in that case (see, e.g., [Gow07, NRS06a, RS07b, RS07c, Tao06b] and
Chapter 4). However, weak regularity is sufficient for estimating the number of linear
sub-hypergraphs in an appropriately ε-regular environment.

Lemma 3.2 (Counting lemma for linear hypergraphs). For all integers ` ≥ k ≥ 2 and
every γ, d0 > 0, there exist ε = ε(`, k, γ, d0) > 0 and m0 = m0(`, k, γ, d0) so that the
following holds.
Let F (k) = ([`], E(F (k))) ∈ L

(k)
` and let H(k) = (V1 ∪ . . . ∪ V`, E) be an `-partite,

k-uniform hypergraph where |V1|, . . . , |V`| ≥ m0. Suppose, moreover, that for all edges
f ∈ E(F (k)), the k-tuple (Vi)i∈f is (ε, df )-regular, where df ≥ d0. Then the number of
partite-isomorphic copies of F (k) in H(k) is within the interval

(1± γ)
∏

f∈E(F (k))

df
∏
i∈[`]
|Vi| .

Proof. The proof follows the lines of the proof of Theorem 2.18. Let integers ` ≥ k ≥ 2
and γ, d0 > 0 be fixed. We shall prove, by induction on |E(F (k))|, the number of edges
of F (k), that ε = γ(d0/2)|E(F (k))| will suffice to count copies of F (k) (with ‘precision’ γ),
provided m0 is large enough. (In this way, ε = γ(d0/2)(

`
2) works for all F (k) ∈ L

(k)
` .)

If |E(F (k))| = 0 or |E(F (k))| = 1, the result is trivial. It is also easy to see that the
result holds whenever F (k) consists of pairwise disjoint edges, since then the number of
partite-isomorphic copies of F (k) in H(k) is within

∏
f∈E(F (k))

(df ± ε)
∏
i∈[`]
|Vi| = (1± (ε/d0))|E(F (k))| ∏

f∈E(F (k))

df
∏
i∈[`]
|Vi|

= (1± γ)
∏

f∈E(F (k))

df
∏
i∈[`]
|Vi| .

Now, generally, take m0 large enough so that we can apply the induction assumption
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3.1 Counting lemma for linear hypergraphs

on |E(F (k))| − 1 edges with precision γ/2 and d0 (and note that ε = γ(d0/2)|E(F (k))| <

(γ/2)(d0/2)|E(F (k))|−1). All copies of various sub-hypergraphs disussed below are tacitly
assumed to be partite-isomorphic.

Let F (k) = ([`], E(F (k))) ∈ L
(k)
` have |E(F (k))| ≥ 2 edges and let H(k) = (V,E) be a

k-uniform hypergraph satisfying the assumptions of Lemma 3.2. Fix an edge e ∈ E(F (k))
and set F (k)

− = ([`], E(F (k)) \{e}) to be the hypergraph obtained from F (k) by removing
the edge e. Moreover, for a copy T (k)

− of F (k)
− in H, we denote by e

T
(k)
−

the unique k-

tuple of vertices which together with T (k)
− forms a copy of F (k) in H(k). Furthermore, let

1E :
(V
k

)
→ {0, 1} be the indicator function of the edge set E of H(k). In this notation,

a copy T
(k)
− of F (k)

− in H(k) extends to a copy of F (k) if, and only if, 1E(e
T

(k)
−

) = 1.

Consequently, summing over all copies T (k)
− of F (k)

− in H(k), we can count the number
#{F (k) ⊆ H(k)} of copies of F (k) in H(k) by

#{F (k) ⊆ H(k)} =
∑

T
(k)
− ⊆H(k)

1E(e
T

(k)
−

)

=
∑

T
(k)
− ⊆H(k)

(de + 1E(e
T

(k)
−

)− de)

= de ×#{F (k)
− ⊆ H(k)}+

∑
T

(k)
− ⊆H(k)

(1E(e
T

(k)
−

)− de)

= (1± γ
2 )

∏
f∈E(F (k))

df
∏
i∈[`]
|Vi|+

∑
T

(k)
− ⊆H(k)

(1E(e
T

(k)
−

)− de) , (3.2)

where we used the induction assumption for F (k)
− for the last estimate.

It is left to bound the error term
∑
T

(k)
− ⊆H(k)(1E(e

T
(k)
−

)−de) in (3.2). For that, we will

appeal to the regularity of (Vi)i∈e. Let F (k)
∗ = F (k)[[`]\e] be the induced sub-hypergraph

of F (k) obtained by removing the vertices of e and all edges of F (k) intersecting e. For
a copy T (k)

∗ of F (k)
∗ in H(k), let ext(T (k)

∗ ) be the set of k-tuples K ∈
∏
i∈e Vi such that

V (T (k)
∗ ) ∪ K spans a copy of T (k)

− in H(k). Since F (k) is a linear hypergraph, we have
|f ∩ e| ≤ 1 for every edge f of F (k)

− . Hence, for every i ∈ e, there exists a subset
W T

(k)
∗

i ⊆ Vi such that
ext(T (k)

∗ ) =
∏
i∈e

W T
(k)
∗

i .

Indeed, for every i ∈ e, the set W T
(k)
∗

i consists of those vertices v ∈ Vi with the property
that V (T (k)

∗ ) ∪ {v} spans a copy of F (k) induced on V (F (k)
∗ ) ∪ {i} in H(k). With this
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3 The weak regularity lemma for hypergraphs

notation, we can bound the error term in (3.2) as follows:∣∣∣∣ ∑
T

(k)
− ⊆H(k)

(1E(e
T

(k)
−

)− de)
∣∣∣∣ ≤ ∑

T
(k)
∗ ⊆H(k)

∣∣∣∣ ∑
K∈ext(T (k)

∗ )

(1E(K)− de)
∣∣∣∣

=
∑

T
(k)
∗ ⊆H(k)

∣∣∣∣∑{
(1E(K)− de) : K ∈

∏
i∈e

W T
(k)
∗

i

}∣∣∣∣
≤

∑
T

(k)
∗ ⊆H(k)

ε
∏
i∈e
|Vi| ,

where the ε-regularity was used for the last estimate. Indeed, for a fixed copy T (k)
∗ ⊆

H(k), we have∣∣∣∣∑{
(1E(K)− de) : K ∈

∏
i∈e

W T
(k)
∗

i

}∣∣∣∣ =
∣∣∣∣∣∣H(k) ∩

∏
i∈e

W T
(k)
∗

i

∣∣− de∏
i∈e

∣∣W T
(k)
∗

i

∣∣∣∣∣∣,
so that we may appeal to (3.1). Now, because of the choice of ε we have∣∣∣∣ ∑

T
(k)
− ⊆H(k)

(1E(eT−)− de)
∣∣∣∣ ≤ ε ∑

T
(k)
∗ ⊆H(k)

∏
i∈e
|Vi|

≤ ε
∏
i∈[`]
|Vi|

≤ γ

2
∏

f∈E(F (k))

df
∏
i∈[`]
|Vi| ,

and Lemma 3.2 follows from (3.2).

3.2 Quasi-random hypergraphs
In this section, we prove Theorem 1.8 according to the following outline. We first observe
that a (%, d)-quasi-random (k-uniform) hypergraph H(k) is (ε, d)-regular w.r.t. any dis-
joint family U1, . . . , Uk ⊂ V (H(k)) of large and equal-sized sets. As such, any partition
U1 ∪ . . . ∪ U` within V (H(k)) of ` ≥ k large equal-sized sets will satisfy the hypothesis
of the counting lemma (Lemma 3.2), and will therefore contain the “right” number of
copies of any hypergraph F (k) ∈ L

(k)
` . Applying this argument to a partition chosen at

random then yields the “right” number of copies of F (k) in H(k).

Proof of Theorem 1.8. Let k ≥ 2, d, γ > 0 and F ∈ L (k) on the vertex set {1, . . . , `} be
given. We set

ε = ε(`, k, γ/2, d) and % = ε2

`(2k)k (3.3)

and let n ≥ m0(`, k, γ/2, d)/% be sufficiently large, where the constants ε(`, k, γ/2, d) and
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3.2 Quasi-random hypergraphs

m0(`, k, γ/2, d) are given by Lemma 3.2. Let H(k) be a (%, d)-quasi-random k-uniform
hypergraph on n vertices.
Following the outline (above), let Ui ⊂ V , 1 ≤ i ≤ k, be mutually disjoint sets of

size |Ui| = m ≥ %n/ε. We claim that (U1, . . . , Uk) is (ε, d)-regular w.r.t. H(k). Indeed,
let Vi ⊆ Ui, 1 ≤ i ≤ k, be given so that |V1| · . . . · |Vk| ≥ εmk. (Note, in particular,
that this implies |Vi| ≥ εm ≥ %n for all 1 ≤ i ≤ k.) To show that |H(k)[V1, . . . , Vk]| =
(d± ε)|V1| · . . . · |Vk|, we observe, from inclusion-exclusion, that

|H(k)[V1, . . . , Vk]| =
∑
I⊆[k]

(−1)|I|
∣∣∣H(k)

[ ⋃
j∈[k]\I

Vj
]∣∣∣.

The (%, d)-quasi-randomness of H(k) (together with |Vi| ≥ %n for all 1 ≤ i ≤ k) implies

∣∣∣H(k)[V1, . . . , Vk]
∣∣∣ =

∑
I⊆[k]

(−1)|I|(d± %)
(∣∣⋃

j∈[k]\I Vj
∣∣

k

)

= d
∑
I⊆[k]

(−1)|I|
(∣∣⋃

j∈[k]\I Vj
∣∣

k

)
± %

∑
I⊆[k]

(∣∣⋃
j∈[k]\I Vj

∣∣
k

)

= d
∑
I⊆[k]

(−1)|I|
(∣∣⋃

j∈[k]\I Vj
∣∣

k

)
± %(2k)kmk

= d|V1| · . . . · |Vk| ± %(2k)kmk

=
(
d± %(2k)k/ε

)
|V1| · . . . · |Vk|

= (d± ε)|V1| · . . . · |Vk| .

To finish the proof of Theorem 1.8, consider an `-tuple of mutually disjoint sets
U1, . . . , U` with |U1| = · · · = |U`| = m, where m is a fixed integer satisfying n/` ≥
m ≥ %n/ε. Then every k-tuple I ∈

([`]
k

)
satisfies that (Ui)i∈I is (ε, d)-regular (as

shown above), and so by the choice of ε in (3.3), we can apply the counting lemma
for linear hypergraphs (Lemma 3.2) to U1 ∪ . . . ∪ U`. Consequently, H(k)[U1, . . . , U`]
contains (1 ± γ/2)de(F (k))m` partite-isomorphic copies of F (k) (recall V (F (k)) = [`]).
Now, on the one hand, we note that there are

(n
m

)(n−m
m

)
. . .
(n−(`−1)m

m

)
choices for the

partition U1 ∪ . . . ∪ U`. On the other hand, for each `-tuple of vertices (u1, . . . , u`) in
V (H(k)), there are

( n−`
m−1

)(n−m−(`−1)
m−1

)
. . .
(n−(`−1)m−1

m−1
)
such partitions U1 ∪ . . . ∪ U` for

which (u1, . . . , u`) ∈ U1 × · · · × U`. Consequently, the number of labeled copies of F (k)

in H(k) is given by

(1± γ/2)de(F (k))m`

(n
m

)(n−m
m

)
. . .
(n−(`−1)m

m

)( n−`
m−1

)(n−m−(`−1)
m−1

)
. . .
(n−(`−1)m−1

m−1
)

= (1± γ/2)de(F (k)) n!
(n− `)! = (1± γ)de(F (k))n`,

where for the last step we use that n is sufficiently large.
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3 The weak regularity lemma for hypergraphs

3.3 Universal hypergraphs

In this section, we prove Theorem 1.11. The proof relies on the weak hypergraph reg-
ularity lemma, which allows us to locate a sufficiently dense and ε-regular `-partite
sub-hypergraph in any (%, d)-dense hypergraph. The (ξ,L (k)

` )-universality then follows
from Lemma 3.2.

Proof of Theorem 1.11. Let integers ` ≥ k ≥ 2 and d > 0 be given. To define the
promised constants % and ξ, we first consider a few auxiliary constants. Set d0 = d/(4k!)
and q = d1/d0e and let s = rk(q, `) be the (k-uniform) Ramsey number for q and `,
i.e., s is the smallest integer s.t. any 2-coloring of E(K(k)

s ) yields a copy of K(k)
q in the

first color, or a copy of K(k)
` in the second color. Set ε = min

{
1/(2

(s
k

)
), ε(`, k, 1/2, d0)

}
,

where ε(`, k, 1/2, d0) is given by Lemma 3.2 applied with `, k, γ = 1/2, and d0. Moreover,
let T0 = T0(k, s, ε) be given by Theorem 3.1 applied with k, t0 = s, and ε. We now define
the promised constants as

% = q

T0
and ξ = d

(`
2)

0
2T `0

,

and let n0 be sufficiently large.
Let H(k) be a (%, d)-dense k-uniform hypergraph with vertex set V . The weak hyper-

graph regularity lemma yields a partition V0 ∪V1 ∪ . . .∪Vt, s ≤ t ≤ T0 (s and T0 defined
above) which satisfies properties (ii ) and (iii ) of Theorem 3.1 (with ε defined above).
We consider the following auxiliary, so-called reduced hypergraph, R(k) = ([t], ER), where
e ∈

([t]
k

)
is an edge in ER if, and only if, (Vi)i∈e is an ε-regular k-tuple. Hence,

|ER| ≥ (1− ε)
(
t

k

)
> (1− 1/

(s
k

)
)
(
t

k

)
≥ ex(t,K(k)

s ),

where ex(t,K(k)
s ) is the Turán number for K(k)

s , i.e., the largest number of k-tuples
among all K(k)

s -free k-uniform hypergraphs on t vertices (the inequality we used above
is well-known). Consequently, R(k) contains a copy of K(k)

s , and we denote this copy
by R

(k)
s ⊆ R(k). Now, we 2-color the edges of R(k)

s according to the density of the
corresponding k-tuple. More precisely, we color the edge e = {i1, . . . , ik} “sparse” if
d(Vi1 , . . . , Vik) ≤ d0, and we color it “dense” otherwise. We now argue that R(k)

s does
not contain a “sparse" copy of K(k)

q .

Indeed, suppose R(k)
s does contain a “sparse” clique K(k)

q . Let i1, . . . , iq be the vertices
of this clique, and set U =

⋃q
j=1 Vij . Since i1, . . . , iq spanned a “sparse” clique in R(k)

s ,
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the number of edges e(U) of H(k) induced on U can be bounded from above by

e(U) ≤ d0

(
q

k

)(
n

t

)k
+ q

(
n/t

2

)(
qn/t

k − 2

)

<

(
d0 + 1

q

)
qk
(
n

t

)k
≤ d(qn/t)k

2k!

< d

(
|U |
k

)
, (3.4)

where we used the choice of d0 and q and the fact that n is sufficiently large. Clearly, the
estimate in (3.4) violates the (%, d)-denseness of H(k), and so R(k)

s contains no “sparse”
clique K(k)

q .
By the choice of s = rk(q, `), R

(k)
s must contain a “dense” clique K(k)

` . Let i1, . . . , i` be
the vertex set of that clique. From the preparation above, H(k)[Vi1 , . . . , Vis ] satisfies the
hypothesis of the counting lemma for linear hypergraphs (Lemma 3.2), and therefore,
H(k) ⊇ H(k)[Vi1 , . . . , Vis ] contains at least

d
e(S)
0
2

(
n

t

)`
≥ d

(`
2)

0
2T `0

n` = ξn`

copies of any S ∈ L
(k)
` , making H (ξ,L (k)

` )-universal.

3.4 Non-universal hypergraphs

In this section, we deduce Corollary 1.12 from Theorem 1.11, according to the following
outline. Since the given hypergraph H(k) is not universal (for linear hypergraphs),
Theorem 1.11 implies that there must be a subset U ⊆ V , of linear size, containing
only “few” edges. We apply this observation repeatedly, obtaining a partition V1 ∪ . . .∪
Vt of nearly the entire vertex set, where H(k)[Vi] is “sparse” for every i ∈ [t]. This,
however, implies that the number of edges of H(k) intersecting at least two classes from
the partition must be slightly larger than expected. Finally, this “extra” density will
“survive” when we distribute the remaining vertices of H(k) into V1, . . . , Vt.

Proof of Corollary 1.12. Let integers ` ≥ k ≥ 2 and d > 0 be fixed. To define the
promised constants t, β and ξ, we first consider a few auxiliary constants. Set c = d/4.
Theorem 1.11 yields constants %′ = %′(`, k, c), ξ′ = ξ′(`, k, c), and n′0 = n′0(`, k, c). Set

σ = min
{

(%′)2,
c2

16k2

}
. (3.5)
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We now define the promised constants as

t =
⌈

1−
√
σ

σ

⌉
, β = d

4tk−1 and ξ = ξ′σ`/2

and let n0 ≥ max{n′0/
√
σ, t/σ, 2kt} be sufficiently large.

Note that it suffices to prove Corollary 1.12 for hypergraphs H(k) for which n is a
multiple of t. Indeed, otherwise we could first remove constantly many (x = n (mod t))
vertices from H(k). For the resulting hypergraph H ′, we would obtain τt( ˆH(k)) ≥ d +
β−o(1), and so distributing the removed x vertices appropriately into the corresponding
cut of ˆH(k) implies τt(H(k)) ≥ d+ β − o(1), where o(1) tends to 0 as n→∞.
So, let H(k) be a k-uniform hypergraph with vertex set V and |V | = n = mt ≥ n0

(for some m ∈ N) with at least d
(n
k

)
edges which is not (ξ,L (k)

` )-universal. Because of
the choice of ξ, we infer from Theorem 1.11 that no subset W ⊆ V with |W | ≥

√
σn

is (
√
σ, c)-dense. In other words, every such W contains a subset W ′ ⊆ W , |W ′| ≥√

σ|W | ≥ σn such that e(W ′) ≤ c
(|W ′|
k

)
. In fact, a simple averaging argument shows

that there must be such a set W ′ with |W ′| = bσnc. Repeatedly selecting disjoint
such W ′ yields a vertex partition V = V0 ∪ V1 ∪ . . . ∪ Vt such that for all i ∈ [t],

|Vi| = bσnc and e(Vi) ≤ c
(
σn

k

)
, and |V0| ≤ (

√
σ + σ)n .

Indeed such a partition exists, since (t− 1)bσnc < (1−
√
σ)n (owing to the choice of t)

and tbσnc ≥ tσn− t ≥ (1−
√
σ)n− σn (owing to the choices of t and n0).

We now redistribute the vertices of V0 among the classes V1, . . . , Vt and obtain a
partition U1 ∪ . . . ∪ Ut = V such that, for each i ∈ [t], |Ui| = m = n/t and

e(Ui) ≤ c
(
σn

k

)
+ |V0|

t

(
m

k − 1

)
≤ c

(
m

k

)
+ (
√
σ + σ)m

(
m

k − 1

)
.

Because of (3.5), we have (
√
σ + σ)k ≤ c/2, and so

eH(Ui) ≤
(
c+ (

√
σ + σ)k m

m− k + 1

)(
m

k

)
≤ 2c

(
m

k

)
,

where we also used that m = n/t ≥ 2k. Consequently, the number of edges which are
not completely contained in any one of the sets Ui is at least d

(n
k

)
− 2ct

(m
k

)
, and so

τt(H(k)) ≥
∣∣E(H(k)) \

⋃t
i=1

(Ui
k

)∣∣(n
k

)
− t
(m
k

) ≥
d
(n
k

)
− 2ct

(m
k

)(n
k

)
− t
(m
k

) ≥ d+ β , (3.6)

where we used the choice of c = d/4 and β = d/(4tk−1) and the fact that n is sufficiently
large for the last inequality.
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4 Strong regular partitions of hypergraphs

In this chapter we consider two extensions of Theorem 1.2 to hypergraphs (see Theo-
rem 4.12 and Theorem 4.15).

4.1 Statements of the regularity lemmas
For U ⊆ V (H(k)), we denote by H(k)[U ] the sub-hypergraph of H(k) induced on U (i.e.
H(k)[U ] = H(k) ∩

(U
k

)
). A k-uniform clique of order j, denoted by K(k)

j , is a k-uniform
hypergraph on j ≥ k vertices consisting of all

(j
k

)
different k-tuples.

In this chapter `-partite, j-uniform hypergraphs play a special rôle, where j ≤ `.
Given pairwise disjoint vertex sets V1, . . . , V`, we denote by K

(j)
` (V1, . . . , V`) the complete

`-partite, j-uniform hypergraph (i.e., the family of all j-element subsets J ⊆
⋃
i∈[`] Vi

satisfying |Vi ∩ J | ≤ 1 for every i ∈ [`]). If |Vi| = m for every i ∈ [`], then an (m, `, j)-
hypergraph H(j) on V1 ∪ · · · ∪ V` is any subset of K(j)

` (V1, . . . , V`). Note that the vertex
partition V1∪· · ·∪V` is an (m, `, 1)-hypergraph H(1). (This definition may seem artificial
right now, but it will simplify later notation.) For j ≤ i ≤ ` and set Λi ∈

([`]
i

)
, we

denote by H(j)[Λi] = H(j)[⋃
λ∈Λi

Vλ
]
the sub-hypergraph of the (m, `, j)-hypergraph

H(j) induced on
⋃
λ∈Λi

Vλ.
For an (m, `, j)-hypergraph H(j) and an integer j ≤ i ≤ `, we denote by Ki(H(j)) the

family of all i-element subsets of V (H(j)) which span complete sub-hypergraphs in H(j)

of order i. Note that |Ki(H(j))| is the number of all copies of K(j)
i in H(j).

Given an (m, `, j − 1)-hypergraph H(j−1) and an (m, `, j)-hypergraph H(j) satisfying
V (H(j)) ⊆ V (H(j−1)), we say an edge J of H(j) belongs to H(j−1) if J ∈ Kj(H(j−1)),
i.e., J corresponds to a clique of order j in H(j−1). Moreover, H(j−1) underlies H(j) if
H(j) ⊆ Kj(H(j−1)), i.e., every edge of H(j) belongs to H(j−1). This brings us to one of
the main concepts of this chapter, the notion of a complex.
Definition 4.1 ((m, `, h)-complex). Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An
(m, `, h)-complex H is a collection of (m, `, j)-hypergraphs {H(j)}hj=1 such that

(a ) H(1) is an (m, `, 1)-hypergraph, i.e., H(1) = V1 ∪ · · · ∪ V` with |Vi| = m for i ∈ [`],
and

(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

Remark 4.2. We may also define hypergraphs and complexes in the same way for un-
derlying vertex sets V1, . . . , V` with different cardinalities. In such a case we will drop
the m and say H(j) is an (`, j)-hypergraph or H is an (`, h)-complex.
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4 Strong regular partitions of hypergraphs

4.1.1 Regular complexes and partitions

We begin with a notion of relative density of a j-uniform hypergraph w.r.t. (j − 1)-
uniform hypergraph on the same vertex set.
Definition 4.3 (relative density). Let H(j) be a j-uniform hypergraph and let H(j−1)

be a (j − 1)-uniform hypergraph on the same vertex set. We define the density of H(j)

w.r.t. H(j−1) as

d
(
H(j)∣∣H(j−1)) =


|H(j)∩Kj(H(j−1))|
|Kj(H(j−1))| if

∣∣∣Kj(H(j−1))
∣∣∣ > 0

0 otherwise .

We now define a notion of regularity of an (m, j, j)-hypergraph with respect to an
(m, j, j − 1)-hypergraph.
Definition 4.4. Let reals ε > 0 and dj ≥ 0 be given along with an (m, j, j)-hypergraph
H(j) and an underlying (m, j, j − 1)-hypergraph H(j−1). We say H(j) is (ε, dj)-regular
w.r.t. H(j−1) if whenever Q(j−1) ⊆ H(j−1) satisfies∣∣Kj(Q(j−1))

∣∣ ≥ ε∣∣Kj(H(j−1))
∣∣ ,

then
d
(
H(j)∣∣Q(j−1)) = dj ± ε .

Next we extend the notion of (ε, dj)-regularity from (m, j, j)-hypergraphs to (m, `, j)-
hypergraphs H(j).
Definition 4.5 ((ε, dj)-regular hypergraph). A (m, `, j)-hypergraph H(j) is (ε, dj)-
regular w.r.t. an (m, `, j − 1)-hypergraph H(j−1) if for every Λj ∈

([`]
j

)
the restric-

tion H(j)[Λj ] = H(j)[⋃
λ∈Λj

Vλ
]
is (ε, dj)-regular w.r.t. to the restriction H(j−1)[Λj ] =

H(j−1)[⋃
λ∈Λj

Vλ
]
.

We sometimes write ε-regular to mean
(
ε, d
(
H(j)∣∣H(j−1)))-regular.

Finally, we close this section with the notion of a regular complex.
Definition 4.6 ((ε,d)-regular complex). Let ε > 0 and d = (d2, . . . , dh) be a vector
of non-negative reals. We say an (m, `, h)-complex H = {H(j)}hj=1 is (ε,d)-regular if
H(j) is (ε, dj)-regular w.r.t. H(j−1) for every j = 2, . . . , h.
The regularity lemmas for k-uniform hypergraphs which we prove in this chapter

provide a structured family of partitions P = {P(1), . . . ,P(k−1)} of vertices, pairs, . . .,
and (k − 1)-tuples of some vertex set. We now discuss the structure of these partitions
following the approach of [RS04]. First we define the refinement of a partition.
Definition 4.7 (refinement). Suppose A ⊇ B are sets, A is a partition of A, and B
is a partition of B. We say A refines B and write A ≺ B if for every A ∈ A there
either exists a B ∈ B such that A ⊆ B or A ⊆ A \B.
Let k be a fixed integer and V be a set of vertices. Throughout this chapter we require
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4.1 Statements of the regularity lemmas

a family of partitions P = {P(1), . . . ,P(k−1)} on V to satisfy properties which we are
going to describe below (see Definition 4.8).
Let P(1) = {V1, . . . , V|P(1)|} be a partition of V . For every 1 ≤ j ≤ k let Crossj(P(1))

be the family of all crossing j-tuples J , i.e., the set of j-tuples which satisfy |J ∩ Vi| ≤ 1
for every Vi ∈P(1).
Suppose that partitions P(i) of Crossi(P(1)) into (i, i)-hypergraphs have been defined

for 1 ≤ i ≤ j − 1. Then for every (j − 1)-tuple I in Crossj−1(P(1)) there exist a unique
P (j−1) = P (j−1)(I) ∈ P(j−1) so that I ∈ P (j−1). Moreover, for every j-tuple J in
Crossj(P(1)) we define the polyad of J

P̂ (j−1)(J) =
⋃{

P (j−1)(I) : I ∈
(

J

j − 1

)}
.

In other words, P̂ (j−1)(J) is the unique collection of j partition classes of P(j−1) in
which J spans a copy of K(j−1)

j . Observe that P̂ (j−1)(J) can be viewed as a (j, j − 1)-
hypergraph, i.e., a j-partite, (j − 1)-uniform hypergraph. More generally, for 1 ≤ i < j,
we set

P̂ (i)(J) =
⋃{

P (i)(I) : I ∈
(
J

i

)}
and P (J) =

{
P̂ (i)(J)

}j−1
i=1 . (4.1)

Next, we define P̂(j−1) the family of all polyads

P̂(j−1) =
{
P̂ (j−1)(J) : J ∈ Crossj(P(1))

}
.

Note that P̂ (j−1)(J) and P̂ (j−1)(J ′) are not necessarily distinct for different j-tuples J
and J ′. However, we view P̂(j−1) as a set and, consequently, {Kj(P̂ (j−1)) : P̂ (j−1) ∈
P̂(j−1)} is a partition of Crossj(P(1)). The structural requirement on the partition
P(j) of Crossj(P(1)) we have in this chapter is

P(j) ≺ {Kj(P̂ (j−1)) : P̂ (j−1) ∈ P̂(j−1)} . (4.2)

In other words, we require that the set of cliques spanned by a polyad in P̂(j−1) is sub-
partitioned in P(j) and every partition class in P(j) belongs to precisely one polyad
in P̂(j−1). Note, that due to (4.2) we inductively infer that P (J) defined in (4.1) is a
(j, j − 1)-complex.
Throughout this chapter we also want to have control over the number of partition

classes in P(j), and more specifically, over the number of classes contained in Kj(P̂ (j−1))
for a fixed polyad P̂ (j−1) ∈ P̂(j−1). We render this precisely in the following definition.
Definition 4.8 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is an
integer and a = (a1, . . . , ak−1) is a vector of positive integers. We say P = P(k−1,a) =
{P(1), . . . ,P(k−1)} is a family of partitions on V , if it satisfies the following:

(i ) P(1) is a partition of V into a1 classes,
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4 Strong regular partitions of hypergraphs

(ii ) P(j) is a partition of Crossj(P(1)) satisfying:

P(j) refines {Kj(P̂ (j−1)) : P̂ (j−1) ∈ P̂(j−1)} and∣∣{P (j) ∈P(j) : P (j) ⊆ Kj(P̂ (j−1))
}∣∣ = aj for every P̂ (j−1) ∈ P̂(j−1) .

Moreover, we say P = P(k − 1,a) is t-bounded, if max{a1, . . . , ak−1} ≤ t.
It is easy to see that for a t-bounded family of partitions P(k − 1,a) and an integer j,
2 ≤ j ≤ k − 1, we have

|P̂(j−1)| =
(
a1
j

) j−1∏
h=2

a
(j

h)
h ≤ t2k

. (4.3)

We now combine Definition 4.7 and Definition 4.8 and define the refinement of a family
of partitions.
Definition 4.9 (refinement of families). Suppose P = P(k − 1,aP) and R =
R(k − 1,aR) are families of partitions on the same vertex set V . We say P refines R
and write P ≺ R, if P(j) ≺ R(j) (cf. Definition 4.7) for every j ∈ [k − 1].

4.1.2 Hypergraph regularity lemmas
In this chapter we prove two hypergraph regularity lemmas (and corresponding count-
ing lemmas), which may be viewed as strengthened versions of the hypergraph regular-
ity lemma from [RS04]. Those new lemmas were already applied in [ARS07, CFKO,
NRS06b, NORS08, RSST07]. As in Szemerédi’s regularity lemma, such hypergraph reg-
ularity lemmas should ensure the existence of partitions of the edge set of a k-uniform
hypergraph which satisfy certain properties. Besides the structural conditions discussed
in the last section the partitions ensured by the main theorems in this chapter will satisfy
two more properties which we define below. More specifically, the family of partitions P
have to satisfy properties analogous to (i ) and (ii ) of Theorem 1.2. We first extend the
notion of equitability.
Definition 4.10 ((η, ε,a)-equitable). Suppose V is a set of n vertices, η and ε are
positive reals, a = (a1, . . . , ak−1) is a vector of positive integers, and a1 divides n.
We say a family of partitions P = P(k − 1,a) on V (as defined in Definition 4.8) is

(η, ε,a)-equitable if it satisfies the following:

(a )
∣∣(V
k

)
\ Crossk(P(1))

∣∣ ≤ η(nk),
(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |Vi| = |V |/a1 for i ∈ [a1],

and

(c ) for every k-tuple K ∈ Crossk(P(1)) the following holds: P (K) = {P̂ (j)}k−1
j=1

(cf. (4.1)) is an (ε,d)-regular (n/a1, k, k−1)-complex, where d = (1/a2, . . . , 1/ak−1).

Next, we extend (ii ) of Theorem 1.2. In this chapter we consider two possible exten-
sions, which give rise to the two different regularity lemmas below.
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4.1 Statements of the regularity lemmas

Definition 4.11 (perfectly ε-regular). Suppose ε is some positive real. Let G(k) be a
k-uniform hypergraph with vertex set V and P = P(k− 1,a) be a family of partitions
on V . We say G(k) is perfectly ε-regular w.r.t. P, if for every P̂ (k−1) ∈ P̂(k−1) we have
that G(k) ∩ Kk(P̂ (k−1)) is ε-regular w.r.t. P̂ (k−1).
The following theorem is one of the two main results in this chapter.

Theorem 4.12 (Regular approximation lemma). Let k ≥ 2 be a fixed integer. For
all positive constants η and ν, and every function ε : Nk−1 → (0, 1] there are inte-
gers tThm.4.12 and nThm.4.12 so that the following holds.
For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ nThm.4.12 and (tThm.4.12)!

dividing n there exist a k-uniform hypergraph G(k) on the same vertex set and a family
of partitions P = P(k − 1,aP) so that
(i ) P is (η, ε(aP),aP)-equitable and tThm.4.12-bounded,

(ii ) G(k) is perfectly ε(aP)-regular w.r.t. P, and

(iii ) |G(k)4H(k)| ≤ νnk.
Let us briefly compare Theorem 4.12 for k = 2 with Theorem 1.2. Note that as

discussed in [KS96, Section 1.8] there are graphs with irregular pairs in any partition.
Therefore, due to the “perfectness” in (ii ) of Theorem 4.12 one has to alter H = H(2)

to obtain G = G(2).
The main difference between Theorem 4.12 for k = 2 and Theorem 1.2, however, is in

the choice of ε being a function of aP
1 . It follows from the work of Gowers in [Gow97] that

it is not possible to regularize a graph H with an ε in such a way that, e.g., ε < 1/aP
1 can

be ensured, where aP
1 = |P(1)| is the number of vertex classes. Properties (i ) and (iii ) of

Theorem 4.12 assert, however, that by adding or deleting at most νn2 edges from H one
can obtain a graphG which admits an ε(aP

1 ) regular partition, with ε(aP
1 ) < 1/aP

1 . Such
a lemma for graphs can be also deduced from the iterated regularity lemma in [AFKS00].
The other result of this chapter, Theorem 4.15, concerns the case in which we do not

change the given hypergraph H(k). Due to the discussion above such a lemma needs to
allow exceptional pairs (or polyads for k ≥ 3) in the partition P. Moreover, the measure
of regularity of H(k) w.r.t. P (called δk here) cannot depend on aP

1 . In fact, in our proof
of Theorem 4.15 δk is a constant independent of each aP

1 , . . . , a
P
k−1. On the other hand,

as in [FR02, RS04] we will infer that H(k) is (δk, ∗, r)-regular (defined below), where r
may depend on aP

1 , . . . , a
P
k−1. We first extend Definition 4.5.

Definition 4.13 ((δk, dk, r)-regular hypergraph). Let δk and dk be positive reals and
r be a positive integer. Suppose H(k−1) is an (m, k, k− 1)-hypergraph spanning at least
one K(k−1)

k .
We say an (m, k, k)-hypergraph H(k) is (δk, dk, r)-regular w.r.t. H(k−1) if for every

collection Q(k−1) = {Q(k−1)
1 , . . . , Q

(k−1)
r } of not necessarily disjoint sub-hypergraphs

of H(k−1) which satisfy ∣∣∣∣ ⋃
i∈[r]
Kk(Q

(k−1)
i )

∣∣∣∣ ≥ δk ∣∣∣Kk(H(k−1))
∣∣∣ > 0 ,
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4 Strong regular partitions of hypergraphs

we have ∣∣H(k) ∩
⋃
i∈[r]Kk(Q

(k−1)
i )

∣∣∣∣ ⋃
i∈[r]Kk(Q

(k−1)
i )

∣∣ = dk ± δk .

We write (δk, ∗, r)-regular to mean
(
δk, d

(
H(k)∣∣H(k−1)), r)-regular. Moreover, if r = 1,

then a (δk, dk, 1)-regular hypergraph is (ε, dk)-regular with ε = δk (cf. Definition 4.5)
and vice versa.

Finally, we give the second extension of (ii ) of Theorem 1.2, which will be ensured by
Theorem 4.15.

Definition 4.14 ((δk, ∗, r)-regular w.r.t. P). Suppose δk is a positive real and r is
a positive integer. Let H(k) be a k-uniform hypergraph with vertex set V and P =
P(k− 1,a) be a family of partitions on V . We say H(k) is (δk, ∗, r)-regular w.r.t. P, if∣∣∣⋃{

Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂(k−1)

and H(k) is not (δk, ∗, r)-regular w.r.t. P̂ (k−1)
}∣∣∣ ≤ δk|V |k .

The following theorem is a strengthening of the main result of [RS04].

Theorem 4.15 (Regularity lemma). Let k ≥ 2 be a fixed integer. For all positive
constants η and δk > 0, and all functions r : Nk−1 → N and δ : Nk−1 → (0, 1] there exist
integers tThm.4.15 and nThm.4.15 so that the following holds.
For every k-uniform hypergraph H(k) with |V (H(k))| = n ≥ nThm.4.15 vertices, where

(tThm.4.15)! divides n, there exists a family of partitions P = P(k − 1,aP) so that

(i ) P is (η, δ(aP),aP)-equitable and tThm.4.15-bounded and

(ii ) H(k) is (δk, ∗, r(aP))-regular w.r.t. P.

4.1.3 Hypergraph counting lemmas

In this chapter we prove the (local) counting lemmas corresponding to Theorem 4.12
and Theorem 4.15. Similarly as Theorem 2.18 such a lemma should ensure the “right”
number of copies of a given k-uniform hypergraph in an appropriate collection of dense
and regular polyads provided by the corresponding regularity lemma. Here the “right”
number means that the number of copies is approximately the same as in the random
object of the same density. In order to avoid some technical details, for the hypergraph
case we restrict our attention to the lower bound only. We now first state the counting
lemma for Theorem 4.12. For that we use the following notation.

Definition 4.16 (ν-close). Let m and ` ≥ k ≥ 2 be integers and ν > 0. Furthermore,
let R = {R(j)}k−1

j=1 be an (m, `, k − 1)-complex, and let H(k) and G(k) be k-uniform
sub-hypergraphs of Kk(R(k−1)). We say H(k) and G(k) are ν-close w.r.t. R, if for every
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4.1 Statements of the regularity lemmas

Λk ∈
([`]
k

)
we have∣∣∣(H(k) ∩ Kk

(
R(k−1)[Λk]

))
4
(
G(k) ∩ Kk

(
R(k−1)[Λk]

))∣∣∣ ≤ ν∣∣Kk(R(k−1))
∣∣ .

The counting lemma for Theorem 4.12 estimates the number of cliques in a hyper-
graph H(k), which is ν-close to an ε-regular hypergraph G(k).

Theorem 4.17 (Counting lemma for Theorem 4.12). For all integers ` ≥ k ≥ 2 and all
constants γ > 0 and dk > 0 there is some ν > 0 such that for every d0 > 0 there is ε > 0
and m0 so that the following holds.
Suppose

(i ) R = {R(j)}k−1
j=1 is an (ε, (d2, . . . , dk−1))-regular (m, `, k − 1)-complex with di ≥ d0

for every i = 2, . . . , k − 1 and m ≥ m0,

(ii ) G(k) ⊆ Kk(R(k−1)) is (ε, dk)-regular w.r.t. R(k−1)[Λk] for all Λk ∈
([`]
k

)
and

(iii ) H(k) ⊆ Kk(R(k−1)) is ν-close to G(k) w.r.t. R.

Then ∣∣K`(H(k))
∣∣ ≥ (1− γ)

k∏
j=2

d
(`

j)
j ×m

` .

We give the details of the proof of Theorem 4.17 in Section 4.6. Basically, it will follow
from the “closeness” of H(k) and G(k) (cf. (iii )) that the number of K(k)

` ’s in G(k) ∩H(k)

will be essentially the same as in G(k). Therefore, in order to prove Theorem 4.17 it
suffices to find a lower bound on the number of such cliques inG(k). For that we will make
use of the so-called dense counting lemma (see Theorem 4.19 below) which was proved
by Kohayakawa, Rödl, and Skokan [KRS02]. The dense counting lemma estimates the
number of K(k)

` ’s in a “densely regular” complex such as {R(1), . . . , R(k−1), G(k)}. Here
“densely regular” means that the measure of regularity is much smaller then the densities
of the complex in which one wants to count, i.e., ε � di for all i = 2, . . . , k. In other
words, compared to the measure of regularity the complex is relatively dense in every
layer.
Note that such a “densely regular” environment cannot be enforced by an application

of the regularity lemma, Theorem 4.15, since δk is independent of a2, . . . , ak−1. Con-
sequently, a counting lemma useful in conjunction with Theorem 4.15 has to allow the
following hierarchy of the constants

dk � δk � dk−1 = a−1
k−1, dk−2 = a−1

k−2, . . . , d2 = a−1
2 ≥ δ, 1

r
. (4.4)

The methods developed in this chapter allow a simple proof of the following theorem,
which matches the hierarchy in (4.4).

Theorem 4.18 (Counting lemma for Theorem 4.15). For all integers ` ≥ k ≥ 2 and
positive constants γ > 0 and dk > 0, there exist δk > 0 such that for every dk−1, . . . , d2 >

59



4 Strong regular partitions of hypergraphs

0 with 1
di
∈ N for every i = 2, . . . , k − 1 there are constants δ > 0 and positive integers

r and m0 so that the following holds.
Suppose

(i ) R = {R(j)}k−1
j=1 is an (δ, (d2, . . . , dk−1))-regular (m, `, k− 1)-complex with m ≥ m0,

and

(ii ) H(k) ⊆ Kk(R(k−1)) is (δk, dk, r)-regular w.r.t. R(k−1)[Λk] for all Λk ∈
([`]
k

)
.

Then ∣∣K`(H(k))
∣∣ ≥ (1− γ)

k∏
j=2

d
(`

j)
j ×m

` .

We note that the restriction that 1
di
∈ N for i = 2, . . . , k − 1 in (i ) is not essential,

since the hypergraph regularity lemma, Theorem 4.15, provides a partition P in which
all densities of the underlying structure are reciprocal of integers, i.e., di = 1

ai
for i =

2, . . . , k − 1.

4.2 Auxiliary results
In this section we review a few results that are essential for our proofs of Theorem 4.12,
Theorem 4.15, Theorem 4.17, and Theorem 4.18.

4.2.1 The dense counting and extension lemma

The following theorem can be used to estimate the number of copies of K(h)
` in an

appropriate collection of dense and regular blocks within a regular partition provided by
the regular approximation lemma, Theorem 4.12. Moreover, it can be applied to count
the number of K(k−1)

k ’s in the polyads of the partitions obtained by Theorem 4.12 and
Theorem 4.15.

Theorem 4.19 (Dense counting lemma). For all integers 2 ≤ h ≤ ` and all γ > 0 and
d0 > 0 there exist εDCL = εDCL(h, `, γ, d0) > 0 and an integer mDCL = mDCL(h, `, γ, d0)
so that if d = (d2, . . . , dh) ∈ Rh−1 satisfying dj ≥ d0 for 2 ≤ j ≤ h and m ≥ mDCL, and
if H = {H(j)}hj=1 is an (εDCL,d)-regular (m, `, h)-complex, then

∣∣∣K`(H(h))∣∣∣ = (1± γ)
h∏
j=2

d
(`

j)
j ×m

` .

This theorem was proved by Kohayakawa, Rödl, and Skokan in [KRS02, Theorem 6.5].
For completeness we give a short proof of a generalization of Theorem 4.19 below. The
generalization of Theorem 4.19 allows us to estimate the number of copies of an arbi-
trary hypergraph F (h) with vertices {1, . . . , `} in an (m, `, k)-complex H = {H(j)}hj=1
satisfying that H(j)[Λj ] is regular w.r.t. H(j−1)[Λj ] whenever Λj ⊆ e for some edge e
of F (h). Rather than counting copies of K` in an “everywhere” regular complex, this

60



4.2 Auxiliary results

lemma counts copies of F (h) in H(h) satisfying the less restrictive assumptions above.
We introduce some more notation before we give the precise statement below (see The-
orem 4.22).
For a fixed h-uniform hypergraph F (h), we define the j-th shadow for j ∈ [h] by

∆j(F (h)) = {J : |J | = j and J ⊆ f for some edge f ∈ F (h)} .

We extend the notion of an (ε,d)-regular complex (cf. Definition 4.6) to (ε,d, F (h))-
regular complex.
Definition 4.20 ((ε,d, F (h))-regular complex). Let ε > 0 and let d = (d2, . . . , dh)
be a vector of non-negative reals. Let F (h) be an h-uniform hypergraph with vertex set
V (F (h)) = [`].
We say an (m, `, h)-complex H = {H(j)}hj=1 with vertex partition H(1) = V1∪ · · · ∪V`

is (ε,d, F (h))-regular if for every 2 ≤ j ≤ h the following holds
(a ) for every Λj ∈ ∆j(F (h)) the (m, j, j)-hypergraph H(j)[Λj ] is (ε, dj)-regular w.r.t.

H(j−1)[Λj ] and

(b ) for every Λj 6∈ ∆j(F (h)) the (m, j, j)-hypergraph H(j)[Λj ] is empty.
Definition 4.20 imposes only a regular structure on those (m,h, h)-sub-complexes ofH

which naturally correspond to edges of the hypergraph F (h) (i.e., on a subcomplex
induced on Vλ1 , . . . , Vλh

, where {λ1, . . . , λh} forms an edge in F (h)). We need one more
definition before we can state the generalization of Theorem 4.19.
Definition 4.21 (partite isomorphic). Suppose F (h) is an h-uniform hypergraph
with V (F (h)) = [`] and H(h) is an (m, `, h)-hypergraph with vertex partition V (H(h)) =
V1 ∪ · · · ∪ V`. We say a copy F (h)

0 of F (h) in H(h) is partite isomorphic to F (h) if there is
a labeling of V (F (h)

0 ) = {v1, . . . , v`} such that
(i ) vi ∈ Vi for every i ∈ [`], and

(ii ) vi 7→ i is a hypergraph isomorphism (edge preserving bijection of the vertex sets)
between F (h)

0 and F (h).
Moreover, for every edge e ∈ H(h) we denote by ext(e;F (h)) the number of partite

isomorphic copies of F (h) in H(h) which contain e.
Theorem 4.22 (General dense counting lemma). For all integers 2 ≤ h ≤ `, every
h-uniform hypergraph F (h) on ` vertices, and all positive constants γ and d0 there exist
εGDCL = εGDCL(F (h), γ, d0) > 0 and an integer mGDCL = mGDCL(F (h), γ, d0) such that
the following holds.
If d = (d2, . . . , dh) ∈ R

h−1 satisfies dj ≥ d0 for 2 ≤ j ≤ h and m ≥ mGDCL, and
if H = {H(j)}hj=1 is an (εGDCL,d, F

(h))-regular (m, `, h)-complex, then the number of
partite isomorphic copies of F (h) in H(h) is

(1± γ)
h∏
j=2

d
|∆j(F (h))|
j ×m` .
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Theorem 4.22 is a consequence of [KRS02, Corollary 6.11]. The proof presented there
was based on a double induction over the uniformity h and the number of vertices
of F (h). As it turned out a double induction over h and the number of edges in F (h)

allows a somewhat simpler argument and we will follow this idea. In that sense the proof
presented here is similar to the proof of the counting lemma in [Tao06b]. Due to the
induction we prove a slightly more general statement (see Theorem 4.25 below).
First we extend the notion of an (ε,d, F (h))-regular complex (cf. Definition 4.20) to

(ε,d,F )-regular complex, where we replace the given h-uniform hypergraph F (h) by a
(1, `, h)-complex F .
Definition 4.23 ((ε,d,F )-regular complex). Let ε > 0 and let d = (d2, . . . , dh) be
a vector of non-negative reals. Let F = {F (j)}hj=1 be a (1, `, h)-complex on ` vertices
{1, . . . , `}. We say an (m, `, h)-complex H = {H(j)}hj=1 with vertex partition H(1) =
V1 ∪ · · · ∪ V` is (ε,d,F )-regular if for every 2 ≤ j ≤ h the following holds

(a ) for every edge Λj ∈ F (j) the (m, j, j)-hypergraph H(j)[Λj ] is (ε, dj)-regular w.r.t.
H(j−1)[Λj ] and

(b ) for every Λj 6∈ F (j) the (m, j, j)-hypergraph H(j)[Λj ] is empty.

Definition 4.23 is a slight generalization of Definition 4.23. When F (j) = ∆j(F (h)),
then the notion of a (ε,d,F )-regular complex coincides with that of a (ε,d, F (h))-regular
complex. However, Definition 4.23 allows to chose F (j) ⊇ ∆jF

(h). Finally we adjust
Definition 4.21 in a straight forward manner.
Definition 4.24. Let F = {F (j)}hj=1 be a (1, `, h)-complex with vertex set V (F (1)) = [`]
and letH = {H(j)}hj=1 be a (m, `, h)-complex with vertex partition V (H(1)) = V1∪· · ·∪
V`. We say a copy F 0 of F in H is partite isomorphic to F if there is a labeling of
V (F (1)

0 ) = {v1, . . . , v`} such that

(i ) vi ∈ Vi for every i ∈ [`], and

(ii ) vi 7→ i is a hypergraph isomorphism (edge preserving bijection of the vertex sets)
between F (j)

0 and F (j) for every j = 1, . . . , h.

Theorem 4.25. For all integers 1 ≤ h ≤ `, every (1, `, h)-complex F = {F (j)}hj=1, and
all positive constants γ and d0 there exist ε = ε(F , γ, d0) > 0 and an integer m0 =
m0(F , γ, d0) such that if d = (d2, . . . , dh) ∈ R

h−1 satisfies dj ≥ d0 for 2 ≤ j ≤ h and
m ≥ m0, and ifH = {H(j)}hj=1 is an (ε,d,F )-regular (m, `, h)-complex, then the number
of partite isomorphic copies of F in H is

(1± γ)
h∏
j=2

d
|F (j)|
j ×m` .

Clearly, Theorem 4.25 is a generalization of Theorem 4.22 and Theorem 4.19.
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Proof. Theorem 4.25 is trivial if h = 1. (Alternatively, we could start the induction with
h = 2, for which Theorem 4.25 reduces to the well-known counting lemma for graphs
(see, e.g., [KSSS02])).

Let h ≥ 2. If F (h) = ∅, then Theorem 4.25 follows from the induction assumption
for h− 1. So let |F (h)| ≥ 1 and positive constants γ and d0 be given. Fix some arbitrary
edge e ∈ F (h) and let F (h)

− = F (h) \ e and F− = {F (1), . . . , F (h−1), F
(h)
− }. We set

ε = min
{
εThm.4.25(F−, γ/2, d0) , γ2d

∑h

j=2 |F
(j)|

0

}
and let m0 be sufficiently large.

Let H be a (ε,d,F )-regular (m, `, h)-complex. Set H(h)
− = H(h) \ H(h)[e], i.e., we

obtain H(h)
− from H(h) by removing those edges which are spanned by the vertex classes

Vi1 ∪ · · · ∪ Vih indexed by elements of e = {i1, . . . , ih} ∈
([`]
h

)
. Moreover, let H− =

{H(1), . . . ,H(h−1), H
(h)
− }. Clearly, H− is a (ε,d,F−)-regular (m, `, h)-complex and due

to the choice of ε and the induction assumption on the number edges in F (h)
− , the number

#{F− ⊆H−} of partite isomorphic copies of F− in H− is

#{F− ⊆H−} =
(

1± γ

2

) h−1∏
j=2

d
|F (j)|
j × d|F

(h)|−1
h ×m` . (4.5)

For a partite isomorphic copy F−,0 = {F (1)
0 , . . . , F

(h−1)
0 , F

(h)
−,0} of F in H, let η(F−,0)

be the unique set of those h vertices for which

{F (1)
0 , . . . , F

(h−1)
0 , F

(h)
−,0 ∪ η(F−,0)}

is a partite isomorphic copy of F . Note that η(F−,0) does not necessarily span an edge
in H(h). We denote by 1H(h)(η(F−,0)) : H(h) → {0, 1} the indicator function, indicating
if the edge is present or not, i.e., 1H(h)(η(F−,0)) = 1 if and only if η(F−,0) ∈ H(h).
Hence, the number #{F ⊆H} of partite isomorphic copy of F in H equals

#{F ⊆H} =
∑{

1H(h)
(
η(F−,0)

)
:

F−,0 is partite isomorphic copy of F− in H−
}

=
∑
F−,0

(dh + 1H(h)
(
η(F−,0)

)
− dh)

= #{F− ⊆H−} × dh ±
∣∣∣∣ ∑
F−,0

1H(h)
(
η(F−,0)

)
− dh

∣∣∣∣. (4.6)

Due to (4.5) we have good control of the first term in (4.6) and we will bound the
contribution of the “±-term” using the regularity of H. For that, consider the induced
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sub-complexes F ∗ and H∗ on X = [`] \ e ⊆ F (1) and Y = H(1) \
⋃
ij∈e Vij , i.e.,

F ∗ = F [X] :=
{
F (1) \ e, F (2)[X], . . . , F (h)[X]

}
and

H∗ = H[Y ] :=
{
H(1) \

⋃
ij∈e

Vij , H
(2)[Y ], . . . ,H(h)[Y ]

}
.

For a partite isomorphic copy F 0,∗ of F ∗ in H∗, let EXT(F 0,∗) be the set of all crossing
h-tuples η ∈

⋃
ij∈e Vij such that V (F (1)

0,∗ ) ∪ η spans a partite isomorphic copy of F− in
H−, which extends F 0,∗. Since F (h) ⊆ Kh−1(F (h−1)), e induces a K(h−1)

h in F (h−1) and
hence EXT(F 0,∗) ⊆ Kh(H(h−1)[

⋃
ij∈e Vij ]). Set

Q(h−1)(F 0,∗) = ∆h−1
(

EXT(F 0,∗)
)

=
{
η′ ⊂ η : |η′| = h− 1 and η ∈ EXT(F 0,∗)

}
.

Clearly, Q(h−1)(F 0,∗) ⊆ H(h−1)[
⋃
ij∈e Vij ] and Kh(Q(h−1)(F 0,∗)) ⊇ EXT(F 0,∗). A mo-

ment’s thought shows that, in fact, Kh(Q(h−1)(F 0,∗)) = EXT(F 0,∗)1. Hence the regu-
larity of H yields∣∣∣∣ ∑

F−,0

1H(h)
(
η(F−,0)

)
− dh

∣∣∣∣ =
∑
F ∗,0

∣∣∣∣ ∑
η∈EXT(F 0,∗)

1H(h)
(
η(F−,0)

)
− dh

∣∣∣∣
≤ #{F ∗ ⊆H∗} × ε

∣∣∣Kh(H(h−1)
[ ⋃
ij∈e

Vij

])∣∣∣
≤ m`−h × εmh

≤ εm` . (4.7)

Combining (4.5)–(4.7) and recalling the choice of ε, we infer

#{F ⊆H} = dh ×
(

1± γ

2

) h−1∏
j=2

d
|F (j)|
j × d|F

(h)|−1
h ×m` ± εm`

=
(

1± γ

2

) h∏
j=2

d
|F (j)|
j ×m` ± εm`

= (1± γ)
h∏
j=2

d
|F (j)|
j ×m` .

1Indeed the existence of a clique K ∈ K(Q(h−1)(F 0,∗)) \ EXT(F 0,∗) implies that for some disjoint sets
J ( K and I ⊆ V (F (1)

0,∗ ), say J = {vi1 , . . . , vij} and I = {vij+1 , . . . , vih}, we have J ∪ I 6∈ H
(h), while

{i1, . . . , ih} ∈ F (h). On the other hand, for any (h − 1)-tuple H̃ ∈ Q(h−1)(F 0,∗), with H̃ ⊇ J there
exists H ∈ EXT(F 0,∗) with H̃ ⊂ H, yielding a contradiction.
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Theorem 4.22 yields the following corollary, Corollary 4.26, which states that “most”
edges of the h-uniform layer of an (ε,d, F (h))-regular complex belong to the “right”
number of partite isomorphic copies of F (h).

Corollary 4.26 (Dense extension lemma). For all integers ` and h with 2 ≤ h ≤ `,
for every h-uniform hypergraph F (h) on ` vertices, and for all γ > 0 and d0 > 0 there
exist εDEL = εDEL(F (h), γ, d0) > 0 and an integer mDEL = mDEL(F (h), γ, d0) so that
if d = (d2, . . . , dh) ∈ R

h−1 satisfying dj ≥ d0 for 2 ≤ j ≤ h and m ≥ mDEL, and if
H = {H(j)}hj=1 is an (εDEL,d, F

(h))-regular (m, `, h)-complex, then

∣∣H(h)∣∣ =
∣∣F (h)∣∣× (1± γ)

h∏
j=2

d
(h

j)
j ×mh , (4.8)

and for all but at most γ|H(h)| edges e ∈ H(h) we have

ext(e;F (h)) = (1± γ)
h∏
j=2

d
|∆j(F (h))|−(h

j)
j ×m`−h . (4.9)

Proof of Corollary 4.26. The proof is based on the following useful consequence of the
Cauchy–Schwarz inequality.

Fact 4.27. For every real γ > 0, there is some β > 0 such that if x1, . . . , xN are
non-negative real numbers which for some A ∈ R satisfy

N∑
i=1

xi = (1± β)NA and
N∑
i=1

x2
i = (1± β)NA2 ,

then for all but at most γN indices i ∈ [N ] we have xi = (1± γ)A.

Let an h-uniform hypergraph F (h) with vertex set V (F (h)) = [`] and positive reals γ
and d0 be given. We have to find appropriate constants εDEL and mDEL.
First for every edge f in F (h), let D(F (h), f) be the h-uniform hypergraph on 2`− h

vertices constructed from two copies of F (h) by identifying corresponding vertices of the
edge f . Now let β ≤ γ be given by Fact 4.27 applied with γ. We fix promised constants
εDEL and mDEL by setting

εDEL = min
{
εDCL

(
h, h, β3 , d0

)
, εGDCL

(
F (h), β3 , d0

)
,

min
f∈F (h)

{
εGDCL

(
D(F (h), f), β3 , d0

)}}
,

where εDCL and εGDCL are given by Theorem 4.19 and Theorem 4.22, respectively.
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Similarly, set

mDEL = max
{
mDCL

(
h, h, β3 , d0

)
, mGDCL

(
F (h), β3 , d0

)
,

max
f∈F (h)

{
mGDCL

(
D(F (h), f), β3 , d0

)}}
.

After we fixed all constants, letH = {H(j)}hj=1 be an (εDEL,d, F
(h))-regular (m, `, h)-

complex with vertex partition V1 ∪ · · · ∪ Vh, m ≥ mDEL, and d = (d2, . . . , dh) satisfying
dj ≥ d0 for every j = 2, . . . , h. From the choice of εDEL ≤ εDCL

(
h, h, β3 , d0

)
and sincem ≥

mDEL ≥ mDCL
(
h, h, β3 , d0

)
, Theorem 4.19 (applied to the (m,h, h)-complex H[Λh] =

{H(j)[Λh]}hj=1 for every Λh ∈
([`]
h

)
that is an edge in F (h)) yields

∣∣H(h)∣∣ =
∣∣F (h)∣∣× (1± β

3

) h∏
j=2

d
(h

j)
j ×mh , (4.10)

which implies (4.8). Moreover, since εDEL ≤ εGDCL(F (h), β3 , d0) and m ≥ mDEL ≥
mGDCL(F (h), β3 , d0) we can apply Theorem 4.22 to estimate the number of partite iso-
morphic copies of F (h) in H(h) by

(
1± β

3

) h∏
j=2

d
|∆j(F (h))|
j ×m` . (4.11)

Consequently,

∑
e∈H(h)

ext(e;F (h))(4.11)=
∣∣F (h)∣∣× (1± β

3

) h∏
j=2

d
|∆j(F (h))|
j ×m`

(4.10)=
1± β

3
1± β

3
×
∣∣H(h)∣∣× h∏

j=2
d
|∆j(F (h))|−(h

j)
j ×m`−h

= (1± β)
∣∣H(h)∣∣A ,

(4.12)

for

A =
h∏
j=2

d
|∆j(F (h))|−(h

j)
j ×m`−h . (4.13)

In view of (4.12) and Fact 4.27 it is only left to verify
∑

e∈H(h)

(
ext(e;F (h))

)2
= (1± β)

∣∣H(h)∣∣A2 (4.14)

for showing Corollary 4.26. For that let Λh be an edge in F (h). Consider, the complex
DC(H,Λh) which we obtain by taking two copies H1 and H2 of H and identifying
those vertices with its copy which belong to a vertex class indexed by some λ ∈ Λh.
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More explicitely, for 1 ≤ i ≤ ` let Vi = {v1,i, . . . , vm,i} be the vertex classes of H.
Suppose Wi = {wi,1, . . . , wi,m} and Ui = {ui,1, . . . , ui,m} are the vertex classes of the
copies H1 = {H(j)

1 }hj=1 and H2 = {H(j)
2 }hj=1 of H so that wi,r 7→ vi,r (respectively,

ui,r 7→ vi,r) for every 1 ≤ i ≤ ` and 1 ≤ r ≤ m is an hypergraph isomorphism between
H

(j)
1 (resp. H(j)

2 ) and H(j) for every j = 2, . . . , h. Then, DC(H,Λh) is the complex
which we obtain from H1 and H2 by identifying wλ,r with uλ,r for every λ ∈ Λh and
1 ≤ r ≤ m.
It follows from the assumptions on H, that for every edge Λh ∈ F (h) the complex

DC(H,Λh) is an (εDEL,d, D(F (h),Λh))-regular (m, 2` − h, h)-complex. Consequently,
the earlier choice of εDEL and mDEL allows us to apply Theorem 4.22 to DC(H,Λh) to
estimate the number of partite isomorphic copies of D(F (h),Λh) in DC(H,Λh) by

(
1± β

3

) h∏
j=2

d
|∆j(D(F (h),Λh))|
j ×m2`−h . (4.15)

On the other hand, the number of partite isomorphic copies ofD(F (h),Λh) in the complex
DC(H,Λh) coincides with

∑
{(ext(e;F (h)))2 : e ∈ H(h)[Λh]}. Since

|∆j(D(F (h),Λh))| = 2|∆j(F (h))| −
(
h

j

)

for every j = 2, . . . , h we have

∑
e∈H(h)[Λh]

(
ext(e;F (h))

)2
=
(

1± β

3

) h∏
j=2

d
2|∆j(F (h))|−(h

j)
j ×m2`−h .

Repeating the same argument for every edge Λh ∈ F (h) yields

∑
e∈H(h)

(
ext(e;F (h))

)2
=
∣∣F (h)∣∣× (1± β

3

) h∏
j=2

d
2|∆j(F (h))|−(h

j)
j ×m2`−h .

Hence, in view of (4.13) and (4.10) we have

∑
e∈H(h)

(
ext(e;F (h))

)2
=

1± β
3

1± β
3
×
∣∣H(h)∣∣×A2 = (1± β)

∣∣H(h)∣∣A2 ,

which gives (4.14) and concludes the proof of Corollary 4.26.

4.2.2 Facts concerning regular hypergraphs
In this section we state some facts about regular hypergraphs which are useful for the
proofs in this chapter. The first assertion roughly says that the complement of a regular
hypergraph is also regular.
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Proposition 4.28. Let j ≥ 2, m, r ≥ 1 be fixed integers and let δ1, δ2 and d1 ≥ d2 be
positive reals. If P (j)

1 is a (δ1, d1, r)-regular (m, j, j)-hypergraph w.r.t. some underlying
(m, j, j − 1)-hypergraph P̂ (j−1) and P (j)

2 ⊆ P
(j)
1 is (δ2, d2, r)-regular w.r.t. P̂ (j−1), then

P
(j)
1 \ P (j)

2 is (δ1 + δ2, d1 − d2, r)-regular w.r.t. P̂ (j−1). Moreover, if P (j)
1 = Kj(P̂ (j−1)),

then P (j)
1 \ P (j)

2 is (δ2, 1− d2, r)-regular w.r.t. P̂ (j−1).

The proof of Proposition 4.28, as well as the proof of the next proposition, is straight-
forward from the definition of (δ, d, r)-regularity and we therefore omit both of them.

Proposition 4.29. Let j ≥ 2, m, r ≥ 1 be fixed integers and let δ and d be positive
reals. If P (j) is a (δ, d, r)-regular (m, j, j)-hypergraph w.r.t. some underlying (m, j, j−1)-
hypergraph P̂ (j−1) and Q̂(j−1) ⊆ P̂ (j−1) such that |Kj(Q̂(j−1))| > 0, then P (j)∩Kj(Q̂(j−1))
is (αδ, d, r)-regular w.r.t. Q̂(j−1) for α = |Kj(P̂ (j−1))|/|Kj(Q̂(j−1))|.

The next two facts regard regularity properties of the union of regular hypergraphs.
The first of those two propositions states that the union of regular (m, j, j)-hypergraphs
which share the same underlying (m, j, j − 1)-hypergraph is regular. Again the proof is
straightforward and we refrain from presenting it here.

Proposition 4.30. Let j ≥ 2, m, t, r ≥ 1 be fixed integers and let δ and d(1), . . . , d(t)
be positive reals. Suppose P (j)

1 , . . . , P
(j)
t is a family of pairwise edge disjoint (m, j, j)-

hypergraphs with the same underlying (m, j, j − 1)-hypergraph P̂ (j−1).
If P (j)

τ is (δ, d(τ), r)-regular w.r.t. P̂ (j−1) for every τ ∈ [t], then P (j) is (tδ, d, r)-regular
w.r.t. P̂ (j−1), where P (j) =

⋃
τ∈[t] P

(j)
τ and d =

∑
τ∈[t] d(τ).

The next proposition gives us control when we union hypergraphs having different
underlying polyads. Before we make this precise, we define the setup for our proposition.
Setup 4.31. Let j ≥ 2, m, t ≥ 1 be fixed integers and let δ and d be positive reals. Let
{P̂ (j−1)

τ }τ∈[t] be a family of (m, j, j − 1)-hypergraphs such that⋃
τ∈[t]

P̂ (j−1)
τ is a j-partite (j − 1)-uniform hypergraph,

Kj
( ⋃
τ∈[t]

P̂ (j−1)
τ

)
=
⋃
τ∈[t]
Kj
(
P̂ (j−1)
τ

)
,

and

Kj
(
P̂ (j−1)
τ

)
∩ Kj

(
P̂

(j−1)
τ ′

)
= ∅ for 1 ≤ τ < τ ′ ≤ t .

(4.16)

Let {P (j)
τ }τ∈[t] be a family of (m, j, j)-hypergraphs such that P̂ (j−1)

τ underlies P (j)
τ for

any τ ∈ [t]. Set P̂ (j−1) =
⋃
τ∈[t] P̂

(j−1)
τ and P (j) =

⋃
τ∈[t] P

(j)
τ .

Proposition 4.32. Let r ≥ 1 be a fixed integer and let {P (j)
τ }τ∈[t] and {P̂ (j−1)

τ }τ∈[t]

satisfy Setup 4.31. If P (j)
τ is (δ, d, r)-regular w.r.t. P̂ (j−1)

τ for every τ ∈ [t], then P (j) is
(2
√
δ, d, r)-regular w.r.t. P̂ (j−1).

68



4.3 Outline of the proofs

For r = 1 a proof of Proposition 4.32 appeared in [NRS06a] and the proof presented
there works verbatim for general r ≥ 1.
The proof of the following lemma is based on Chernoff’s inequality and the fact that

randomly chosen sub-hypergraphs of a regular hypergraph are regular. Similar state-
ments were proved in [FR02, RS04] and we will omit the technical details here.

Proposition 4.33 (Slicing lemma). Let j ≥ 2, s0, r ≥ 1 be integers and let δ0, %0, and
p0 be positive real numbers. There is an integer mSL = mSL(j, s0, r, δ0, %0, p0) so that the
following holds. If m ≥ mSL,

(i ) P̂ (j−1) is a (m, j, j − 1)-hypergraph satisfying |Kj
(
P̂ (j−1))| ≥ mj/ lnm and

(ii ) P (j) ⊆ Kj
(
P̂ (j−1)) is an (δ, %, r)-regular (m, j, j)-hypergraph with % ≥ %0 ≥ 2δ ≥

2δ0.

Then for any positive integer 1 ≤ s ≤ s0 and all positive reals p1, . . . , ps satisfying

(iii )
∑
σ∈[s] pσ ≤ 1 and pσ ≥ p0 for σ ∈ [s]

there exists a partition {T (j)
0 , T

(j)
1 , . . . , T

(j)
s } of P (j) so that T (j)

σ is (3δ, pσ%, r)-regular
w.r.t. P̂ (j−1) for every σ = 1, . . . , s.
Moreover, T (j)

0 is (3δ, (1−
∑
σ∈[s] pσ)%, r)-regular with respect to P̂ (j−1) and T (j)

0 = ∅
if
∑
σ∈[s] pσ = 1.

4.3 Outline of the proofs
Roughly speaking, our proof of both theorems, Theorem 4.12 and Theorem 4.15, is based
on the following induction scheme

Theorem 4.15 for k =⇒ Theorem 4.12 for k =⇒ Theorem 4.15 for k + 1 .

To carry out the technical details for such an induction scheme, we need to strengthen
the statements of Theorem 4.15 (regularity lemma) and of Theorem 4.12 (regularity
approximation lemma) to more general, but, unfortunately, less esthetically pleasing
statement RL(k), Lemma 4.34, and RAL(k), Lemma 4.36.
Before we start to discuss these more general statements we will briefly outline why

they are needed. While the proof of the implication Theorem 4.12 for k =⇒ Theorem 4.15
for k+1 could follow the lines of [FR02, RS04] (now using Theorem 4.12 for k to regularize
the witnesses, which provides the cleaner partition P), the need for generalizing the
statements comes from the implication Theorem 4.15 for k =⇒ Theorem 4.12 for k.
In our proof of this implication we need to apply Theorem 4.15 for k twice. After the
first application we obtain an (η, ε(aP),aP)-equitable partition P which is bounded.
However, the hypergraph H will only be δk-regular w.r.t. P, where δk is a constant
independent of aP , and not ε(aP)-regular, as required by part (ii ) of Theorem 4.12.
To obtain such an ε(aP)-regular hypergraph G(k), which will be “ν close to H(k)”
(cf. (iii ) of Theorem 4.12) we need to apply Theorem 4.15 again. It will be essential for
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4 Strong regular partitions of hypergraphs

us that the partition obtained in the second application of Theorem 4.15 will refine P,
the partition obtained in the first application. This is the reason why we will strengthen
the statement of Theorem 4.15 (see Lemma 4.34). This change is due to the induction
scheme requiring a corresponding strengthening of Theorem 4.12 (see Lemma 4.36).
We now state the strengthened variant of Theorem 4.15. It allows us to enter the

regularity lemma with an initial equitable family of partitions O and a family of k-
uniform hypergraphs H(k)

1 , . . . ,H
(k)
s . It then guarantees the existence of an equitable

refinement P of O for which each H
(k)
i is regular. (Since it might not be completely

obvious that Theorem 4.15 follows from Lemma 4.34 stated below, we give the formal
reduction after Remark 4.35.)

Lemma 4.34 (RL(k)). For all positive integers o and s, all positive reals η and δk, and
all functions r : Nk−1 → N and δ : Nk−1 → (0, 1] there is a positive real µRL and positive
integers tRL and nRL such that the following holds.
Suppose

(a ) V is a set of cardinality n ≥ nRL and (tRL)! divides n,

(b ) O = O(k − 1,aO) is an (ηO , µRL,a
O)-equitable (for some ηO > 0) and o-bounded

family of partitions on V , and

(c ) H (k) = {H(k)
1 , . . . ,H

(k)
s } is a partition of

(V
k

)
.

Then there exists a family of partitions P = P(k − 1,aP) so that

(P1 ) P is (η, δ(aP),aP)-equitable and tRL-bounded,

(P2 ) P ≺ O,

and for every i ∈ [s]

(H ) H(k)
i is (δk, ∗, r(aP))-regular w.r.t. P.

Remark 4.35. In the inductive proof we will apply Lemma 4.34 twice. In the second
application in Section 4.4.2 it will be convenient to use a variant of Lemma 4.34, where
assumptions (a ) and (b ) are replaced by

(a ′) V = V1 ∪ · · · ∪ Vk, |Vi| = m ≥ nRL/k and tRL! divides m,

(b ′) R = {R(j)}k−1
j=1 is a (µRL/3,d)-regular (m, k, k − 1)-complex, where the vertex set

R(1) = V1 ∪ · · · ∪ Vk and d = (1/a2, . . . , 1/ak−1), ai ∈ N and ai ≤ o for 2 ≤ i < k.

Moreover, we weaken conclusion (P2 ) in this context, insisting only that P “refines”
the given complex R, more precisely

(P2 ′) P(1) ≺ R(1) = V1 ∪ · · · ∪ Vk and for every 2 ≤ j < k and every P (j) ∈ P(j) we
have either P (j) ⊆ R(j) or P (j) ∩R(j) = ∅.
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4.3 Outline of the proofs

We note that this version of Lemma 4.34 is in fact a consequence of Lemma 4.34.
Indeed, (a ′) clearly implies (a ). Moreover any complexR satisfying (b ′) can be extended
to a family of partitions O = O(k − 1,aO) on V satisfying (b ) of Lemma 4.34 with
aO = (a2, . . . , ak−1). The proof of this observation is quite straightforward but tedious
and we give a sketch only.
First set O(1) = {V1, . . . , Vk}. Then we use the slicing lemma, Proposition 4.33, for

every pair 1 ≤ i < j ≤ k to partition the bipartite graph K(Vi, Vj) \ R(2) into a2 − 1
distinct (µRL, 1/a2)-regular graphs. This is possible, since due to Proposition 4.28,
K(Vi, Vj) \ R(2) is (µRL/3, (a2 − 1)/a2)-regular and since a2 ∈ N. The a2 − 1 graphs
obtained this way together with R(2)[Vi, Vj ] define the partition O(2) on Vi ∪ Vj .
Iterating this procedure inductively for triples, . . . , (k − 1)-tuples based on Proposi-

tion 4.33 yields the family of partitions O(k − 1,aO = (a2, . . . , ak−1)) on V satisfying
(b ) of Lemma 4.34 for o = max{k, a2, . . . , ak−1}.
Finally, we note that conclusion (P2 ) of Lemma 4.34, then yields (P2 ′) due to the

construction of O(k) from R above.

We now verify that Lemma 4.34 implies Theorem 4.15 for the same k.

Proof: RL(k) =⇒ Theorem 4.15 for k. Let k be a fixed integer and let constants η and
δk and functions r : Nk−1 → N and δ : Nk−1 → (0, 1] be given by Theorem 4.15. We want
to apply Lemma 4.34. For that we will define an auxiliary family of partitions O. In fact
any sufficiently equitable partition would do. In order to avoid trivial cases we are going
to split the vertex set into k parts of the same size and any part of the partition O(j)

will be isomorphic to the complete j-partite j-uniform hypergraph of the appropriate
order for 2 ≤ j ≤ k−1 (see (4.17) below). With this in mind we apply Lemma 4.34 with
o = k, s = 2, and the given constants η and δk, and functions r and δ to obtain µRL,
tRL and nRL. We then set tThm.4.15 = tRL and nThm.4.15 = nRL.
Now let n ≥ nThm.4.15 be a multiple of tThm.4.15 = (tRL)! and H(k) be a hypergraph

with vertex set V , where |V | = n. Set aO
1 = k, aO

j = 1 for j = 2, . . . , k − 1, aO =
(aO

1 , . . . , a
O
k−1) and let V = V1 ∪ · · · ∪ VaO

1
= O(1) be some arbitrary equitable vertex

partition. Moreover, set

O(j) = {K(j)
j (Vi1 , . . . , Vij ) : 1 ≤ i1 < · · · < ij ≤ aO

1 = k} (4.17)

and
H (k) =

{
H(k),

(
V

k

)
\H(k)

}
.

Clearly, the partition O constructed this way is (ηO , µ,aO)-equitable for some constant
ηO > 0 and every µ > 0. Consequently, V , O and H (k) satisfy the assumptions (a )–(c )
of Lemma 4.34 for nRL, tRL, o = aO

1 = k, s = 2 and any µRL. Then, (P1 ) and (H ) yield
conclusions (i ) and (ii ) of Theorem 4.15.

Next we state a similarly strengthened version of Theorem 4.12.
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4 Strong regular partitions of hypergraphs

Lemma 4.36 (RAL(k)). For all positive integers o and s, all positive reals η and ν, and
every function ε : Nk−1 → (0, 1] there is a positive real µRAL and positive integers tRAL
and nRAL such that the following holds.
Suppose

(a ) V is a set of cardinality n ≥ nRAL and (tRAL)! divides n,

(b ) O = O(k,aO) is a (ηO , µRAL,a
O)-equitable (for some ηO > 0) and o-bounded

family of partitions on V , and

(c ) H (k) = {H(k)
1 , . . . ,H

(k)
s } is a partition of

(V
k

)
so that H (k) ≺ O(k).

Then there exist a family of partitions P = P(k − 1,aP) so that

(P1 ) P is (η, ε(aP),aP)-equitable and tRAL-bounded and

(P2 ) P ≺ O(k − 1) = {O(j)}k−1
j=1 .

Furthermore, there exists a partition G (k) = {G(k)
1 , . . . , G

(k)
s } of

(V
k

)
such that for every

i ∈ [s] the following holds

(G1 ) G(k)
i is perfectly ε(aP)-regular w.r.t. P,

(G2 ) |G(k)
i 4H

(k)
i | ≤ νnk, and

(G3 ) if H(k)
i ⊆ Crossk(O(1)) then G(k)

i ⊆ Crossk(O(1)) and G (k) ≺ O(k).

Lemma 4.36 yields Theorem 4.12 for the same k in a similar way as Lemma 4.34
implies Theorem 4.15. We give the formal reduction below.

Proof: RAL(k) =⇒ Theorem 4.12 for k. Let k be a fixed integer and let positive reals
η, ν, and a function ε : Nk−1 → (0, 1] be given. We want to apply RAL(k). For that we
set

oRAL = k + 1 , sRAL = 4 , ηRAL = η ,

νRAL = ν
2 , and εRAL(·, . . . , ·) = 1

2ε(·, . . . , ·) .
(4.18)

Lemma 4.36 then yields positive constants µRAL, tRAL, and nRAL. For Theorem 4.12 we
set tThm.4.12 = tRAL and nThm.4.12 = nRAL. Then, let H(k) be a k-uniform hypergraph
on n ≥ nThm.4.12 vertices where n is a multiple of (tThm.4.12)! = (tRAL)!. In view of
Lemma 4.36 we construct an auxiliary family of partitions O. For that set aO

1 = k + 1,
aO
j = 1 for j = 2, . . . , k, aO = (aO

1 , . . . , a
O
k ) and let V (H(k)) = V1 ∪ · · · ∪ VaO

1
= O(1) be

some arbitrary equitable vertex partition. Moreover, for j = 2, . . . , k set

O(j) = {K(j)
j (Vi1 , . . . , Vij ) : 1 ≤ i1 < · · · < ij ≤ aO

1 } .

Clearly, O = O(k,aO) defined that way is (ηO , µ,aO)-equitable for some ηO > 0 and
any fixed µ > 0. Moreover, O is (aO

1 = k + 1 = o)-bounded and, hence, assumption (b )
of RAL(k) holds.
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4.3 Outline of the proofs

We now define a partition H (k) of
(V
k

)
. For that we set H̄(k) =

(V
k

)
\H(k) and define

H (k) =
{
H

(k)
O = H(k) ∩ Crossk(O(1)), H

(k)
Ō

= H(k) \H(k)
O ,

H̄
(k)
O = H̄(k) ∩ Crossk(O(1)), H̄

(k)
Ō

= H̄(k) \ H̄(k)
O

}
.

Clearly, H (k) satisfies (c ) of RAL(k) with sRAL = 4.
Lemma 4.36 now yields the existence of P = P(k − 1,aP) satisfying (P1 ) and,

consequently by (4.18), (i ) of Theorem 4.12. Moreover, Lemma 4.36 yields a partition
G (k) = {G(k)

O , G
(k)
Ō
, Ḡ

(k)
O , Ḡ

(k)
Ō
} of

(V
k

)
satisfying (G1 )–(G3 ).

We set G(k) = G
(k)
O ∪G

(k)
Ō

. Then (G1 ), Proposition 4.30 (applied to G(k)
O and G(k)

Ō
for

every polyad in P̂(k−1)), and (4.18) imply part (ii ) of Theorem 4.12.
Finally, it is easy to see that (iii ) of Theorem 4.12 follows from (G2 ) and the choice

of νRAL in (4.18), since

G(k)4H(k) ⊆
(
G

(k)
O 4H

(k)
O

)
∪
(
G

(k)
Ō
4H(k)

Ō

)
.

Due to the implications proved above we note that it suffices to show

RL(2) and RL(k) =⇒ RAL(k) =⇒ RL(k + 1) for k ≥ 2 ,

in order to establish Theorem 4.15 and Theorem 4.12 inductively.
We outline the basis of the induction, the proof of RL(2), in the next section. The

proofs of each of the two implications establishing the induction step are the content of
Section 4.4 and Section 4.5, respectively.

Sketch of the proof of RL(2)

Observe that in the statement of RL(2), Lemma 4.34 for k = 2, the constant µ and the
function δ have no bearing. Consequently, RL(2) reduces to the following statement.

Lemma 4.37 (RL(2)). For all positive integers o and s, all positive reals η and δ2, and
any function r : N → N there are positive integers tRL and nRL such that the following
holds.
Suppose

(a ) V is a set of cardinality n ≥ nRL and (tRL)! divides n,

(b ) O(1) is a vertex partition V1 ∪ · · · ∪ VaO
1
of V , where |V1| = · · · = |VaO

1
| and aO

1 ≤ o

(c ) H = {H1, . . . ,Hs} is a partition of
(V

2
)
the complete graph on n vertices.

Then there exists a partition P(1) = {W1, . . . ,WaP
1
} of V so that
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4 Strong regular partitions of hypergraphs

(P1 ) |W1| = · · · = |WaP
1
|, Cross2(P(1)) ≥ (1− η)

(n
2
)
, and aP

1 ≤ tRL,

(P2 ) for every i ∈ [aP
1 ] we have Wi ⊆ Vj for some j ∈ [aO

1 ]

and for every i ∈ [s]

(H ) Hi is (δ2, ∗, r(aP
1 ))-regular w.r.t. P(1).

The proof of RL(2) follows closely the lines of the proof of Szemerédi’s regularity
lemma [Sze78], Theorem 1.2. There are three differences, however. The first and the
last of them are standard.

(1 ) Rather than one graph we have a fixed number of graphs H1, . . . ,Hs to regularize.
Such a regularity lemma was used in a number of applications and is discussed for
example in [KS96, Section 1.9].

(2 ) This difference which regards the concept of regularity in (H ) is perhaps most
significant. Instead of a single pair A′ ⊆ A, B′ ⊆ B, |A′||B′| ≥ ε|A||B| that
witnesses the irregularity of a bipartite graph with vertex classes A and B, we
consider here a more complicated witness; namely an r-tuple of pairs (Ai, Bi) of
sets where A1, . . . , Ar ⊆ A, B1, . . . , Br ⊆ B and |

⋃
i∈[r]Ai × Bi| ≤ ε|A||B| (cf.

Definition 4.13 with k = 2 and H(1) = (A,B)).
We recall that the proof of Szemerédi’s regularity lemma [Sze78] is based on a
procedure in which, having an initial partition P

(1)
0 , one constructs a sequence

P
(1)
0 ,P

(1)
1 , . . . of partitions. To each partition a quantity (called index) is associ-

ated which is known to satisfy ind(P(1)) ≤ 1 for every vertex partition P(1). On
the other hand, one proves that if P

(1)
i is irregular, then

ind(P(1)
i+1) ≥ ind(P(1)

i ) + δ4
2

10 .

Consequently, one infers that after at most 10/δ4
2 iterations one arrives to a parti-

tion which is δ2-regular.

While in [Sze78], if P
(1)
i was partition into aPi

1 parts implied that P
(1)
i+1 is a

partition into at most 4a
Pi
1 parts, in our proof (due to the fact that the witness has

r(aPi
1 ) parts for each pair) we may have as many as 4r(a

Pi
1 )×aPi

1 partition classes
in P

(1)
i+1. Consequently, tRL (which is an upper bound for the number of classes

in the final partition) depends not only on δ2, but also on the function r(·). It is
independent, however, of the cardinality of the vertex set V .

(3 ) In order to avoid the exceptional class V0 we assume that the cardinality of V
is divisible by (tRL)!. This allows us to redistribute all the vertices in Vi which
would remain from subdividing the witnesses. Such a lemma was considered, e.g.,
in [RS04].
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4.4 Proof of: RL(k) =⇒ RAL(k)

4.4 Proof of: RL(k) =⇒ RAL(k)
In order to simplify the presentation we break the proof into two parts. In the first part
we deduce RAL(k) from RL(k) and the following lemma.

Lemma 4.38. For every positive integer s, all positive reals ν and ε, and every vector
d = (d2, . . . , dk−1) satisfying 1/di ∈ N for 2 ≤ i ≤ k − 1, there exist positive reals δ4.38
and ξ4.38 and integers t4.38 and m4.38 such that the following holds.
Suppose

(a ) m ≥ m4.38 and (t4.38)! divides m,

(b ) R = {R(j)}k−1
j=1 is a (δ4.38,d)-regular (m, k, k − 1)-complex,

(c ) F (k) ⊆ Kk(R(k−1)) is ξ4.38-regular w.r.t. R(k−1), and

(d ) {H(k)
1 , . . . ,H

(k)
s } is a partition of F (k), where H(k)

i is (ν/12, ∗, t2k

4.38)-regular with
respect to R(k−1) for every i ∈ [s].

Then there exists a partition {G(k)
1 , . . . , G

(k)
s } of F (k) so that for every i ∈ [s] the following

holds

(i ) G
(k)
i is (ε, d(H(k)

i |R(k−1)))-regular w.r.t. R(k−1) and

(ii ) |G(k)
i 4H

(k)
i | ≤ ν|Kk(R(k−1))|.

In Section 4.4.1 we derive RAL(k) from Lemma 4.38 and RL(k), then, in Section 4.4.2,
we give the proof of Lemma 4.38 which is based on another application of RL(k).

4.4.1 Lemma 4.38 and RL(k) imply RAL(k)
The idea of this reduction is as follows. Let O(k,aO) and H (k) be given by RAL(k).
We apply RL(k) to O(k − 1) = {O(j)}k−1

j=1 and H (k). The constants will be chosen
in such a way that after that application of RL(k) a “typical” polyad P̂ (k−1) with its
underlying complex P = {P̂ (j)}k−1

j=1 matches the assumptions of Lemma 4.38 for R = P ,
F (k) = O(k) ∩ Kk(P̂ k−1) (where O(k) ∈ O(k)), and

{H̃(k)
h = H

(k)
h ∩ F

(k) : H(k)
h ∈H (k) and H(k)

h ⊆ O(k)} .

Lemma 4.38 then yields hypergraphs G̃(k)
h satisfying (i ) and (ii ) of Lemma 4.38. Re-

peating this for all “typical” polyads P̂ (k−1) and O(k) ∈ O(k) and taking appropriate
care of the “untypical” case, then yields the promised hypergraphs G(k)

1 . . . G
(k)
s with

properties (G1 )–(G3 ) of RAL(k). We give the technical details of this outline below.

Proof: RL(k) ∧ Lemma 4.38=⇒ RAL(k). Let constants oRAL, sRAL, ηRAL, and νRAL,
and a function εRAL : Nk−1 → (0, 1] be given (w.l.o.g. we may assume that εRAL is
monotone in every coordinate). We have to determine µRAL, tRAL, and nRAL (see (4.25)).
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4 Strong regular partitions of hypergraphs

Our proof relies on an application of RL(k) followed by an application of Lemma 4.38.
In order to match the assumptions of Lemma 4.38 the parameters for the application of
RL(k) have to match these assumptions. Consequently, “constant-wise” we first apply
Lemma 4.38 to foresee what is needed for its application, which will be provided by
RL(k). With this in mind we set

s4.38 = sRAL , ν4.38 = νRAL
2 . (4.19)

For every choice of ε and d1, . . . , dk−1 (satisfying 1/di ∈ N), Lemma 4.38 yields constants
δ4.38, ξ4.38, t4.38, and m4.38. Accordingly, we define functions δaux, ξaux : Nk−1 → (0, 1]
and taux, maux : Nk−1 → N mapping any given a = (a1, . . . , ak−1) ∈ N

k−1 to the cor-
responding constant from Lemma 4.38 with ε = εRAL(a) and d2 = 1/a2, . . . , dk−1 =
1/ak−1. More precisely, we set for x ∈ {δ, ξ, t,m}

xaux(a) = xL.4.38
(
s = s4.38, ν = ν4.38, ε = εRAL(a), d2 = 1

a2
, . . . , dk−1 = 1

ak−1

)
(4.20)

where xL.4.38(s, ν, ε, d2, . . . , dk−1) is given by Lemma 4.38 applied with constants s, ν,
ε, and d2, . . . , dk−1. Without loss of generality we assume that the functions defined
in (4.20) are monotone in every coordinate.

We now choose the parameters for the application of RL(k). For that we set

oRL = oRAL , sRL = sRAL , ηRL = ηRAL , and δk,RL = min
{
ν4.38
12 ,

νRAL
2sRAL

}
(4.21)

and consider functions rRL : Nk−1 → N and δRL : Nk−1 → (0, 1] defined for every integer
vector a = (a1, . . . , ak−1) by

rRL(a) =
(
taux(a)

)2k

and (4.22)

δRL(a) = min
{
εRAL(a) , δaux(a) ,

εDCL
(
h = k − 1, ` = k, γ = 1

2 , d0 = min
2≤i<k

a−1
i

)}
, (4.23)

where εDCL(h, `, γ, d0) is given by Theorem 4.19.

Having defined all parameters for RL(k), Lemma 4.34, in (4.21), (4.22) and (4.23),
Lemma 4.34 now yields positive constants µRL, tRL, and nRL. We use tRL to establish
“worst case” estimates on the functions ξaux, taux, and maux and set

ξworst = ξaux(tRL, . . . , tRL) , tworst = taux(tRL, . . . , tRL) ,
and mworst = maux(tRL, . . . , tRL) (4.24)
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Finally, we define µRAL, tRAL, and nRAL promised by RAL(k). For that we set

µRAL = min
{
µRL ,

εRAL(tRL, . . . , tRL)
2t2k

RL
,
ξworst

2t2k

RL

}
,

tRAL = tRL + tworst ,

and

nRAL = max
{
nRL , tRLmworst ,

tRLmDCL
(
h = k − 1, ` = k, γ = 1

2 , d0 = t−1
RL
)}
.

(4.25)

Note that for given input parameters oRAL, sRAL, ηRAL, and νRAL, and a given func-
tion εRAL : Nk−1 → (0, 1] of RAL(k), finally in (4.25) we defined the corresponding
output parameters. Now we need to show, that with this choice we will be able to
verify RAL(k), Lemma 4.36.
Let V , ORAL, and H (k) satisfying (a )–(c ) of RAL(k), Lemma 4.36 be given, i.e.,

(RAL.a ) |V | = n ≥ nRAL and (tRAL)! divides n,

(RAL.b ) ORAL = ORAL(k,aORAL) = {O(j)
RAL}kj=1 is (ηORAL , µRAL,a

ORAL)-equitable (for
some ηORAL > 0) and oRAL-bounded, and

(RAL.c ) |H (k)| = sRAL and H (k) ≺ O
(k)
RAL.

Our objective is to find a family of partitions PRAL = PRAL(k− 1,aPRAL) on V and a
partition G (k) = {G(k)

1 , . . . , G
(k)
sRAL} of

(V
k

)
so that

(RAL.P1 ) PRAL is (ηRAL, εRAL(aPRAL),aPRAL)-equitable, tRAL-bounded,

(RAL.P2 ) PRAL ≺ ORAL(k − 1) = {O(j)
RAL}

k−1
j=1 ,

(RAL.G1 ) G(k)
i is perfectly εRAL(aPRAL)-regular w.r.t. PRAL for every i ∈ [sRAL],

(RAL.G2 ) |G(k)
i 4H

(k)
i | ≤ νRALn

k for every i ∈ [sRAL], and

(RAL.G3 ) if H(k)
i ⊆ Crossk(O

(1)
RAL) then G(k)

i ⊆ Crossk(O
(1)
RAL) for every i ∈ [sRAL] and

G (k) ≺ O
(k)
RAL.

Without loss of generality we may assume that

H
(k)
i 6= ∅ for every i ∈ [sRAL] . (4.26)

Otherwise we simply set G(k)
i = ∅ for every i ∈ [sRAL] for which H(k)

i = ∅ and obviously
(RAL.G1 )–(RAL.G3 ) holds for those G(k)

i for any family of partitions P.
As we already mentioned we are going to apply RL(k) to V , to the family of parti-

tions ORL = ORAL(k − 1) = {O(j)
RAL}

k−1
j=1 , to the vector aORL = (aORAL

1 , . . . , aORAL
k−1 ), and
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to the partition H (k) with constants oRL, sRL, ηRL, and δk,RL defined in (4.21) and
functions rRL and δRL defined in (4.22) and (4.23). For that we have to verify that

(RL.a ) |V | = n ≥ nRL and (tRL)! divides n,

(RL.b ) ORL = ORL(k − 1,aORL) = {O(j)
RL}

k−1
j=1 is (ηORL , µRL,a

ORL)-equitable (for some
ηORL > 0) and oRL-bounded, and

(RL.c ) |H (k)| = sRL.

We note that (RL.a ) is an easy consequence of the choice of nRAL ≥ nRL and tRAL ≥ tRL
in (4.25) and (RAL.a ). Similarly, (RL.b ) follows from the choice of µRAL ≤ µRL in (4.25)
and (RAL.b ), while (RL.c ) is a consequence of (RAL.c ) and the choice of sRL = sRAL
in (4.21). Having verified that (RL.a )–(RL.c ) hold, we reason that there is a family of
partitions PRL = PRL(k−1,aPRL) on V which satisfies properties (P1 ), (P2 ), and (H )
of Lemma 4.34

(RL.P1 ) PRL is (ηRL, δRL(aPRL),aPRL)-equitable and tRL-bounded,

(RL.P2 ) PRL ≺ ORL = ORAL(k − 1), and

(RL.H ) H
(k)
i is (δk,RL, ∗, rRL(aPRL))-regular w.r.t. PRL for every i ∈ [sRL].

We set
PRAL = PRL and aPRAL = aPRL . (4.27)

It then follows from (RL.P1 ) and (RL.P2 ) and the choices of ηRL = ηRAL in (4.21),
δRL(aPRL) ≤ εRAL(aPRL) in (4.23), and tRAL ≥ tRL in (4.25), that

PRAL satisfies (RAL.P1 ) and (RAL.P2 ) . (4.28)

It is left to ensure the existence of the partition G (k) of
(V
k

)
which satisfies (RAL.G1 )–

(RAL.G3 ).
Before we prove the existence of G (k) we make some preparations, which simplify the

presentation. We complete the partition O
(k)
RAL (which partitions Crossk(O

(1)
RAL)), to a

partition of
(V
k

)
. For that we set

Õ(k) = O
(k)
RAL ∪

((
V

k

)
\ Crossk(O

(1)
RAL)

)
. (4.29)

We also define for every O(k) ∈ Õ(k)

I(O(k)) =
{
i ∈ [sRAL] : H(k)

i ⊆ O(k) and H(k)
i 6= ∅

}
. (4.30)

Note that due to (RAL.c ), (4.26), and (4.29) the family

{I(O(k)) : O(k) ∈ Õ(k)}

forms a partition of [sRAL]. Before we continue we make the observation.
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Claim 4.39. For every O(k) ∈ Õ(k) and P̂ (k−1) ∈ P̂
(k−1)
RL the following holds. Set

F (k) = O(k) ∩ Kk(P̂ (k−1)), then F (k) is (2t2k

RLµRAL)-regular w.r.t. P̂ (k−1).

Proof. The claim is trivial if F (k) = O(k) ∩Kk(P̂ (k−1)) = ∅ and, hence, we assume that

F (k) = O(k) ∩ Kk(P̂ (k−1)) 6= ∅ . (4.31)

We distinguish two cases. From, PRL ≺ ORAL(k− 1) (cf. (RL.P2 )) we infer that either
P̂ (k−1) is contained in some polyad Ô(k−1) ∈ Ô

(k−1)
RAL or Kk(P̂ (k−1))∩Crossk(O

(1)
RAL) = ∅.

IfKk(P̂ (k−1))∩Crossk(O
(1)
RAL) = ∅, then we haveO(k) =

(V
k

)
\Crossk(O

(1)
RAL) (using (4.31))

and, consequently, F (k) = Kk(P̂ (k−1)). Hence, F (k) is ξ-regular w.r.t. P̂ (k−1) for every
ξ > 0 which yields the claim in that case.
On the other hand, if P̂ (k−1) ⊆ Ô(k−1) for some Ô(k−1) ∈ Ô

(k−1)
RAL , then we have due

to (4.31) and the fact that ORAL is a family of partitions (cf. Definition 4.8) that O(k) ⊆
Kk(Ô(k−1)). Therefore, (RAL.b ) and Proposition 4.29 (applied with j = k, m, r = 1,
δ = µRAL, d = d(O(k)|Ô(k−1)), P (k) = O(k), P̂ (k−1) = Ô(k−1), and Q̂(k−1) = P̂ (k−1))
imply that

F (k) is
(
µRAL

|Kk(Ô(k−1))|
|Kk(P̂ (k−1))|

)
-regular w.r.t. P̂ (k−1) . (4.32)

Clearly, |Kk(Ô(k−1))| ≤ nk and due to the choice of δRL(aPRL) ≤ εDCL(h = k − 1, ` =
k, γ = 1/2, d0 = min2≤i<k 1/aPRL

i ) in (4.23), the appropriate choice of nRAL ≥ tRL ×
mDCL(h = k− 1, ` = k, γ = 1/2, d0 = t−1

RL) in (4.25), and (RL.P1 ), by Theorem 4.19, we
infer ∣∣∣Kk(P̂ (k−1))

∣∣∣ ≥ 1
2

k−1∏
j=2

 1
aPRL
j

(k
j)
×
(

n

aPRL
1

)k
≥ nk

2t2k

RL
.

and the claim follows.

We now continue with the proof of the existence of the partition G (k) of
(V
k

)
which

satisfies (RAL.G1 )–(RAL.G3 ). For that we will mainly use Lemma 4.38 applied to the
polyads of PRL. However, we distinguish between two types of polyads and set

P̂
(k−1)
RL,H ·reg =

{
P̂ (k−1) ∈ P̂

(k−1)
RL : H(k)

i is (δk,RL, ∗, rRL(aPRL))-regular

w.r.t. P̂ (k−1) for every i ∈ [sRL]
}
.

Case 1 (P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg). In this case let K ∈ Kk(P̂ (k−1)) and set R = P (K) =

{P̂ (j)(K)}k−1
j=1 with P̂ (k−1)(K) = P̂ (k−1) (see (4.1)). Let O(k) ∈ Õ(k) be such that

F (k) = O(k) ∩ Kk(P̂ (k−1)) 6= ∅ , (4.33)

and set
H̃

(k)
i = H

(k)
i ∩ F

(k) = H
(k)
i ∩ Kk(P̂

(k−1)) for i ∈ I(O(k)) . (4.34)
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We want to apply Lemma 4.38 with parameters s = s4.38, ν = ν4.38, ε = εRAL(aPRL),
and di = 1/aPRL

i for 2 ≤ i < k. Note that due to the definition of the functions δaux,
ξaux, taux, and maux in view of (4.20), Lemma 4.38 yields constants δ4.38, ξ4.38, t4.38
and m4.38 which satisfy

δ4.38 = δaux(aPRL) ,
ξ4.38 = ξaux(aPRL) ,
t4.38 = taux(aPRL) ,

and

m4.38 = maux(aPRL) .

In order to apply Lemma 4.38 with the chosen parameters to m = n/aPRL
1 , R, F (k), and

{H̃(k)
i : i ∈ I(O(k))} we have to verify

(L.4.38.a ) n/aPRL
1 = m ≥ maux(aPRL) and (taux(aPRL))! divides m,

(L.4.38.b ) R = {R(j)}k−1
j=1 is a (δaux(aPRL),d)-regular (m, k, k − 1)-complex for the

density vector d = (1/aPRL
2 , . . . , 1/aPRL

k−1 ),

(L.4.38.c ) F (k) ⊆ Kk(R(k−1)) is ξaux(aPRL)-regular w.r.t. R(k−1), and

(L.4.38.d ) {H̃(k)
i : i ∈ I(O(k))} partitions F (k), we have |I(O(k))| ≤ s4.38, and H̃(k)

i is(
ν4.38/12, ∗, (taux(aPRL))2k)-regular w.r.t. R(k−1) for every i ∈ I(O(k)).

The verification of (L.4.38.a )–(L.4.38.d ) is straightforward, but somewhat technical. We
give the details below.
Due to (RAL.a ), (4.25), (4.24), (RL.b ) and the monotonicity of the function maux we

have
n ≥ tRL ×mworst ≥ aPRL

1 ×maux(aPRL) .

In order to verify (L.4.38.a ) it is left to show that (taux(aPRL))! divides m = n/aPRL
1 .

For that we note that due to the definition of tRAL in (4.25) we have tRAL = tRL + tworst,
which due to (RAL.a ) yields (tRL + tworst)! divides n. Consequently, (tRL)!(tworst)!
divides n (to see this consider

(tRL+tworst
tworst

)
). Hence, from aPRL

1 ≤ tRL (cf. (RL.b )) it
follows that n/aPRL

1 = m is divisible by (tworst)!. It now follows that (taux(aPRL))!
divides m since tworst ≥ taux(aPRL) due to the monotonicity of the function taux.
Part (L.4.38.b ) follows easily from (RL.b ) and the choice of the function δRL in (4.23)

ensuring that δRL(aPRL) ≤ δaux(aPRL).
Next we verify (L.4.38.c ). It follows from the definition of F (k) that R(k−1) = P̂ (k−1)

underlies F (k). The second assertion of (L.4.38.c ) follows from

2t2k

RLµRAL ≤ ξworst ≤ ξaux(aPRL)
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(cf. (4.25) and (4.24)) and Claim 4.39.
Finally, it is left to verify (L.4.38.d ). It follows from the definitions in (4.30) and (4.34)

and the fact that H (k) is a partition of
(V
k

)
(cf. (RAL.d )), that {H̃(k)

i : i ∈ I(O(k))}
partitions F (k). Clearly, |I(O(k))| ≤ s4.38. Moreover, from the assumption of this case
(R(k−1) = P̂ (k−1) ∈ P̂

(k−1)
RL,H ·reg) we know that H̃(k)

i is (δk,RL, ∗, rRL(aPRL))-regular w.r.t.
R(k−1) = P̂ (k−1) for every i ∈ I(O(k)). Therefore, (L.4.38.d ) follows from the choice of
δk,RL ≤ ν4.38/12 in (4.21) and rRL(aPRL) = (taux(aPRL))2k in (4.22).
Having verified (L.4.38.a )–(L.4.38.d ), we can apply Lemma 4.38 and infer the exis-

tence of a partition {G̃(k)
i : i ∈ I(O(k))} of F (k) so that for every i ∈ I(O(k))

(L.4.38.i ) G̃
(k)
i is εRAL(aPRL)-regular w.r.t. P̂ (k−1) = R(k−1), and

(L.4.38.ii ) |G̃(k)
i 4 H̃

(k)
i | ≤ ν4.38|Kk(P̂ (k−1))|.

For i ∈ I(O(k)) each G̃
(k)
i given above defines G(k)

i restricted to the polyad P̂ (k−1).
Formally we set

G
(k)
i (P̂ (k−1)) = G̃

(k)
i for i ∈ I(O(k)) , (4.35)

and repeat the procedure for every O(k) ∈ Õ(k) satisfying (4.33). ♦

Case 2 (P̂ (k−1) 6∈ P̂
(k−1)
RL,H ·reg). Let K ∈ Kk(P̂ (k−1)) and set P = P (K) = {P̂ (j)(K)}k−1

j=1
with P̂ (k−1)(K) = P̂ (k−1) (see (4.1)). Let O(k) ∈ Õ(k) be such that

F (k) = O(k) ∩ Kk(P̂ (k−1)) 6= ∅ . (4.36)

In this case fix some index i0 ∈ I(O(k)). We then define for i ∈ I(O(k))

G
(k)
i (P̂ (k−1)) =

{
F (k) for i = i0 ,

∅ for i 6= i0 ∈ I(O(k)) .
(4.37)

For later reference we note that for every i ∈ I(O(k))

G
(k)
i (P̂ (k−1)) ⊆ O(k) (4.38)

and
G

(k)
i (P̂ (k−1)) is εRAL(aPRL)-regular w.r.t. P̂ (k−1) . (4.39)

Indeed, (4.38) is trivial for every i ∈ I(O(k)) and (4.39) is trivial for i 6= i0. In the
case i = i0 we have G(k)

i (P̂ (k−1)) = F (k) = O(k) ∩ Kk(P̂ (k−1)) and (4.39) follows from
Claim 4.39 and the choice of µRAL in (4.25) ensuring 2t2k

RL×µRAL ≤ εRAL(tRL, . . . , tRL) ≤
εRAL(aPRL).
Again we repeat this procedure for every O(k) ∈ Õ(k) satisfying (4.36). ♦
We note that due to the both cases above the following statement holds:

(∗) For every P̂ (k−1) ∈ P̂
(k−1)
RL and every O(k) ∈ Õ(k) satisfying O(k) ∩Kk(P̂ (k−1)) 6= ∅

we have that {G(k)
i (P̂ (k−1)) : i ∈ I(O(k))} is a partition of O(k) ∩ Kk(P̂ (k−1)).
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Now we define the partition G (k) and verify (RAL.G1 )–(RAL.G3 ). For that we set for
i ∈ [sRAL]

G
(k)
i =

⋃{
G

(k)
i (P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL

}
. (4.40)

Since Õ(k) is a partition of
(V
k

)
we infer from (∗) that G (k) = {G(k)

1 , . . . , G
(k)
sRAL} forms a

partition of
(V
k

)
.

We verify property (RAL.G1 ). From (L.4.38.i ) (combined with (4.35)) and (4.39) we
conclude that for all i ∈ [sRAL] and all P̂ (k−1) ∈ P̂

(k−1)
RL the defined G(k)

i is εRAL(aPRL)-
regular w.r.t. P̂ (k−1). Consequently, the definition of PRAL = PRL and aPRAL = aPRL

in (4.27) yields (RAL.G1 ).

In order to show (RAL.G2 ), let i ∈ [sRAL] be fixed. It then follows from (L.4.38.ii )
that

∑{∣∣(G(k)
i 4H

(k)
i

)
∩ Kk(P̂ (k−1))

∣∣ : P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg

} (4.19)
≤ νRALn

k

2 (4.41)

Moreover, from (RL.H ) and Definition 4.13 we infer

∑{∣∣(G(k)
i 4H

(k)
i

)
∩ Kk(P̂ (k−1))

∣∣ : P̂ (k−1) 6∈ P̂
(k−1)
RL,H ·reg

}
≤
∑{

|Kk(P̂ (k−1))| : P̂ (k−1) 6∈ P̂
(k−1)
RL,H ·reg

}
≤ sRLδk,RLn

k
(4.21)
≤ 1

2νRALn
k (4.42)

In view of (4.27) the inequalities (4.41) and (4.42) then yield (RAL.G2 ).

Finally, we consider (RAL.G3 ). For that for each O(k) ∈ Õ(k) we set

J(O(k)) = {i ∈ [sRAL] : G(k)
i ∩O

(k) 6= ∅} .

Since (4.26) and G (k) is a partition of
(V
k

)
, the two assertions in (RAL.G3 ) are implied

by the following two statements which we verify below

J

((
V

k

)
\ Crossk(O

(1)
RAL)

)
⊆ I

((
V

k

)
\ Crossk(O

(1)
RAL)

)
, (4.43)

and

J(O(k)
1 ) ∩ J(O(k)

2 ) = ∅ for all O
(k)
1 6= O

(k)
2 ∈ Õ(k) . (4.44)

From (∗) we infer for every P̂ (k−1) ∈ P̂
(k−1)
RL that if G(k)

i (P̂ (k−1)) ∩ O(k) 6= ∅ then
G

(k)
i (P̂ (k−1)) ⊆ O(k). Consequently, (∗) yields

J(O(k)) ⊆ I(O(k)) (4.45)
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for every O(k) ∈ Õ(k), which gives (4.43).
Moreover, since H (k) ≺ O(k) and, therefore, H (k) ≺ Õ(k) (see (4.29), we have

I(O(k)
1 ) ∩ I(O(k)

2 ) = ∅ for all distinct O(k)
1 and O

(k)
2 from Õ(k). Hence, (4.44) holds

as well, and consequently (RAL.G3 ) follows.
From the discussion above and (4.28) we infer that PRAL defined in (4.27) and

G (k) defined in (4.40) satisfy the conclusion of RAL(k), Lemma 4.36, i.e., (RAL.P1 )–
(RAL.G3 ).

4.4.2 RL(k) implies Lemma 4.38
The proof of Lemma 4.38 is the heart of the implication RL(k) =⇒ RAL(k) and its idea
resembles the main idea from the work of Nagle, Rödl, and Schacht in [NRS06a]. Before
we give with the detailed proof below, we briefly discuss the main idea.
Recall that in Lemma 4.38 a (δ4.38,d)-regular (m, k, k−1)-complexR = {R(j)}k−1

j=1 and
a ξ-regular k-uniform hypergraph F (k) ⊆ Kk(R(k−1)) are given. Moreover, we are given a
partition H (k) = {H(k)

i : i ∈ [s4.38]} of F (k), where everyH(k)
i is (ν, ∗, t2k

4.38)-regular w.r.t.
R(k−1). We will apply RL(k) to regularize every H(k)

i ∈ H (k) with some appropriately
chosen δk less than the given ε. For this regularization we apply the variant of RL(k)
discussed in Remark 4.35, which allows us to find a tRL-bounded family of partitions
PRL = PRL(k − 1,aPRL) = {P(j)

RL}
k−1
j=1 such that for each j = 1, . . . , k − 1 and each

P (j) ∈P
(j)
RL either P (j) ⊆ R(j) or P (j)∩R(j) = ∅. Since each H(k)

i ⊆ F (k) ⊆ Kk(R(k−1)),
we will focus on the “interesting” part of the partition PRL and consider only those
polyads P̂ (k−1) ∈ P̂

(k−1)
RL which are subsets of R(k−1). For that we set

P̂
(k−1)
RL (R) =

{
P̂ (k−1) ∈ P̂

(k−1)
RL : P̂ (k−1) ⊆ R(k−1)

}
.

From RL(k) we infer that for every “typical” P̂ (k−1) ∈ P̂
(k−1)
RL (R)

(i ) H(k)
i is (δk, d(H(k)

i |P̂ (k−1)), 1)-regular w.r.t. P̂ (k−1) for every i ∈ [s4.38].

Moreover, we will prove (cf. Claim 4.41) that for every i ∈ [s4.38] the typical density
d(H(k)

i |P̂ (k−1)) will be “near” to the density of H(k)
i in R(k−1), i.e.,

(ii ) |d(H(k)
i |P̂ (k−1))− d(H(k)

i |R(k−1))| ≤ ν/6 for “most” P̂ (k−1) ∈ P̂
(k−1)
RL (R).

Property (ii ) is the key observation in the proof of Lemma 4.38. Its proof is based on our
choice of t4.38 ≥ tRL and t2k

RL ≥ |P̂
(k−1)
RL (R)|. The proof of (ii ) then is simple. Assuming

that there is a constant fraction of polyads in P̂
(k−1)
RL (R) which violate (ii ) gives rise to

a witness that is (ν/12, ∗, t2k

4.38)-irregular w.r.t. R(k−1). (The choice of t4.38 ≥ tRL allows
us to “look” into a constant fraction of polyads in P̂

(k−1)
RL (R).)

Combining, (i ) and (ii ) with an appropriate use of the slicing lemma, Proposition 4.33,
allows us to prove that for a typical P̂ (k−1) ∈ P̂

(k−1)
RL (R), H(k)

i needs to be altered only
slightly (in less than ν/6 proportion of the number of cliques in P̂ (k−1)) to become

83



4 Strong regular partitions of hypergraphs

(ε2/4, d(H(k)
i |R(k−1)))-regular w.r.t. P̂ (k−1). In other words, the resulting graph, which

we denote by G(k)
i (P̂ (k−1)), maintains large degree of regularity (we will choose δk � ε),

while its density will be ∼ d(H(k)
i |R(k−1)).

On the other hand in the rare case of an atypical polyad P̂ (k−1) for which (i ) or (ii )
does not hold for H(k)

i we use slicing lemma to replace H(k)
i by a randomly chosen (and

therefore extremely regular) G(k)
i (P̂ (k−1)), with

d(G(k)
i (P̂ (k−1))|P̂ (k−1)) ∼ d(H(k)

i |R
(k−1)) .

For each i ∈ [s4.38] we set
G

(k)
i =

⋃
G

(k)
i (P̂ (k−1))

where the union is taken over all (typical and atypical) P̂ (k−1) ∈ P̂
(k−1)
RL (R). Since,

G
(k)
i obtained that way is (ε2/4, d(H(k)

i |R(k−1))-regular for every P̂ (k−1) ∈ P̂
(k−1)
RL (R),

Proposition 4.30 then yields that G(k)
i is (ε, d(H(k)

i |R(k−1))-regular w.r.t. R(k−1). Since
in the typical case we changed H(k)

i ∩Kk(P̂ (k−1)) only “slightly” to become G(k)
i (P̂ (k−1))

and since the atypical case, in which more drastic changes are needed, happens rarely,
we will be able to prove that |G(k)

i 4H
(k)
i | ≤ νnk.

We now give the technical details of the proof of Lemma 4.38, sketched above.

Proof: RL(k) =⇒ Lemma 4.38. Let positive reals s4.38, ν4.38, and ε4.38 and a vector
d4.38 = (d2, . . . , dk−1) satisfying 1/di ∈ N for 2 ≤ i < k be given. Lemma 4.38 is trivial
for ν4.38 > 1. Moreover, without loss of generality we may assume that

ε4.38 < ν4.38 ≤ 1 . (4.46)

We will apply RL(k). For that we set2

oRL = max
2≤i<k

1/di , sRL = s4.38 + 1 , ηRL = 10−2 , (4.47)

and

δk,RL = min

ν4.38
∏k−1
h=2 d

(k
h)
h

6× s4.38 × kk
,

ε2
4.38

384s4.38
,
ν4.38
18

 (4.48)

and consider functions rRL : Nk−1 → N, and δRL : Nk−1 → (0, 1] defined for every a =
(a1, . . . , ak−1) ∈ Nk−1 by

rRL(a) = 1 and δRL(a) = εDCL
(
h = k − 1, ` = k, γ = ν4.38

48 , d0 = min
2≤i<k

a−1
i

)
, (4.49)

2Since we later are only interested in partition classes P (j), which are sub-hypergraphs of the given
R(j) (see, e.g., (4.55)), the constant ηRL is unessential for our proof and any positive constant value
would do.
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where εDCL(h, `, γ, d0) is given by Theorem 4.19.
Having defined all input parameters of Lemma 4.34 in (4.47), (4.48), and (4.49), this

lemma now yields positive constants µRL, tRL, and nRL. We then define δ4.38, ξ4.38, t4.38,
and m4.38 promised by Lemma 4.38. For that we set t4.38 = tRL,

δ4.38 = min
{
µRL

3 , εDCL
(
h = k − 1, ` = k, γ = 1

2 , d0 = min
2≤i<k

di
)}

,

ξ4.38 = ε2
4.38

192t2k

RL
,

(4.50)

and

m4.38 = max
{
nRL , exp(2t2k

RL) ,

mDCL

(
h = k − 1, ` = k, γ = 1

2 , d0 = min
2≤i<k

di

)
,

tRLmDCL

(
k − 1, k, ν4.38

48 , t−1
RL

)
,

tRLmSL

(
k, s4.38, 1,

ε2
4.38
96 ,

ε2
4.38
16 ,

ε2
4.38

192s4.38

)
,

tRLmSL

(
k, 2, 1, δk,RL,

ε2
4.38

192s4.38
,

ε2
4.38

192s4.38

)
,

tRLmSL

(
k, s4.38, 1,

ε2
4.38
24 ,

ε2
4.38
12 ,

ε2
4.38

192s4.38

) }
.

(4.51)

Having defined all the parameters of Lemma 4.38, now let m, R, F (k), and H (k)

satisfying (a )–(d ) of Lemma 4.38 for these parameters be given, i.e.,

(L.4.38.a ) m ≥ m4.38 and (t4.38)! divides m,

(L.4.38.b ) R = {R(j)}k−1
j=1 is a (δ4.38,d4.38)-regular (m, k, k − 1)-complex with vertex

set V = V1 ∪ · · · ∪ Vk,

(L.4.38.c ) F (k) ⊆ Kk(R(k−1)) is ξ4.38-regular w.r.t. R(k−1), and

(L.4.38.d ) the family H (k) = {H(k)
1 , . . . ,H

(k)
s4.38} is a partition of F (k) and every H(k)

i

is
(
ν4.38/12, ∗, t2k

4.38
)
-regular w.r.t. R(k−1) for i ∈ [s4.38].

We have to ensure the existence of a partition G (k) = {G(k)
1 , . . . , G

(k)
s4.38} of F (k) so that

for every i ∈ [s4.38]

(L.4.38.i ) G
(k)
i is ε4.38-regular w.r.t. R(k−1), and

(L.4.38.ii ) |G(k)
i 4H

(k)
i | ≤ ν4.38|Kk(R(k−1))|.
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Before we start we note for later use that due to (L.4.38.b ) and the choice of δ4.38 ≤
εDCL(h = k − 1, ` = k, γ = 1/2, d0 = min2≤i<k di) in (4.50) and m ≥ m4.38 ≥ mDCL(h =
k − 1, ` = k, γ = 1/2, d0 = min2≤i<k di) in (4.51) we infer by DCL, Theorem 4.19, that

∣∣Kk(R(k−1))
∣∣ =

(
1± 1

2

) k−1∏
h=2

d
(k

h)
h ×mk . (4.52)

Our proof is based on the variant of RL(k), Lemma 4.34, discussed in Remark 4.35.
More precisely we want to apply this variant of Lemma 4.34 with the constants and
functions chosen in (4.47), (4.48), and (4.49) to V , R, and H

(k)
0 ∪ {H(k)

1 , . . . ,H
(k)
s4.38},

where
H

(k)
0 =

(
V

k

)
\ F (k) =

(
V

k

)∖ ⋃
i∈[s4.38]

H
(k)
i . (4.53)

We artificially add H(k)
0 only to obtain a partition of

(V
k

)
, to formally match the assump-

tion (c ) of RL(k) (see (RL.c ) below). We have to verify the following assumptions of
Lemma 4.34 (see also Remark 4.35).

(RL.a ′) |V | = km ≥ nRL, V = V1 ∪ · · · ∪ Vk with Vi = m and tRL! divides m,

(RL.b ′) R = {R(j)}k−1
j=1 is a (µRL/3,d4.38)-regular (m, k, k− 1)-complex, where d4.38 =

(d2, . . . , dk−1), 1/di ∈ N and 1/di ≤ oRL for 2 ≤ i < k, and R(1) = V1∪· · ·∪Vk,
and

(RL.c ) {H(k)
0 , H

(k)
1 , . . . ,H

(k)
s4.38} is a partition of

(V
k

)
into sRL parts.

We note that (RL.a ′) follows from (L.4.38.a ) and the choice of m4.38 in (4.51) and t4.38
in (4.50). Moreover, (RL.b ′) is a consequence of the assumption on d4.38, and (L.4.38.b )
combined with the choice of δ4.38 in (4.50) and oRL in (4.47). Similarly, (RL.c ) follows
from (L.4.38.d ) in conjunction with (4.53) and the choice of sRL in (4.47).
Having verified that (RL.a ′), (RL.b ′), and (RL.c ) hold, Lemma 4.34 then ensures the

existence of a family of partitions PRL = PRL(k − 1,aPRL) on V which satisfies the
following properties:

(RL.P1 ) PRL is (ηRL, δRL(aPRL),aPRL)-equitable and tRL-bounded,

(RL.P2 ′) P(1) ≺ R(1) = V1 ∪ · · · ∪ Vk and for every 2 ≤ j < k and every P (j) ∈ P(j)

we have either P (j) ⊆ R(j) or P (j) ∩R(j) = ∅, and

(RL.H ) H
(k)
i is (δk,RL, ∗, rRL(aPRL))-regular w.r.t. PRL for every i ∈ [sRL].

Before we continue with the proof we make a few observations and develop some notation.
To an arbitrary polyad P̂ (k−1) ∈ P̂

(k−1)
RL consider its corresponding (m/aPRL

1 , k, k − 1)-
complex P = {P̂ (j)}k−1

j=1 . (More precisely, recalling (4.1), P = P (K) = {P̂ (j)(K)}k−1
j=1 for

any K ∈ Kk(P̂ (k−1))). It follows from (RL.P1 ) and part (c ) of Definition 4.10 that the
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complex P is an (δRL(aPRL), (1/aPRL
2 , . . . , 1/aPRL

k−1 )-regular (m/aPRL
1 , k, k−1)-complex.

From the choice of the function δRL in (4.49) and of

m ≥ m4.38 ≥ tRL ×mDCL

(
h = k − 1, ` = k, γ = ν4.38

48 , d0 = t−1
RL

)
in (4.51) we infer by Theorem 4.19 that

∣∣Kk(P̂ (k−1))
∣∣ =

(
1± ν4.38

48

) k−1∏
h=2

(
1

aPRL
h

)(k
h)
×
(

m

aPRL
1

)k
, (4.54)

holds for every P̂ (k−1) ∈ P̂
(k−1)
RL .

Since each H
(k)
i ⊆ F (k) ⊆ Kk(R(k−1)) for the rest of the proof we will focus to the

“interesting” part of the partition PRL and consider only those polyads which are sub-
hypergraphs of R(k−1). To this end we set

P̂
(k−1)
RL (R) =

{
P̂ (k−1) ∈ P̂

(k−1)
RL : P̂ (k−1) ⊆ R(k−1)

}
. (4.55)

Note that due to (RL.P2 ′) and the properties of PRL we have that{
Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL (R)

}
partitions Kk(R(k−1)) . (4.56)

To simplify the notation we set

dH ,R(i) = d(H(k)
i |R

(k−1)) .

The following claim, Claim 4.40 ensures the existence of a partition{
G

(k)
i (P̂ (k−1)) : i ∈ [s4.38]

}
of F (k) ∩Kk(P̂ (k−1)) for every P̂ (k−1) in P̂

(k−1)
RL (R) with the property that G(k)

i (P̂ (k−1))
is (ε2

4.38/4, dH ,R(i))-regular w.r.t. P̂ (k−1) for each i ∈ [s4.38]. This property will enable
us to use Proposition 4.32 to infer property (L.4.38.i ) for G(k)

i defined in the obvious
way.
In order to verify (L.4.38.ii ) we will need some additional information concerning the
{G(k)

i (P̂ (k−1)) : i ∈ [s4.38]}. Here our analysis splits into two cases and we define3

P̂
(k−1)
RL,H ·reg(R)=

{
P̂ (k−1)∈P̂(k−1)

RL (R) : H(k)
i is (δk,RL, ∗, rRL(aPRL))-regular

w.r.t. P̂ (k−1) for every i ∈ [s4.38]
}
. (4.57)

Below we present two claims, from which we infer the existence of the partition

3Note that we exclude the artificially added hypergraph H(k)
0 in the definition of P̂(k−1)

RL,H ·reg(R).
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{G(k)
i : i ∈ [s4.38]} with the desired properties (L.4.38.i ) and (L.4.38.ii ). We then give

the proofs of the claims.

Claim 4.40. For every P̂ (k−1) ∈ P̂
(k−1)
RL (R) there exist a partition

{G(k)
i (P̂ (k−1)) : i ∈ [s4.38]}

of F (k) ∩ Kk(P̂ (k−1)) such that for every i ∈ [s4.38]

G
(k)
i (P̂ (k−1)) is (ε2

4.38/4, dH ,R(i))-regular w.r.t. P̂ (k−1) . (4.58)

Moreover, if P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg(R), then the partition {G(k)

i : i ∈ [s4.38]} has the
additional property that for every i ∈ [s4.38]

∣∣∣G(k)
i (P̂ (k−1))4

(
H

(k)
i ∩ Kk(P̂

(k−1))
)∣∣∣

≤
(∣∣dH ,R(i)− d(H(k)

i |P̂
(k−1))

∣∣+ ν4.38
6

) ∣∣Kk(P̂ (k−1))
∣∣ (4.59)

In order to verify (L.4.38.ii ) we need further control over the quantity considered
in (4.59). The following claim ensures that “typically”

|dH ,R(i)− d(H(k)
i |P̂

(k−1))| ≤ ν4.38
6 .

For that we define for every i ∈ [s4.38]

P̂
(k−1)
RL,BAD(R, H(k)

i )

=
{
P̂ (k−1) ∈ P̂

(k−1)
RL (R) :

∣∣dH ,R(i)− d(H(k)
i |P̂

(k−1))
∣∣ > ν4.38

6

}
. (4.60)

Claim 4.41. For every i ∈ [s4.38]∣∣∣⋃{
Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL,BAD(R, H(k)

i )
}∣∣∣ ≤ ν4.38

3
∣∣Kk(R(k−1))

∣∣ . (4.61)

We finish the proof of Lemma 4.38 based on Claim 4.40 and Claim 4.41. We use
Claim 4.40 and set G(k)

i for every i ∈ [s4.38] equal to

G
(k)
i =

⋃{
G

(k)
i (P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL (R)

}
. (4.62)

From F (k) ⊆ Kk(R(k−1)) (cf. (L.4.38.c )) combined with (4.56) and Claim 4.40 we infer
that G (k) = {G(k)

i : i ∈ [s4.38]} defined in (4.62) is a partition of F (k).
Now, we have to verify (L.4.38.i ) and (L.4.38.ii ) for every fixed i ∈ [s4.38] and this

choice of G (k). So let i ∈ [s4.38] be fixed.
We start with (L.4.38.i ). We infer from (4.56) that the two families P̂

(k−1)
RL (R) and
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{G(k)
i (P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL (R)} satisfy Setup 4.31 for j = k, and t = |P̂(k−1)

RL (R)|.
Consequently, in view of (4.58) we can apply Proposition 4.32 with r = 1, δ = ε2

4.38/4,
and d = dH ,R(i), to infer

G
(k)
i is

(
ε4.38, dH ,R(i)

)
-regular w.r.t.

⋃{
P̂ (k−1) : P̂ (k−1) ∈ P̂

(k−1)
RL (R)

}
= R(k−1) ,

and, therefore, (L.4.38.i ) holds.

We now focus on (L.4.38.ii ) for a fixed i ∈ [s4.38]. We will estimate |G(k)
i 4H

(k)
i | as

the sum of the symmetric difference taken over all polyads P̂ (k−1) ∈ P̂
(k−1)
RL (R). In this

sum we distinguish among polyads in which some H(k) ∈ H (k) is “irregular”, in which
H

(k)
i has “bad” (atypical) density and the remaining “typical” polyads in which H

(k)
i

has the correct density and every H(k) ∈H (k) is regular. With this in mind we set

Dirreg(i) =
∑{∣∣∣G(k)

i (P̂ (k−1))4
(
H

(k)
i ∩ Kk(P̂

(k−1))
)∣∣∣ :

P̂ (k−1) ∈ P̂
(k−1)
RL (R) \ P̂

(k−1)
RL,H ·reg(R)

}
Dtyp(i) =

∑{∣∣∣G(k)
i (P̂ (k−1))4

(
H

(k)
i ∩ Kk(P̂

(k−1))
)∣∣∣ :

P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg(R) \ P̂

(k−1)
RL,BAD(R, H(k)

i )
}

Dbad(i) =
∑{∣∣∣G(k)

i (P̂ (k−1))4
(
H

(k)
i ∩ Kk(P̂

(k−1))
)∣∣∣ :

P̂ (k−1) ∈ P̂
(k−1)
RL,BAD(R, H(k)

i )
}

and note that
|G(k)

i 4H
(k)
i

∣∣ ≤ Dirreg(i) + Dtyp(i) + Dbad(i) . (4.63)

In the following we bound each of the terms of (4.63) separately. We start with
Dirreg(i). Due to (RL.H ) and the definition of P̂

(k−1)
RL,H ·reg(R) in (4.57) we have

∑{∣∣∣Kk(P̂ (k−1))
∣∣∣ : P̂ (k−1) ∈ P̂

(k−1)
RL (R) \ P̂

(k−1)
RL,H ·reg(R)

}
≤ s4.38 × δk,RLk

kmk .

Clearly, the left-hand side of the last inequality is an upper bound on Dirreg(i) and we
infer

Dirreg(i) ≤ s4.38δk,RLk
kmk

(4.48)
≤ ν4.38

6

k−1∏
h=2

d
(k

h)
h × mk

(4.52)
≤ ν4.38

3
∣∣Kk(R(k−1))

∣∣ . (4.64)

Next we consider Dtyp(i). Owing to (4.60), for each P̂ (k−1) 6∈ P̂
(k−1)
RL,BAD(R, H(k)

i ) we
have

|dH ,R(i)− d(H(k)
i |P̂

(k−1))| ≤ ν4.38
6 ,
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and we infer from (4.59) that for every P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg \ P̂

(k−1)
RL,BAD(R, H(k)

i )∣∣∣G(k)
i (P̂ (k−1))4

(
H

(k)
i ∩ Kk(P̂

(k−1))
)∣∣∣ ≤ ν4.38

3
∣∣Kk(R(k−1))

∣∣ .
Consequently, it follows directly from the definition of Dtyp(i) that

Dtyp(i) ≤ ν4.38
3

∑{∣∣∣Kk(P̂ (k−1))
∣∣∣ : P̂ (k−1) ∈ P̂

(k−1)
RL,H ·reg(R) \ P̂

(k−1)
RL,BAD(R, H(k)

i )
}

≤ ν4.38
3
∣∣Kk(R(k−1))

∣∣ . (4.65)

Finally, we derive the same bound for Dbad(i) directly from the definition of Dbad(i)
and (4.61)

Dbad(i) ≤ ν4.38
3
∣∣Kk(R(k−1))

∣∣ . (4.66)

We now conclude (L.4.38.ii ) from (4.64), (4.65), and (4.66), applied to (4.63). In order
to complete the proof of Lemma 4.38 we still have to verify Claim 4.40 and Claim 4.41,
which we will do below.

Proof of Claim 4.40. Let P̂ (k−1) ∈ P̂
(k−1)
RL (R) be fixed. First we recall (4.54). Below we

will apply the slicing lemma, Proposition 4.33 to sub-hypergraphs of P̂ (k−1). For that,
among others, we have to verify the assumption (i ) of Proposition 4.33, i.e.,

∣∣Kk(P̂ (k−1))
∣∣ ≥ mk

lnm . (4.67)

This, however, follows from (4.54) and m ≥ m4.38 ≥ exp(2t2k

RL) (cf. (4.51)). Therefore,
we don’t have to verify this condition in future applications of the slicing lemma. We
begin with the following consequence of the choice of ξ4.38 ≤ ε2

4.38/(192t2k

RL) in (4.50),
and Proposition 4.29;

F (k) ∩ Kk(P̂ (k−1)) is
(
ε2

4.38/96, d(F (k)|R(k−1))
)
-regular w.r.t. P̂ (k−1) . (4.68)

The proof of Claim 4.40 splits into two main cases.

Case 1 (d(F (k)|R(k−1)) > ε2
4.38/16). In this case we will treat “thin” hypergraphs H(k)

i

w.r.t. R(k−1) somewhat differently. To this end we set

RTHIN =
{
i ∈ [s4.38] : dH ,R(i) < ε2

4.38
192s4.38

}
. (4.69)

Due to the definition of RTHIN and the assumption of Case 1 we have

[s4.38] \RTHIN 6= ∅ . (4.70)

We distinguish two sub-cases of Case 1 depending on whether P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg(R).
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Case 1.1 (P̂ (k−1) 6∈ P̂
(k−1)
RL,H ·reg(R)). In this particular case it suffices to prove the exis-

tence of a partition {G(k)
i (P̂ (k−1)) : i ∈ [s4.38]} of F (k)∩Kk(P̂ (k−1)) which satisfies (4.58)

only. For this we will simply appeal to the slicing lemma, Proposition 4.33, to decom-
pose F (k) ∩ Kk(P̂ (k−1)) into hypergraphs with the appropriate densities (as required
for (4.58)). More precisely, we apply Proposition 4.33, with

j = k , s0 = s4.38 , r = 1 , δ0 = ε2
4.38
96 , %0 = ε2

4.38
16 , and p0 = ε2

4.38
192s4.38

to P̂ (k−1) and F (k) ∩ Kk(P̂ (k−1)) with

s =
∣∣[s4.38] \RTHIN

∣∣ , δ = ε2
4.38
96 , % = d(F (k)|R(k−1)) ,

and
pi = dH ,R(i)

d(F (k)|R(k−1))
for every i ∈ [s4.38] \RTHIN .

Due to (4.51) we have

m

aPRL
1

≥ mSL

(
k, s4.38, 1, ε

2
4.38
96 ,

ε2
4.38
16 ,

ε2
4.38

192s4.38

)

and the other conditions of Proposition 4.33 are immediate consequences of (4.67)–(4.69),
and the assumption of Case 1.1. By Proposition 4.33 we obtain a family of hypergraphs
T

(k)
0 ∪ {T (k)

i : i ∈ [s4.38] \RTHIN} satisfying the following properties

T
(k)
0 ∪ {T (k)

i : i ∈ [s4.38] \RTHIN} partitions F (k) ∩ Kk(P̂ (k−1)) , (4.71)

T
(k)
i is (ε2

4.38/32, dH ,R(i))-regular w.r.t P̂ (k−1) for i ∈ [s4.38] \RTHIN (4.72)

T
(k)
0 is (ε2

4.38/32, d
T

(k)
0

)-regular w.r.t. P̂ (k−1) , (4.73)

where

d
T

(k)
0

= d(F (k)|R(k−1))−
∑{

dH ,R(i) : i ∈ [s4.38] \RTHIN
} (4.69)
≤ ε2

4.38
192 . (4.74)

Fix some i0 ∈ [s4.38]\RTHIN (due to (4.70) such an i0 exists). We then define the family
G

(k)
i (P̂ (k−1)) for i ∈ [s4.38] as follows

G
(k)
i (P̂ (k−1)) =


∅ if i ∈ RTHIN

T
(k)
i ∪ T (k)

0 if i = i0

T
(k)
i otherwise.

From (4.71) we infer that {G(k)
i (P̂ (k−1)) ∈ [s4.38]} defined that way forms a partition of
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F (k) ∩ Kk(P̂ (k−1)) and it is left to verify (4.58) for every i ∈ [s4.38].
First, let i ∈ RTHIN. Since by definition, G(k)

i (P̂ (k−1)) = ∅ we infer that G(k)
i (P̂ (k−1))

is (ε′, 0)-regular w.r.t. P̂ (k−1) for all ε′ > 0. Since i ∈ RTHIN, dH ,R(i) < ε2
4.38/4. Conse-

quently, the (ε′, 0)-regularity for every ε′ > 0 yields that the hypergraph G(k)
i (P̂ (k−1)) is

(ε2
4.38/4, dH ,R(i))-regular (i.e., (4.58) holds for i ∈ RTHIN).
If i ∈ [s4.38] \ RTHIN and i 6= i0, then (4.72) and G

(k)
i (P̂ (k−1)) = T

(k)
i immediately

implies (4.58).
It is left to verify (4.58) for i = i0. In that case Proposition 4.30 applied to T

(k)
i0

and T (k)
0 implies by (4.72) and (4.73) that G(k)

i0
(P̂ (k−1)) is (ε2

4.38/16)-regular w.r.t. P̂ (k−1),
with density between dH ,R(i0) and dH ,R(i0) + ε2

4.38/192 (cf. (4.74)). Consequently,
G

(k)
i0

(P̂ (k−1)) is ((ε2
4.38/16 + ε2

4.38/192), dH ,R(i0))-regular with respect to P̂ (k−1), which
yields (4.58).
Having verified (4.58) for every i ∈ [s4.38], we conclude Case 1.1. ♦

Case 1.2 (P̂ (k−1) ∈ P̂
(k−1)
RL,H ·reg(R)). In this case we have to guarantee the existence of

a partition of F (k) ∩ Kk(P̂ (k−1)) which satisfies both (4.58) and (4.59) of Claim 4.40.
Due to (4.59) we have to be more careful in defining the desired partition. On the other
hand, the assumption in this case says that H(k)

i is δk,RL-regular w.r.t. P̂ (k−1) for every
i ∈ [s4.38]. This allows us to apply the slicing lemma, to any H(k)

i ∩ Kk(P̂ (k−1)).
Below we give a short outline how we use this additional assumption. To simplify the

notation we set for every i ∈ [s4.38]

dH ,P̂ (i) = d(H(k)
i |P̂

(k−1)) .

We first consider the hypergraphs H(k)
i which are too “fat” in P̂ (k−1), i.e., we consider

IFAT(P̂ ) =
{
i ∈ [s4.38] \RTHIN : dH ,P̂ (i) > dH ,R(i) + ε2

4.38
192s4.38

}
. (4.75)

We apply the slicing lemma to split each H(k)
i ∩Kk(P̂ (k−1)) for i ∈ IFAT(P̂ ) into a “main”

part M (k)
i of density dH ,R(i) and a “leftover” L(k)

i . The M (k)
i will be used to define

G
(k)
i (P̂ (k−1)). Furthermore, since each L(k)

i is regular, and since each H(k)
i ∩Kk(P̂ (k−1))

for i ∈ RTHIN is regular, as well, (by the assumption of the case), we will infer that their
union U (k) =

⋃
i∈IFAT(P̂ ) L

(k)
i ∪

⋃
i∈RTHIN

(H(k)
i ∩Kk(P̂ (k−1)) is regular with density “very

close” to
∆SLIM(P̂ ) =

∑{
dH ,R(i)− dH ,P̂ (i) : i ∈ ISLIM(P̂ )

}
, (4.76)

where

ISLIM(P̂ ) =
{
i ∈ [s4.38] \RTHIN : dH ,P̂ (i) < dH ,R(i)− ε2

4.38
192s4.38

}
. (4.77)

We then apply the slicing lemma again, this time to U (k), to split it into regular pieces of
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4.4 Proof of: RL(k) =⇒ RAL(k)

densities {dH ,R(i)−dH ,P̂ (i) : i ∈ ISLIM(P̂ )}. For i ∈ ISLIM(P̂ ) unitingH(k)
i ∩Kk(P̂ (k−1))

with the appropriate slice from U (k) then gives rise to the desired partition. We now
implement the technical details of this plan.

Let IFAT(P̂ ) and ISLIM(P̂ ) be defined as in (4.75) and (4.77). We set

IOK(P̂ ) =
{
i ∈ [s4.38] \RTHIN : dH ,P̂ (i) = dH ,R(i)± ε2

4.38
192s4.38

}
(4.78)

and note that [s4.38] is the disjoint union of IFAT(P̂ ), IOK(P̂ ), ISLIM(P̂ ), and RTHIN. We
will later need the following observation∣∣∣∣( ∑

i∈IFAT(P̂ )

(
dH ,P̂ (i)− dH ,R(i)

)
+

∑
i∈RTHIN

dH ,P̂ (i)
)
−

∑
i∈ISLIM(P̂ )

(
dH ,R(i)− dH ,P̂ (i)

)∣∣∣∣
=
∣∣∣∑{

dH ,P̂ (i) : i ∈ IFAT(P̂ ) ∪RTHIN ∪ ISLIM(P̂ )
}

−
∑{

dH ,R(i) : i ∈ IFAT(P̂ ) ∪ ISLIM(P̂ )
}∣∣∣

=
∣∣∣∑{

dH ,P̂ (i) : i ∈ [s4.38] \ IOK(P̂ )
}

−
∑{

dH ,R(i) : i ∈ [s4.38] \
(
IOK(P̂ ) ∪RTHIN

)}∣∣∣
=
∣∣∣d(F (k)|P̂ (k−1))− d(F (k)|R(k−1))

∣∣∣
+

∑
i∈IOK(P̂ )

∣∣∣dH ,R(i)− dH ,P̂ (i)
∣∣∣+ ∑

i∈RTHIN

dH ,R(i) .

Thus in view of (4.76) and (4.68), (4.69), and (4.78) we derive the following bound on
the left-hand side from above∣∣∣∣( ∑

i∈IFAT(P̂ )

(
dH ,P̂ (i)− dH ,R(i)

)
+

∑
i∈RTHIN

dH ,P̂ (i)
)
−∆SLIM(P̂ )

∣∣∣∣
≤ ε2

4.38
96 + ε2

4.38
192 + ε2

4.38
192 = ε2

4.38
48 . (4.79)

Case 1.2 splits into two sub-cases depending on the size of ∆SLIM(P̂ ).

Case 1.2.1 (∆SLIM(P̂ ) > ε2
4.38/12). For every i ∈ IFAT(P̂ ) we have, due to the assump-

tion of Case 1.2, that H(k)
i ∩ Kk(P̂ (k−1)) is (δk,RL, dH ,P̂ (i))-regular w.r.t. P̂ (k−1). We

apply the slicing lemma, Proposition 4.33, with

j = k , s0 = 2 , r = 1 , δ0 = δk,RL , %0 = ε2
4.38

192s4.38
, and p0 = ε2

4.38
192s4.38
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4 Strong regular partitions of hypergraphs

to P̂ (k−1) and H(k)
i ∩ Kk(P̂ (k−1)) with

s = 2 , δ = δk,RL , % = dH ,P̂ (i) ,

and
p1 = dH ,R(i)

dH ,P̂ (i) and p2 =
dH ,P̂ (i)− dH ,R(i)

dH ,P̂ (i) .

For this choice of parameters the assumptions of Proposition 4.33 are satisfied. Indeed
we have (4.67),

m

aPRL
1

≥ mSL

(
k, 2, 1, δk,RL,

ε2
4.38

192s4.38
,

ε2
4.38

192s4.38

)

by (4.51), % ≥ %0 since i ∈ IFAT(P̂ ) and (4.75), %0 ≥ 2δ = δk,RL (cf. (4.48)), p1 ≥ p0
since i 6∈ RTHIN by definition of IFAT(P̂ ), and p2 ≥ p0 since i ∈ IFAT(P̂ ).
Since p1 + p2 = 1, Proposition 4.33 yields a partition M (k)

i ∪L
(k)
i of H(k)

i ∩Kk(P̂ (k−1))
for every i ∈ IFAT(P̂ ), where

M
(k)
i is (3δk,RL, dH ,R(i))-regular w.r.t. P̂ (k−1) and (4.80)

L
(k)
i is (3δk,RL, (dH ,P̂ (i)− dH ,R(i)))-regular w.r.t. P̂ (k−1) . (4.81)

We now collect all “leftovers” and redistribute them among the hypergraphs H(k)
i

which are too “slim” in P̂ (k−1). For that we set

U (k) =
⋃

i∈IFAT(P̂ )

L
(k)
i ∪

⋃
i∈RTHIN

(
H

(k)
i ∩ Kk(P̂

(k−1))
)
.

From (4.81) and the assumption of Case 1.2 we infer with Proposition 4.30 that U (k) is
(3s4.38δk,RL)-regular w.r.t. P̂ (k−1). Moreover, by the choice of δk,RL in (4.48) we have
3s4.38δk,RL ≤ ε2

4.38/48 and by (4.79) it follows that

U (k) is
(
ε2

4.38/24,∆SLIM(P̂ )
)
-regular w.r.t. P̂ (k−1) . (4.82)

We then apply the slicing lemma again, this time with

j = k , s0 = s4.38 , r = 1 , δ0 = ε2
4.38
24 , %0 = ε2

4.38
12 , and p0 = ε2

4.38
192s4.38

,

to P̂ (k−1) and U (k) with

s =
∣∣ISLIM(P̂ )

∣∣ , δ = ε2
4.38
24 , % = ∆SLIM(P̂ ) ,

and
pi =

dH ,R(i)− dH ,P̂ (i)
∆SLIM(P̂ )

for every i ∈ ISLIM(P̂ ) .

94



4.4 Proof of: RL(k) =⇒ RAL(k)

Here the assumptions of Proposition 4.33 are consequences of (4.67) (showing (i ) of
Proposition 4.33), (4.82) (showing that U (k) is sufficiently regular), (4.51) (which yields
m/aPRL

1 is sufficiently large), the assumption of Case 1.2.1 (which yields % ≥ %0), and
the definition of ISLIM(P̂ ) in (4.77) combined with ∆SLIM(P̂ ) ≤ 1 (which yields pi ≥ p0).
Also, note that

∑
i∈ISLIM(P̂ ) pi = 1 and, consequently, Proposition 4.33 yields a parti-

tion {T (k)
i : i ∈ ISLIM(P̂ )} of U (k), which by (4.82) has density “close” to ∆SLIM(P̂ ), so

that
T

(k)
i is

(
ε2

4.38/8, (dH ,R(i)− dH ,P̂ (i))
)
-regular w.r.t. P̂ (k−1) . (4.83)

Finally, we are ready to define the family {G(k)
i (P̂ (k−1)) : i ∈ [s4.38]}. Set

G
(k)
i (P̂ (k−1)) =


∅ if i ∈ RTHIN

M
(k)
i if i ∈ IFAT(P̂ )

H
(k)
i ∩ Kk(P̂ (k−1)) if i ∈ IOK(P̂ )(
H

(k)
i ∩ Kk(P̂ (k−1))

)
∪ T (k)

i if i ∈ ISLIM(P̂ ) .

It is obvious that {G(k)
i (P̂ (k−1)) : i ∈ [s4.38]} defined this way is a partition of

F (k) ∩ Kk(P̂ (k−1)) .

We still have to verify (4.58) and (4.59).
We start with showing (4.58). First let i ∈ RTHIN. By definition of G(k)

i (P̂ (k−1))
it is (ε′, 0)-regular for every ε′ > 0 and, hence, it is ((ε′ + dH ,R(i)), dH ,R(i))-regular.
Therefore, (4.58) follows from

dH ,R(i) ≤ ε2
4.38/(192s4.38) < ε2

4.38/4

(cf. (4.69)).
If i ∈ IFAT(P̂ ), then (4.58) follows from (4.80) and 3δk,RL < ε2

4.38/4 (cf. (4.48)).
Now let i ∈ IOK(P̂ ). Then

G
(k)
i (P̂ (k−1)) = H

(k)
i ∩ Kk(P̂

(k−1))

is (δk,RL, dH ,P̂ (i))-regular due to the assumption of Case 1.2. Moreover, due to (4.78)

|dH ,P̂ (i)− dH ,R(i)| ≤ ε2
4.38/(192s4.38)

and, therefore, G(k)
i (P̂ (k−1)) is (δk,RL + ε2

4.38/(192s4.38), dH ,R(i))-regular. Now (4.58)
follows, since δk,RL + ε2

4.38/(192s4.38) ≤ ε2
4.38/4 (cf. (4.48)).

Finally, let i ∈ ISLIM(P̂ ). Proposition 4.30 applied to H(k)
i ∩ Kk(P̂ (k−1)) and Ti im-

plies that G(k)
i (P̂ (k−1)) is ((δk,RL + ε2

4.38/8), dH ,R(i))-regular (cf. assumption of Case 1.2
and (4.83)). Hence, (4.58) follows since δk,RL + ε2

4.38/8 ≤ ε2
4.38/4 (cf. (4.48)).

It is left to verify (4.59) for i ∈ [s4.38] to conclude this case, Case 1.2.1. Again our
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4 Strong regular partitions of hypergraphs

argument is different for each partition class RTHIN, IFAT(P̂ ), IOK(P̂ ), and ISLIM(P̂ ) of
the set [s4.38].
For i ∈ RTHIN, due to notational reasons it will be easier to verify (4.59) in terms of

the corresponding density

d
(
G

(k)
i (P̂ (k−1))4H(k)

i

∣∣∣P̂ (k−1)
)

=
∣∣G(k)

i (P̂ (k−1))4
(
H

(k)
i ∩ Kk(P̂ (k−1))

)∣∣∣∣Kk(P̂ (k−1))
∣∣ .

If i ∈ RTHIN, then dH ,R(i) ≤ ε2
4.38/(192s4.38) and, consequently,

d
(
G

(k)
i (P̂ (k−1))4H(k)

i

∣∣∣P̂ (k−1)
)

= dH ,P̂ (i)

≤ |dH ,R(i)− dH ,P̂ (i)|+ ε2
4.38/(192s4.38) .

Therefore, (4.59) follows for i ∈ RTHIN from ε2
4.38/(192s4.38) ≤ ν4.38/6.

If i ∈ IFAT(P̂ ), then by definition of G(k)
i (P̂ (k−1)) = M

(k)
i we have

|G(k)
i (P̂ (k−1))4 (H(k)

i ∩ Kk(P̂
(k−1)))| = |L(k)

i | .

Due to (4.81) we have

|L(k)
i | ≤ (dH ,P̂ (i)− dH ,R(i) + 3δk,RL)|Kk(P̂ (k−1))| ,

which combined with the choice of δk,RL ≤ ν4.38/18 (cf. (4.48)) yields (4.59) for i ∈
IFAT(P̂ ).
If i ∈ IOK(P̂ ), then (4.59) is a consequence of the definition G

(k)
i (P̂ (k−1)) = H

(k)
i ∩

Kk(P̂ (k−1)), which yields that the left-hand side in (4.59) is 0.
Finally, we consider the case i ∈ ISLIM(P̂ ). It follows from the definition of the

hypergraph G(k)
i (P̂ (k−1)) and (4.83) that

|G(k)
i (P̂ (k−1))4 (H(k)

i ∩ Kk(P̂
(k−1)))| = |T (k)

i |

≤
(
dH ,R(i)− dH ,P̂ (i) + ε2

4.38
8

)
|Kk(P̂ (k−1))|.

Consequently, (4.59) for i ∈ ISLIM(P̂ ) follows from (4.46).
Having verified (4.58) and (4.59) for every i ∈ [s4.38] we conclude the proof of

Claim 4.40 in Case 1.2.1. In order to finish Case 1.2, we have to consider the com-
plementing and rather trivial sub-case when ∆SLIM(P̂ ) is small. ♦

Case 1.2.2 (∆SLIM(P̂ ) ≤ ε2
4.38/12). In this case we set for every i ∈ [s4.38]

G
(k)
i (P̂ (k−1)) = H

(k)
i ∩ Kk(P̂

(k−1)) .

Therefore, (4.59) of Claim 4.40 holds trivially, and we only focus on (4.58). For that we
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4.4 Proof of: RL(k) =⇒ RAL(k)

note, that due to the assumption of Case 1.2 we have G(k)
i (P̂ (k−1)) is (δk,RL, dH ,P̂ (i))-

regular w.r.t. P̂ (k−1) and consequently for every i ∈ [s4.38]

G
(k)
i (P̂ (k−1)) is

(
δk,RL + |dH ,P̂ (i)− dH ,R(i)|, dH ,R(i)

)
-regular w.r.t. P̂ (k−1) . (4.84)

In what follows we show that∣∣∣dH ,R(i)− dH ,P̂ (i)
∣∣∣ ≤ ε2

4.38
6 for every i ∈ [s4.38] , (4.85)

which combined with (4.84) and δk,RL + ε2
4.38/6 ≤ ε2

4.38/4 (cf. (4.48)), yields (4.58) for
every i ∈ [s4.38].
First we consider i ∈ RTHIN. Due to (4.79) and the assumption of Case 1.2.2 we have

∑
i∈IFAT(P̂ )

(
dH ,P̂ (i)− dH ,R(i)

)
+

∑
i∈RTHIN

dH ,P̂ (i) ≤
( 1

12 + 1
48

)
ε2

4.38 <
ε2

4.38
6 , (4.86)

where all terms on the left-hand side are positive (cf. (4.75)). Therefore, dH ,P̂ (i) ≤
ε2

4.38/6 for every i ∈ RTHIN. Since dH ,R(i) ≤ ε2
4.38/(192s4.38) for every i ∈ RTHIN, (4.85)

holds for every i ∈ RTHIN.
If i ∈ IFAT(P̂ ), then (4.86) yields

0 ≤ dH ,P̂ (i)− dH ,R(i) ≤ ε2
4.38
6

and consequently (4.85) holds for those i.
For i ∈ IOK(P̂ ), (4.85) follows from the definition of IOK(P̂ ) in (4.78).
Finally, we consider i ∈ ISLIM(P̂ ). From the assumption of this case, Case 1.2.2, and

the definition of ∆SLIM(P̂ ) in (4.76) we infer

0 ≤ dH ,R(i)− dH ,P̂ (i) ≤ ε2
4.38
12 ,

which clearly implies (4.85) for i ∈ ISLIM(P̂ ).
This concludes Case 1.2.2 the last sub-case of Case 1. ♦

Case 2 (d(F (k)|R(k−1)) ≤ ε2
4.38/16). In this case we set

G
(k)
1 (P̂ (k−1)) = F (k) ∩ Kk(P̂ (k−1))

and
G

(k)
2 (P̂ (k−1)) = · · · = G(k)

s4.38(P̂ (k−1)) = ∅ .

Again we have to show (4.58) and (4.59) of Claim 4.40. We start with (4.58). Note
that G(k)

i (P̂ (k−1)) is (ε2
4.38/96)-regular w.r.t. P̂ (k−1) for every i ∈ [s4.38]. (This is trivial

for i ≥ 2 and follows from (4.68) for i = 1.) In order to show that G(k)
i (P̂ (k−1)) is
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also (ε2
4.38/4, dH ,R(i))-regular recall the assumption d(F (k)|R(k−1)) ≤ ε2

4.38/16, which
implies that dH ,R(i) ≤ ε2

4.38/16 for every i ∈ [s4.38]. Consequently, G(k)
i (P̂ (k−1)) is(

(ε2
4.38/96 + ε2

4.38/16), dH ,R(i)
)
-regular for every i ∈ [s4.38] and (4.58) follows.

In order to infer (4.59) we observe that for i ∈ [s4.38]

G
(k)
i (P̂ (k−1))4 (H(k)

i ∩ Kk(P̂
(k−1)) ⊆ F (k) ∩ Kk(P̂ (k−1)) .

Moreover, due to the assumption d(F (k)|R(k−1)) ≤ ε2
4.38/16 and (4.68) we have

|F (k) ∩ Kk(P̂ (k−1))| ≤ (ε2
4.38/16 + ε2

4.38/96)|Kk(P̂ (k−1))| .

Property (4.59) then follows from ε2
4.38/16 + ε2

4.38/96 ≤ ν4.38/6 (see (4.46)). ♦
In all cases we ensured the existence of a partition of F (k)∩Kk(P̂ (k−1)), which satisfies

the conclusions of Claim 4.40. This concludes the proof of Claim 4.40.

Proof of Claim 4.41. We assume the contrary, i.e.,∣∣∣⋃{
Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL,BAD(R, H(k)

i )
}∣∣∣ > ν4.38

3 |Kk(R(k−1))| .

Without loss of generality we may assume that P̂
(k−1)
RL,FAT(R, H(k)

i ) ⊆ P̂
(k−1)
RL,BAD(R, H(k)

i )
defined by

P̂
(k−1)
RL,FAT(R, H(k)

i ) =
{
P̂ (k−1) ∈ P̂

(k−1)
RL (R) : d(H(k)

i |P̂
(k−1)) > dH ,R(i) + ν4.38

6
}

satisfies∣∣∣⋃{
Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL,FAT(R, H(k)

i )
}∣∣∣≥ ν4.38

6
∣∣Kk(R(k−1))

∣∣ . (4.87)

The complementing case concerning

P̂
(k−1)
RL,SLIM(R, H(k)

i ) = P̂
(k−1)
RL,BAD(R, H(k)

i ) \ P̂
(k−1)
RL,FAT(R, H(k)

i )

instead of P̂
(k−1)
RL,FAT(R, H(k)

i ) is very similar. In what follows we will show that (4.87)
contradicts the (ν4.38/12, ∗, t2k

4.38)-regularity of H(k)
i w.r.t. R(k−1) (see (L.4.38.d )). Since

∣∣P̂(k−1)
RL,FAT(R, H(k)

i )
∣∣ ≤ |P̂(k−1)

RL | =
k−1∏
h=1

(aPRL
h )(

k
h) ≤ t2k

RL
(4.50)= t2

k

4.38

this contradiction follows once we establish the following inequality∣∣∣∣H(k)
i ∩

⋃{
Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL,FAT(R, H(k)

i )
}∣∣∣∣∣∣∣∣ ⋃{Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂

(k−1)
RL,FAT(R, H(k)

i )
}∣∣∣∣ ≥ dH ,R(i) + ν4.38

12 . (4.88)

98



4.5 Proof of: RAL(k) =⇒ RL(k + 1)

By definition of P̂
(k−1)
RL,FAT(R, H(k)

i ) we have d(H(k)
i |P̂ (k−1)) ≥ dH ,R(i) + ν4.38/6 for

every P̂ (k−1) ∈ P̂
(k−1)
RL,FAT(R, H(k)

i ) and, since

Kk(P̂
(k−1)
1 ) ∩ Kk(P̂

(k−1)
2 ) = ∅

for all distinct P̂ (k−1)
1 , P̂ (k−1)

2 ∈ P̂
(k−1)
RL,FAT(R, H(k)

i ) ⊆ P̂
(k−1)
RL (cf. 4.56) it suffices to

verify

(
dH ,R(i) + ν4.38

6

) min
{
|Kk(P̂ (k−1))| : P̂ (k−1) ∈ P̂

(k−1)
RL,FAT(R, H(k)

i )
}

max
{
|Kk(P̂ (k−1))| : P̂ (k−1) ∈ P̂

(k−1)
RL,FAT(R, H(k)

i )
}

≥ dH ,R(i) + ν4.38
12 (4.89)

to infer (4.88). In view of (4.54) we derive the following upper bound on the right-hand
side of (4.89)(

dH ,R(i) + ν4.38
6

) 1− ν4.38/48
1 + ν4.38/48 ≥

(
dH ,R(i) + ν4.38

6

)(
1− ν4.38

24

)
≥ dH ,R(i) + ν4.38

12 ,

which concludes the proof of Claim 4.41.

4.5 Proof of: RAL(k) =⇒ RL(k + 1)

In what follows we deduce RL(k + 1) (Lemma 4.34) from RAL(k) (Lemma 4.36). The
proof presented here resembles the main ideas from [FR02, RS04, Sze78] combined with
some techniques from [NRS06a]. In the next section we recall the concept of an index of
a partition (cf. Definition 4.43) and derive some facts about it. We then give the proof
of RL(k + 1) in Section 4.5.2.

4.5.1 The index of a partition

The following propositions center around the notion of an index. Throughout this section
we will work under the following setup.

Setup 4.42. Let R
(1)
0 be a fixed partition of some vertex set V and H (k+1) be a partition

of
(V
k

)
. Moreover, let X (k) be a partition refining Crossk(R

(1)
0 ), i.e., for every X(k) ∈

X (k) we have X(k) ⊆ Crossk(R
(1)
0 ) or X(k) ∩ Crossk(R

(1)
0 ) = ∅. Let U(X (k)) =⋃

{X(k) : X(k) ∈X (k)} ⊇ Crossk(R
(1)
0 ) be the set of k-tuples partitioned by X (k).

For any K ∈ U(X (k)) let X(k)(K) be that partition class of X (k) which contains K,
i.e.,

X(k)(K) = X(k) ∈X (k) so that K ∈ X(k) .
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4 Strong regular partitions of hypergraphs

Moreover, for every (k + 1)-tuple K ′ ∈
( V
k+1
)
satisfying

(K′
k

)
⊆ U(X (k)) we set

X̂(k)(K ′) =
⋃{

X(k)(K) : K ∈
(
K ′

k

)}

and

X̂ (k) =
{
X̂(k)(K ′) : K ′ ∈

(
V

k + 1

)
s.t.

(
K ′

k

)
⊆ U(X (k))

}
.

Note that every K ′ ∈ Crossk+1(R(1)
0 ) satisfies

(K′
k

)
⊆ U(X (k)), since X (k) refines

Crossk(R
(1)
0 ).

We then define the index of a partition X (k) (satisfying the above setup) with respect
to R

(1)
0 and H (k+1) as follows.

Definition 4.43 (Index). For V , R
(1)
0 , H (k+1), and X (k) as in Setup 4.42. We set

the index of X (k) w.r.t. R
(1)
0 and H (k+1) equal to

ind(X (k)) = 1
|V |k+1

∑
H(k+1)∈H (k+1)

∑
K′∈Crossk+1(R(1)

0 )

d2(H(k+1)∣∣X̂(k)(K ′)
)

= 1
|V |k+1

∑
H(k+1)∈H (k+1)

∑
X̂(k)∈X̂ (k)

X̂(k)⊆Crossk(R(1)
0 )

d2(H(k+1)∣∣X̂(k))∣∣Kk+1(X̂(k))
∣∣ .

The next observation follows straight from the definition of the index.

Fact 4.44. For all V , R
(1)
0 , H (k+1), and X (k) as in Setup 4.42, ind(X (k)) is bounded

between 0 and 1.

We now derive a few more propositions related to the index , which allow a simpler
presentation of the the proof of RL(k + 1).

Proposition 4.45. Let V , R
(1)
0 , and H (k+1) be given as in Setup 4.42. Suppose X (k) =

{X(k)
1 , . . . , X

(k)
s } and Y (k) = {Y (k)

1 , . . . , Y
(k)
s } are partitions which refine Crossk(R

(1)
0 ).

Moreover, let ν be a given positive real. If for every ` ∈ [s] we have

(i )
∣∣X(k)

` 4Y
(k)
`

∣∣ ≤ ν|V |k and

(ii ) if X(k)
` ⊆ Crossk(R

(1)
0 ) then Y (k)

` ⊆ Crossk(R
(1)
0 ),

then
ind(Y (k)) ≥ ind(X (k))−3(k + 1)sk+1|H (k+1)|ν . (4.90)
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4.5 Proof of: RAL(k) =⇒ RL(k + 1)

Proof. For every (k + 1)-tuple I ∈
( [s]
k+1
)
we set

X̂
(k)
I =

⋃
i∈I

X
(k)
i and Ŷ

(k)
I =

⋃
i∈I

Y
(k)
i .

From (i ) we infer that for every I ∈
( [s]
k+1
)
we have∣∣∣∣∣Kk+1(X̂(k)

I )
∣∣− ∣∣Kk+1(Ŷ (k)

I )
∣∣∣∣∣ ≤ ∣∣Kk+1(X̂(k)

I )4Kk+1(Ŷ (k)
I )

∣∣ ≤ ν(k + 1)|V |k+1 . (4.91)

Suppose the partition classes of H (k+1) are labeled H
(k+1)
1 , . . . ,H

(k+1)
h . For a more

concise notation we set for every I ∈
( [s]
k+1
)
and ζ ∈ [h]

d(ζ|X̂(k)
I ) = d

(
H

(k+1)
ζ

∣∣X̂(k)
I

)
and

d(ζ|Ŷ (k)
I ) = d

(
H

(k+1)
ζ

∣∣Ŷ (k)
I

)
.

The triangle inequality and (4.91) gives for every I ∈
( [s]
k+1
)
and ζ ∈ [h]∣∣∣∣∣Kk+1(X̂(k)

I )
∣∣d2(ζ|X̂(k)

I )−
∣∣Kk+1(Ŷ (k)

I )
∣∣d2(ζ|Ŷ (k)

I )
∣∣∣

≤
∣∣∣∣∣Kk+1(X̂(k)

I )
∣∣d(ζ|X̂(k)

I )−
∣∣Kk+1(Ŷ (k)

I )
∣∣d(ζ|Ŷ (k)

I )
∣∣∣d(ζ|X̂(k)

I )

+
∣∣∣∣∣Kk+1(Ŷ (k)

I )
∣∣− ∣∣Kk+1(X̂(k)

I )
∣∣∣∣∣d(ζ|Ŷ (k)

I )d(ζ|X̂(k)
I )

+
∣∣∣∣∣Kk+1(X̂(k)

I )
∣∣d(ζ|X̂(k)

I )−
∣∣Kk+1(Ŷ (k)

I )
∣∣d(ζ|Ŷ (k)

I )
∣∣∣d(ζ|Ŷ (k)

I )

≤
∣∣∣∣∣H(k+1)

ζ ∩ Kk+1(X̂(k)
I )

∣∣− ∣∣H(k+1)
ζ ∩ Kk+1(X̂(k)

I )
∣∣∣∣∣

+
∣∣∣∣∣Kk+1(Ŷ (k)

I )
∣∣− ∣∣Kk+1(X̂(k)

I )
∣∣∣∣∣

+
∣∣∣∣∣H(k+1)

ζ ∩ Kk+1(X̂(k)
I )

∣∣− ∣∣H(k+1)
ζ ∩ Kk+1(X̂(k)

I )
∣∣∣∣∣

≤ 3
∣∣∣∣∣Kk+1(Ŷ (k)

I )
∣∣− ∣∣Kk+1(X̂(k)

I )
∣∣∣∣∣

≤ 3ν(k + 1)|V |k+1 . (4.92)

Now let X̂ (k) and Ŷ (k) be defined as in Setup 4.42. Clearly, for every X̂(k) ∈ X̂ (k)

there exist a unique I ∈
( [s]
k+1
)
so that X̂(k) = X̂

(k)
I , while the converse fails to be true in

general. We define

S(X (k)) =
{
I ∈

(
[s]
k + 1

)
: X̂(k)

I ∈ X̂ (k) and X̂(k)
I ⊆ Crossk(R

(1)
0 )

}
.
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4 Strong regular partitions of hypergraphs

Then we have

ind(X (k)) = 1
|V |k+1

∑
ζ∈[h]

∑
I∈S(X (k))

∣∣Kk+1(X̂(k)
I )

∣∣d2(ζ|X̂(k)
I )

and applying (4.92) for every ζ ∈ [h] and I ∈ S(X (k)) yields

ind(X (k))

≤ 1
|V |k+1

∑
ζ∈[h]

∑
I∈S(X (k))

∣∣Kk+1(Ŷ (k)
I )

∣∣d2(ζ|Ŷ (k)
I ) + 3ν(k + 1)h

∣∣S(X (k))
∣∣ (4.93)

Due to assumption (ii ) we have that Ŷ (k)
I ⊆ Crossk(R

(1)
0 ) for every I ∈ S(X (k)).

Consequently, Ŷ (k)
I is either in Ŷ (k) or Kk+1(Ŷ (k)

I ) = ∅ for every I ∈ S(X (k)) and,
hence,

ind(Y (k)) ≥ 1
|V |k+1

∑
ζ∈[h]

∑{∣∣Kk+1(Ŷ (k)
I )

∣∣d2(ζ|Ŷ (k)
I ) : I ∈ S(X (k))

}
.

Therefore, the last inequality combined with (4.93) implies

ind(X (k)) ≤ ind(Y (k)) +3ν(k + 1)hsk+1 ,

which concludes the proof of Proposition 4.45.

The following proposition is a simple consequence of Jensen’s inequality.

Proposition 4.46. Suppose Ŷ (k) is an (m, k + 1, k)-hypergraph and {Ẑ(k)
1 , . . . , Ẑ

(k)
z }

is is a family of (m, k + 1, k)-hypergraphs such that the family {Kk+1(Ẑ(k)
i ) : i ∈ [z]}

partitions Kk+1(Ŷ (k)), then

d2(H(k+1)∣∣Ŷ (k))∣∣Kk+1(Ŷ (k))
∣∣ ≤ ∑

i∈[z]
d2(H(k+1)∣∣Ẑ(k)

i

)∣∣Kk+1(Ẑ(k)
i )

∣∣ (4.94)

for every hypergraph H(k+1) ⊆ Kk+1(Ŷ (k)).

Proof. For all K ′ ∈ Kk+1(Ŷ (k)) let Ẑ(k)(K ′) be the unique member from {Ẑ(k)
1 , . . . , Ẑ

(k)
z }

with the property K ′ ∈ Kk+1(Ẑ(k)(K ′)). Then we have

d
(
H(k+1)∣∣Ŷ (k)) =

∑
i∈[z] d

(
H(k+1)∣∣Ẑ(k)

i

)∣∣Kk+1(Ẑ(k)
i )

∣∣∣∣Kk+1(Ŷ (k))
∣∣

=
∑
K′∈Kk+1(Ŷ (k)) d

(
H(k+1)∣∣Ẑ(k)(K ′)

)
∣∣Kk+1(Ŷ (k))

∣∣ ,
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and Jensen’s inequality yields (4.94), since

d2(H(k+1)∣∣Ŷ (k))∣∣Kk+1(Ŷ (k))
∣∣ =

(∑
K′∈Kk+1(Ŷ (k)) d

(
H(k+1)∣∣Ẑ(k)(K ′)

))2

∣∣Kk+1(Ŷ (k))
∣∣

≤
∑

K′∈Kk+1(Ŷ (k))

d2(H(k+1)∣∣Ẑ(k)(K ′)
)

=
∑
i∈[z]

d2(H(k+1)∣∣Ẑ(k)
i

)∣∣Kk+1(Ẑ(k)
i )

∣∣ .

The following proposition is a corollary of Proposition 4.46 and asserts that the re-
finement of a family of partitions has the same or bigger index.

Proposition 4.47. Let V , R
(1)
0 , H (k+1), and Y (k) be given as in Setup 4.42 and let

Z (k) be a partition refining Crossk(R
(1)
0 ). If Z (k) ≺ Y (k), then ind(Y (k)) ≤ ind(Z (k)) .

Proof. We observe that for every Ŷ (k) ∈ Ŷ (k) satisfying Ŷ (k) ⊆ Crossk(R
(1)
0 ) the family

{Kk+1(Ẑ(k)) : Ẑ(k) ∈ Ẑ (k) and Ẑ(k) ⊆ Ŷ (k)}

partitions Kk+1(Ŷ (k)). Consequently, we can apply Proposition 4.46 to every H(k+1) ∈
H (k+1) and Ŷ (k) ∈ Ŷ (k), which yields the proposition.

In the proof of RL(k + 1) we will also deal with partitions which “almost” refine each
other (see Definition 4.48 below) and we need approximations of their index (Proposi-
tion 4.49).

Definition 4.48. Given V , R
(1)
0 , and Z (k) as in Setup 4.42. Moreover, let β ≥ 0 and let

T (k) be a partition refining Crossk(R
(1)
0 ). We say the partition T (k) is a β-refinement

of Z (k) if∑{∣∣T (k)∣∣ : T (k) ∈ T (k) , T (k) * Z(k) for every Z(k) ∈ Z (k)
}
≤ β|V |k .

The following proposition extends Proposition 4.47. A very similar statement ap-
peared in [FR02, Lemma 3.6].

Proposition 4.49. Let V , R
(1)
0 , H (k+1), and Z (k) be given as in Setup 4.42, let T (k)

be a β-refinement of Z (k) for some β ≥ 0. Then

ind(T (k)) ≥ ind(Z (k))−β .

Proof. We first define an auxiliary partition S (k) which is a refinement of T (k) and Z (k).
For that set

S (k) =
{
T (k) ∩ Z(k) : T (k) ∈ T (k) and Z(k) ∈ Z (k)

}
.
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4 Strong regular partitions of hypergraphs

Due to Proposition 4.47 we have

ind(Z (k)) ≤ ind(S (k)) . (4.95)

Let T̂
(k)

0 be the family of those polyads T̂ (k) ∈ T̂ (k) which are sub-hypergraphs of
Crossk(R

(1)
0 ) and for which there exists a T (k) ∈ T (k) such that

T (k) ⊆ T̂ (k) and T (k) * Z(k) for all Z(k) ∈ Z (k) .

Since H (k+1) is a partition of
( V
k+1
)
and T (k) is a β-refinement of Z (k) we have∑

H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d
(
H(k+1)|Ŝ(k))∣∣Kk+1(Ŝ(k))

∣∣ ≤ β|V |k+1 . (4.96)

Note that for every T̂ (k) 6∈ T̂
(k)

0 there exist some Ŝ(k) ∈ Ŝ (k) such that Ŝ(k) = T̂ (k).
Consequently,

ind(S (k))− ind(T (k))

= 1
|V |k+1

∑
H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

( ∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d2(H(k+1)|Ŝ(k))∣∣Kk+1(Ŝ(k))
∣∣

− d2(H(k+1)|T̂ (k))∣∣Kk+1(T̂ (k))
∣∣)

≤ 1
|V |k+1

∑
H(k+1)∈H (k+1)

∑
T̂ (k)∈T̂

(k)
0

∑
Ŝ(k)∈Ŝ (k)

Ŝ(k)⊆T̂ (k)

d
(
H(k+1)|Ŝ(k))∣∣Kk+1(Ŝ(k))

∣∣
(4.96)
≤ β ,

and the proposition follows from (4.95).

The last proposition in this section concerns the index of a family of partitions R
failing to satisfy (H ) of RL(k + 1). It can be shown that a certain refinement of R
has an index of at least the index of R plus some positive constant depending on δk+1.
This observation is the crucial idea in the proof of RL(k + 1). Since, it roughly shows
(together with Fact 4.44) that there are only finitely many refinements which violate (H ).
The same idea was already used in [FR02, RS04, Sze78].

Proposition 4.50. Let V , R
(1)
0 , and H (k+1) be given as in Setup 4.42 and let R(k)

be a partition refining Crossk(R
(1)
0 ). Moreover, let δ be a positive real and r ≥ 1 be an

integer. If ∣∣Crossk+1(R(1)
0 )

∣∣ ≥ (1− δ

2

)( |V |
k + 1

)
(4.97)
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4.5 Proof of: RAL(k) =⇒ RL(k + 1)

and if there is some H(k+1)
irr ∈H (k+1) which is (δ, ∗, r)-irregular4 w.r.t. R(k), then there

exists a partition X (k) of
( V
k+1
)
satisfying

(i ) X (k) ≺ R(k),

(ii ) |X (k)| ≤ |R(k)| × 2r×|R̂(k)|, and

(iii ) ind(X (k)) ≥ ind(R(k)) +δ4/2.

In the proof of Proposition 4.50 we will use the defect form of the Cauchy–Schwarz
inequality, which we state first (see, e.g., [Sze78] and Lemma 2.4 for similar statements).

Proposition 4.51 (Defect Cauchy–Schwarz inequality). Suppose ∅ 6= J ( I are some
index sets and di ≥ 0 is some non-negative real number for every i ∈ I. If

1
|J |

∑
j∈J

dj = 1
|I|
∑
i∈I

di + α (4.98)

for some (not necessarily non-negative) real α and if |α| ≥ δ and |J | ≥ δ|I| for some
δ ≥ 0, then ∑

i∈I
d2
i ≥

1
|I|

(∑
i∈I

di

)2
+ δ3|I| .

Proof of Proposition 4.50. Let R̂
(k)
irr,0 be the set of those polyads R̂(k) ∈ R̂(k) such that

H
(k+1)
irr is (δ, ∗, r)-irregular w.r.t. R̂(k) (4.99)

and

R̂(k) ⊆ Crossk(R
(1)
0 ). (4.100)

From the definition (δ, ∗, r)-regularity w.r.t. R(k) (see footnote 4) and (4.97) we infer
that ∑{∣∣Kk(R̂(k))∣∣ : R̂(k) ∈ R̂

(k)
irr,0

}
≥ δ

2 |V |
k+1 . (4.101)

For each R̂(k) ∈ R̂
(k)
irr,0 there exist a witness of irregularity, i.e., there exists

Q̂
(k)(R̂(k)) = {Q̂(k)

1 , . . . , Q̂(k)
r }

4Strictly speaking in Definition 4.14 we only defined the regularity with respect to a family of parti-
tions while here we only have a partition R(k) of k-tuples. However, we can easily alter the defi-
nition based on R̂(k) meaning that H(k+1) is (δ, ∗, r)-regular w.r.t. R(k) if

∣∣⋃{Kk(R̂(k)) : R̂(k) ∈
R̂(k) and H(k+1) is not (δ, ∗, r)-regular w.r.t. R̂(k)}∣∣ ≤ δ|V |k+1.
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4 Strong regular partitions of hypergraphs

such that Q̂(k)
i ⊆ R̂(k) for every i ∈ [r] and∣∣∣ ⋃

i∈[r]
Kk
(
Q̂

(k)
i

)∣∣∣ ≥ δ∣∣∣Kk+1
(
R̂(k))∣∣∣ > 0 , (4.102)

d
(
H

(k+1)
irr

∣∣Q̂(k)(R̂(k))
)

= d
(
H

(k+1)
irr

∣∣R̂(k))∣∣+ αR̂(k) (4.103)

for some αR̂(k) with |αR̂(k) | > δ, where

d
(
H(k)∣∣Q̂(k)(R̂(k))

)
=
∣∣H(k+1)

irr ∩
⋃
i∈[r]Kk+1(Q̂(k))

∣∣∣∣ ⋃
i∈[r]Kk+1(Q̂(k))

∣∣ .

Moreover, for every hypergraph R(k) ∈ R(k) we define the family W (k)(R(k)) of those
sub-hypergraphs of R(k) which are contained in some witness Q̂(k)(R̂(k)) and for which
R(k) ⊆ R̂(k). More precisely we set

W (k)(R(k)) =
{
R(k) ∩ Q̂(k) : R̂(k) ∈ R̂

(k)
irr,0 with R(k) ⊆ R̂(k) and Q̂(k) ∈ Q̂(k)(R̂(k))

}
.

We observe that W (k)(R(k)) might be empty (e.g., if R(k) * Crossk(R
(1)
0 )), that the

hypergraphs inW (k)(R(k)) are not necessarily disjoint, and that for every R(k) ∈ R(k) we
have the following trivial upper bound wR(k) on the number of hypergraphs inW (k)(R(k))

wR(k) =
∣∣W (k)(R(k))

∣∣ ≤ r × ∣∣R̂(k)∣∣ . (4.104)

We now define the promised refinement X (k) of R(k). We construct X (k) for each
R(k) ∈ R(k) separately. This partition of R(k) will be called X (k)(R(k)) and is given by
the atoms arising from the intersection of the hypergraphs inW (k)(R(k)) (i.e., the regions
of the Venn diagram of the family W (k)(R(k))). More precisely, if W (k)(R(k)) 6= ∅ let

W (k)(R(k)) = {W (k)
i : i ∈ [wR(k) ]}

be some enumeration of the elements of W (k)(R(k)) and set

X (k)(R(k)) =
{⋂
i∈I

W
(k)
i ∩

⋂
i∈Ic

(
R(k) \W (k)

i

)
: {I, Ic} partitions [wR(k) ]

}
.

If W (k)(R(k)) = ∅, then we set

X (k)(R(k)) = {R(k)} .

Collecting “contributions” for every R(k) ∈ R(k) in that way defines X (k)

X (k) =
⋃{

X (k)(R(k)) : R(k) ∈ R(k)
}
.
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Owing to the construction above, the partition X (k) clearly refines R(k), i.e., it sat-
isfies (i ) of Proposition 4.50. Moreover, (4.104) and the construction yields (ii ) of the
proposition.

It is left to verify (iii ). For that we first fix some R̂(k) ∈ R̂
(k)
irr,0 and consider the

witness of irregularity Q̂(k)(R̂(k)) = {Q̂(k)
1 , . . . , Q̂

(k)
r }. Since, X (k) refines R(k) it sat-

isfies the assumptions of Setup 4.42 with V , R
(1)
0 , and H (k+1). In particular, the

family of polyads X̂ (k) is well defined and for every K ′ ∈ Kk+1(R̂(k)) there exist a
X̂(k)(K ′) ∈ X̂ (k) so that K ′ ∈ Kk+1(X̂(k)). We are heading towards an application of
Proposition 4.51 with

I = Kk+1(R̂(k))) , J =
r⋃
i=1
Kk+1(Q̂(k)

i ) , and dK′ = d
(
H

(k+1)
irr |X̂(k)(K ′)

)
(4.105)

for every K ′ ∈ I and verify (4.98) below for αR̂(k) and the choice above

1
|J |

∑
K′∈J

dK′
(4.105)= d

(
H

(k+1)
irr |Q̂(k)(R̂(k))

)
(4.103)= d

(
H

(k+1)
irr |R̂(k))+ αR̂(k)

(4.105)= 1
|I|

∑
K′∈I

dK′ + αR̂(k) .

Since, |αR̂(k) | ≥ δ (cf. (4.103)) and

|J | (4.105)=
∣∣∣∣ r⋃
i=1
Kk+1(Q̂(k)

i )
∣∣∣∣ (4.102)
≥ δ

∣∣∣Kk+1(R̂(k))
∣∣∣ (4.105)= δ|I| ,

Proposition 4.51 yields

∑
K′∈I

d2
K′ ≥

1
|I|

( ∑
K′∈I

dK′

)2
+ δ3|I| . (4.106)

In view of (4.105) and since∑
K′∈Kk+1(R̂(k))

d
(
H

(k+1)
irr |X̂(k)(K ′)

)
=

∑
X̂(k)∈X̂ (k)

X̂(k)⊆R̂(k)

d
(
H

(k+1)
irr |X̂(k))∣∣Kk+1(X̂(k))

∣∣
= d

(
H

(k+1)
irr |R̂(k))∣∣Kk+1(R(k))

∣∣
we can reformulate inequality (4.106) to∑

K′∈Kk+1(R̂(k))

d2(H(k+1)
irr |X̂(k)(K ′)

)
≥

∑
K′∈Kk+1(R̂(k))

(
d2(H(k+1)

irr |R̂(k))+ δ3
)
. (4.107)
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Note that (4.107) holds for every irregular polyad R̂(k) ∈ R̂
(k)
irr,0. Summing over all such

polyads inequality (4.107) together with (4.101) yields

∑
R̂(k)∈R̂

(k)
irr,0

∑
K′∈Kk+1(R̂(k))

d2(H(k+1)
irr |X̂(k)(K ′)

)

≥
∑

R̂(k)∈R̂
(k)
irr,0

∑
K′∈Kk+1(R̂(k))

d2(H(k+1)
irr |R̂(k))+ δ4

2 |V |
k+1 .

Since X (k) refines R(k), we can apply Proposition 4.46 to every R̂(k) ∈ R̂(k) \ R̂
(k)
irr,0

which is contained in Crossk(R
(1)
0 ) and we infer

∑
K′∈Crossk+1(R(1)

0 )

d2(H(k+1)
irr |X̂(k)(K ′)

)
≥

∑
K′∈Crossk+1(R(1)

0 )

d2(H(k+1)
irr |R̂(K ′)

)
+ δ4

2 |V |
k+1 .

Finally, part (iii ) of Proposition 4.50 follows from the last inequality and Proposition 4.46
applied to every H(k+1) ∈H (k+1), H(k+1) 6= H

(k+1)
irr and every R̂(k) ∈ R̂(k) contained in

Crossk(R
(1)
0 ).

4.5.2 Proof of RL(k + 1)

In what follows we give a proof of RL(k + 1) based on RAL(k), or more precisely, based
on Lemma 4.36. In the next section, Section 4.5.2, we define all constants involved in the
proof of this implication. In Section 4.5.2 we state the so called index pumping lemma
and deduce RL(k + 1) from it. We then prove the index pumping lemma in Section 4.5.3.

Constants

We first recall the quantification of RL(k + 1), Lemma 4.34 for k + 1

∀ oRL, sRL, ηRL, δk+1,RL, rRL : Nk → N, δRL : Nk → (0, 1] ∃µRL > 0, tRL, nRL .

So let positive integers oRL and sRL, positive reals ηRL and δk+1,RL, and positive func-
tions rRL and δRL be given. Without loss of generality we assume that

ηRL ≤ δk+1,RL/2 and rRL and δRL are monotone in every variable. (4.108)

For the definition of the promised constants µRL, tRL, and nRL we need auxiliary
sequences of constants ti, oi, si, ηi, and νi and a sequence of functions εi : Nk−1 → (0, 1]
for i ≥ 0. First we define t0

t0 = min
{
t ≥

⌈
(k+1)k+1

2ηRL

⌉
: (oRL)! divides t

}
> oRL . (4.109)

Without loss of generality we may assume that the given function δRL is bounded for
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4.5 Proof of: RAL(k) =⇒ RL(k + 1)

every a = (a1, . . . , ak) ∈ Nk by

δRL(a) ≤
δ4
k+1,RL
24t0

<
2
t0

and δRL(a) ≤ 3
2ak

. (4.110)

For convenience we define the following integer-valued function f : N→ N

f(s) = min
{
x ∈ N : x ≥ 24t0s

δ4
k+1,RL

and (t0)! divides x
}
. (4.111)

We then define oi, si, ηi, and νi in terms of ti, δk+1,RL, ηRL, and rRL(ti, . . . , ti)

oi = t0 , si = t2
k

i 2rRL(ti,...,ti)t2
k+1

i , ηi = ηRL , and νi =
δ4
k+1,RL

12(k + 1)sRLs
k+1
i

. (4.112)

Moreover, for i ≥ 0 we define the function εi : Nk−1 → (0, 1] defined for every vector
a = (a1, . . . , ak−1) ∈ Nk−1 as

εi(a) = min
{
δRL(a1, . . . , ak−1, f(si))

18si
,

εDCL

(
k − 1, k, 1

2 , min
2≤j≤k−1

1
aj

)
,

1
2f(si)

,
δ4
k+1,RL
72sit0

}
, (4.113)

where εDCL is given by Theorem 4.19. With out loss of generality we assume that εi is
monotone in every variable.

We then define ti+1 using tRAL(o, s, η, ν, ε(·, . . . , ·)) given by Lemma 4.36 and set

ti+1 = max
{
ti , tRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
, f(si)

} (4.111)
≥ si . (4.114)

This concludes the definition of the sequences ti, oi, si, ηi, νi and εi : Nk−1 → (0, 1] for
i ≥ 0. We note that the sequence ti is monotone by definition. In a similar way we
define the monotone sequences µi for i ≥ 1 by setting µ1 = δRL(t0, . . . , t0) and

µi+1 = min
{
µi , µRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
,
δRL(

(k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1, f(si))

12t2k

i+1

}
(4.115)
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and we define ni by setting n1 = 1 and

ni+1 = max
{
ni , nRAL

(
oi, si, ηi, νi, εi(·, . . . , ·)

)
, ti+1mDCL

(
k − 1, k, 1

2 ,
1

ti+1

)
,

ti+1mSL
(
k, f(si), 1, εi

(
ti+1, . . . , ti+1

)
, 1
f(si) ,

1
f(si)

)
, (4.116)

ti+1mSL
(
k, f(si), 1, 1

3δRL
(
ti+1, . . . , ti+1, f(si)

)
,

1
2δRL

(
ti+1, . . . , ti+1, f(si)

)
, 1
f(si)

)}
.

We also define auxiliary constants

µ∗ = min
{

min
2≤j≤k

{
εDCL

(
j, j + 1, 1

2 ,
1
t0

)}
, µd8/δ4

k+1,RLe

}
,

n∗ = max
2≤j≤k

max
{
t0mDCL

(
j, j + 1, 1

2 ,
1
t0

)
, t0mSL

(
j + 1, oRL, 1, µ

∗

3 , 1,
1
oRL

)}
.

(4.117)

Finally, we fix the constants µRL, tRL, and nRL promised by Lemma 4.34 in the following
way

µRL = µ∗/(2t2k

0 ) , tRL = td8/δ4
k+1,RLe

, and nRL = max
{
n∗, nd8/δ4

k+1,RLe
}
. (4.118)

For the rest of this section let all constants and functions be fixed as stated in (4.109)–
(4.118).

The index pumping lemma

Now let a set V , a family of partitions O = O(k,aO) and a family of (k + 1)-uniform
hypergraphs H (k+1) satisfying the assumptions (a )–(c ) of RL(k + 1) be given, i.e.,

(RL.a ) |V | = n ≥ nRL and (tRL)! divided n,

(RL.b ) O = O(k,aO) is an (ηO , µRL,a
O)-equitable (for some ηO > 0) and oRL-bounded

family of partitions on V , and

(RL.c ) H (k+1) = {H(k+1)
1 , . . . ,H

(k+1)
sRL } is a partition of

( V
k+1
)
.

The main idea of the proof is to inductively define a sequence of families of partitions
Ri = Ri(k,aRi) on V for i ≥ 0, which will satisfy

(R0.1 ) R0 = {R(j)
0 }kj=1 is (ηRL, µd8/δ4

k+1,RLe
,aR0)-equitable and t0-bounded,

(R0.2 ) R0 ≺ O,

(Ri.1 ) Ri = {R(j)
i }kj=1 is an (ηRL, δRL(aRi),aRi)-equitable and ti-bounded, and

(Ri.2 ) Ri ≺ R0.
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Note that due to the fact that µd8/δ4
k+1,RLe

≤ δRL(aR0) (cf. (4.115)), a family of parti-
tions R0 which satisfies (R0.1 ) and (R0.2 ) also satisfies (Ri.1 ) and (Ri.2 ) for i = 0.
Moreover, we will show that if there is a hypergraph H(k+1) ∈ H (k+1) which is not

(δk+1,RL, ∗, r(aRi))-regular w.r.t. Ri, then Ri+1 can be chosen in such a way that the
index increases by δ4

k+1,RL/8, More precisely we will show the following so-called index
pumping lemma, which proof merges some ideas from [RS04] and [NRS06a, Cleaning
Phase I].

Lemma 4.52 (Index pumping lemma). Let 0 ≤ i < d8/δ4
k+1,RLe be an integer and let R0

be a family of partitions satisfying (R0.1 ) and (R0.2 ).
If Ri = Ri(k,aRi) satisfies (Ri.1 ) and (Ri.2 ) and fails to satisfy (H ) of RL(k + 1) for

r(aRi), then there exists a family of partitions Ri+1 = Ri+1(k,aRi+1) satisfying (Ri+1.1 )
and (Ri+1.2 ) and

ind(R(k)
i+1) ≥ ind(R(k)

i ) +δ4
k+1,RL/8 , (4.119)

where the index is defined with respect to R
(1)
0 and H (k+1).

Next we deduce RL(k + 1) (i.e., Lemma 4.34) from Lemma 4.52. We then give the
proof of Lemma 4.52 in Section 4.5.3.

Proof of Lemma 4.34. Suppose all constants are fixed as in Section 4.5.2 and let V ,
O = O(k,aO), and H (k+1) satisfying (RL.a )–(RL.c ) be given. We have to ensure the
existence of a family of partitions P = P(k,aP) on V satisfying

(RL.P1 ) P is (ηRL, δRL(aP),aP)-equitable and tRL-bounded,

(RL.P2 ) P ≺ O, and

(RL.H ) H
(k+1)
i is (δk+1,RL, ∗, rRL(aP))-regular w.r.t. P for every i ∈ [sRL].

Construction of a family R0. In view of Lemma 4.52 we first need an appropriate
family of partitions R0. We distinguish two cases depending on the size of ηO .
Case 1 (ηO ≤ ηRL). In this case we set R0 = O. It then follows from (RL.b ) that R0 is
(ηRL, µd8/δ4

k+1,RLe
,aR0)-equitable, since µRL ≤ µ∗ ≤ µd8/δ4

k+1,RLe
by (4.117) and (4.118).

Also R0 = O is oRL-bounded by (RL.b ) and, hence, it is t0-bounded by (4.109). There-
fore, R0 chosen this way satisfies (R0.1 ). Moreover, (R0.2 ) holds trivially. ♦

Case 2 (ηO > ηRL). We construct a refinement R0 of O so that

|Crossk+1(R(1)
0 ) | ≥ (1− ηRL)

(
n

k + 1

)
.

We construct R0 = {R(1)
0 , . . . ,R

(k)
0 } inductively. More precisely we show for every

j = 1, . . . , k that the following statement (Sj ) holds.

(Sj ) there exists a
(
ηRL, µ

∗, (aR0
1 , . . . , aR0

j )
)
-equitable and t0-bounded family of parti-

tions R0(j) = {R(1)
0 , . . . ,R

(j)
0 } on V , which refines O(j) = {O(1), . . . ,O(j)}.
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Since, µ∗ ≤ µd8/δ4
k+1,RLe

it then follows that there is a family of partitions R0 so that
(R0.1 ) and (R0.2 ) are satisfied.
Induction start j = 1. We split each vertex class W ∈ O(1) into t0/aO

1 classes of size
n/(aO

1 t0), where t0 is given in (4.109). Note that t0/aO
1 is an integer by definition of t0 and

oRL ≥ aO
1 . Moreover, n/(aO

1 t0) is an integer due to the choice of tRL ≥ t0 > oRL ≥ aO
1

(cf. (4.118) and (4.109)) and (RL.a ). This defines the partition R
(1)
0 with aR0

1 = t0.
Note that∣∣∣( V

k + 1

)
\ Crossk+1(R(1)

0 )
∣∣∣ ≤ t0

(
n/t0

2

)
nk−1 ≤ nk+1

2t0

(4.109)
≤ ηRL

(
n

k + 1

)
.

Consequently, R
(1)
0 is an

(
ηRL, µ

∗, (aR0
1 )
)
-equitable, t0-bounded refinement of O(1). This

establishes the induction start.
Induction step. Assume there exist a

(
ηRL, µ

∗, (aR0
1 , . . . , aR0

j )
)
-equitable, t0-bounded

family of partitions R0(j) = {R(1)
0 , . . . ,R

(j)
0 } refining O(j). We define R

(j+1)
0 for each

polyad R̂(j) ∈ R̂
(j)
0 . We set aR0

j+1 = aO
j+1 and in view of statement (Sj+1 ) we have to show

that for every R̂(j) ∈ R̂
(j)
0 there exists a partition {R(j+1)

a : a ∈ [aR0
j+1]} of Kj+1(R̂(j)) so

that for every a ∈ [aR0
j+1] the following two assertions hold

(I) R
(j+1)
a is (µ∗, 1/aR0

j+1)-regular w.r.t. R̂(j) and

(II) either R(j+1)
a ⊆ Crossj+1(R(1)

0 ) \Crossj+1(O(1))
or we have R(j+1)

a ⊆ O(j+1) for some O(j+1) ∈ O(j+1).

So let R̂(j) ∈ R̂
(j)
0 and let R be the corresponding (n/aR0

1 , j + 1, j)-complex, i.e.,
R = R(J ′) = {R̂(h)(J ′)}jh=1 for any J ′ ∈ Kj+1(R̂(j)) (see (4.1)). From the induction
assumption we infer that R is an (µ∗, (1/aR0

1 , . . . , 1/aR0
j ))-regular complex. Therefore,

by the choice of µ∗ and nRL ≥ n∗ in (4.117) and (4.118) we can apply Theorem 4.19 and
infer that ∣∣Kj+1(R̂(j))

∣∣ ≥ 1
2

j∏
h=2

(
1
aR0
h

)(j+1
h )
×
(

n

aR0
1

)j+1

≥ nj+1

2t2j+1
0

. (4.120)

Case 2.1 (R̂(j) * Crossj(O(1))). In this case we simply apply the slicing lemma, Propo-
sition 4.33, with

jSL = j + 1 , s0,SL = oRL , rSL = 1 , δ0,SL = µ∗

3 , %0,SL = 1 , and p0,SL = 1
oRL

,

to P̂ (j)
SL = R̂(j) and P (j+1)

SL = Kj+1(R̂(j)) with

sSL = aO
j+1 , δSL = µ∗

3 , %SL = 1 ,
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and
pξ,SL = 1

aO
j+1

for every ξ ∈ [aO
j+1] .

It follows from (4.120) and the choice of n∗ in (4.117) that all assumptions of Proposi-
tion 4.33 are satisfied for this choice of parameters. Consequently, there exist a partition
of Kj+1(R̂(j)) into aO

j+1 distinct (n/aR0
1 , j+1, j+1)-hypergraphs which are (µ∗, 1/aR0

j+1)-
regular w.r.t. R̂(j), i.e., (I) holds. Moreover, since we assume R̂(j) * Crossj(O(1)) each
of these (n/aR0

1 , j+1, j+1)-hypergraphs is contained in Crossj+1(R(1)
0 ) \Crossj+1(O(1))

and (II) holds. ♦

Case 2.2 (R̂(j) ⊆ Crossj(O(1))). Then there exists some Ô(j) ∈ Ô(j) such that R̂(j) ⊆
Ô(j), since R0(j) ≺ O(j) by induction assumption. Moreover, there exists a family

{O(j+1)
1 , . . . , O

(j+1)
aO

j+1
} ⊆ O(j+1)

of (µRL, 1/aO
j+1)-regular (w.r.t. Ô(j)) (n/aO

1 , j + 1, j + 1)-hypergraphs which partition
Kj+1(Ô(j)). Due to (4.120), Proposition 4.29 yields that the hypergraph Kj+1(R̂(j)) ∩
O

(j+1)
a is (2t2j+1

0 µRL, 1/aO
j+1)-regular w.r.t. R̂(j) for every a ∈ [aO

j+1]. Therefore, from the
choice of µRL in (4.118) we infer that

{R(j+1)
a = Kj+1(R̂(j)) ∩O(j+1)

a : a ∈ [aO
j+1]}

is a partition of Kj+1(R̂(j)) which satisfies (I). Moreover, (II) holds trivially. ♦

In both cases, Case 2.1 and Case 2.2, we defined a partition of Kj+1(R̂(j)) which
satisfies (I) and (II). Repeating the argument for every R̂(j) ∈ R̂

(j)
0 gives rise to R

(j+1)
0

and establishes the induction step. Consequently, there exist a partition R0 which
satisfies (R0.1 ) and (R0.2 ) in this case, Case 2. ♦
Having constructed and appropriate family of partitions R0, the rest of the proof of

Lemma 4.34 is based on successive applications of Lemma 4.52. This idea was introduced
by Szemerédi in [Sze78] and also used in [FR02, FRRT06, Gow07, Gre05, GT08, Koh97,
RS04].
Since R0 was constructed in such a way that (R0.1 ) and (R0.2 ) hold, we note that

due to
µd8/δ4

k+1,RLe
(4.115)
≤ δRL(t0, . . . , t0)

(4.108)
≤ δRL(aR0),

and t0 ≤ tRL (cf. (4.114) and (4.118)) the partition P = R0 satisfies (RL.P1 ) and
(RL.P2 ). If (RL.H ) holds as well, then we are done.
Otherwise we iterate Lemma 4.52 and infer the existence of a sequence of partitions

Ri for i ≥ 0, which satisfy (Ri.1 ) and (Ri.2 ). It then follows from Fact 4.44 and (4.119)
that there must be some 0 ≤ i0 ≤ d8/δ4

k+1,RLe such that Ri0 also admits (RL.H )
for rRL(aRi0 ). Since ti ≤ tRL (cf. (4.114) and (4.118)) and and Ri ≺ R0 ≺ O (cf. (Ri.2 )
and (R0.2 )) for every 0 ≤ i ≤ d8/δ4

k+1,RLe, P = Ri0 satisfies (RL.P1 ), (RL.P2 ), and
(RL.H ). This concludes the proof of Lemma 4.34 based on Lemma 4.52.
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4.5.3 Proof of the index pumping lemma

We prove Lemma 4.52 in this section. The proof is based on Lemma 4.36 and the
propositions from Section 4.5.1.

Proof of Lemma 4.52. Recall the definition of all the constants and functions in (4.109)–
(4.118) in Section 4.5.2. Let 0 ≤ i < d8/δ4

k+1,RLe be some integer and suppose Ri =
Ri(k,aRi) satisfies (Ri.1 ) and (Ri.2 ) and fails to satisfy (H ) of RL(k + 1) for rRL(aRi).
In other words

(¬Hi ) there exist some s0 ∈ [sRL] such that H(k+1)
s0 is

(
δk+1,RL, ∗, rRL(aRi)

)
-irregular

w.r.t. Ri.

Then V , R
(1)
0 , H (k+1), and R

(k)
i satisfy the assumptions of Proposition 4.50 with

δ = δk+1,RL and r = rRL(aRi), due to (R0.1 ) combined with (4.108) and (¬Hi ). Con-
sequently, there exists a partition X (k) of

(V
k

)
satisfying the conclusions (i )–(iii ) of

Proposition 4.50, i.e.,

(P.4.50.i ) X (k) ≺ R
(k)
i ≺ R

(k)
0 (cf. (Ri.2 ) for the second ‘≺’),

(P.4.50.ii ) |X (k)| ≤ |R(k)
i | × 2rRL(aRi )×|R̂(k)

i | ≤ si (due to the ti-boundedness of Ri

in (Ri.1 ), the monotonicity of rRL(·, . . . , ·) in (4.108), and the definition
of si in (4.112)), and

(P.4.50.iii ) ind(X (k)) ≥ ind(R(k)
i ) +δ4

k+1,RL/2.

The next step is to apply RAL(k), Lemma 4.36 to V , O = R0, and H (k) = X (k), with
constants oi, si, ηi, νi, and the function εi : Nk−1 → (0, 1] defined in (4.109)–(4.113).
For this we have to check the assumptions of Lemma 4.36;

(RAL.a ) |V | = n ≥ nRAL(oi, si, ηi, νi, εi(·, . . . , ·)), where the integer n is a multiple of
(tRAL(oi, si, ηi, νi, εi(·, . . . , ·)))!,

(RAL.b ) R0 = R0(k,aR0) is a (η′, µ′,aR0)-equitable family of partitions (for some
constant η′ > 0 and µ′ ≤ µRAL(oi, si, ηi, νi, εi(·, . . . , ·))) and oi-bounded, and

(RAL.c ) s′ = |X (k)| ≤ si and X (k) ≺ R
(k)
0 .

Property (RAL.a ) is implied by assumption (RL.a ) and the fact that for i < d8/δ4
k+1,RLe

nRL
(4.118)
≥ nd8/δ4

k+1,RLe
(4.116)
≥ ni+1

(4.116)
≥ nRAL(oi, si, ηi, νi, εi(·, . . . , ·))

and that the same line of inequalities holds with n replaced by t.
It follows from the definition of oi in (4.112) and (R0.1 ) that R0 is oi-bounded. More-

over, (R0.1 ) and (4.115) imply the required equitability of R0, which yields (RAL.b ).
Finally, (RAL.c ) follows immediately from (P.4.50.i ) and (P.4.50.ii ).
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Consequently, we can apply Lemma 4.36 to V , O = R0, and H (k) = X (k), with
constants oi, si, ηi, νi, and εi : Nk−1 → (0, 1]. Lemma 4.36 then asserts that there exist
a family of partitions S = S (k−1,aS ), and a partition Y (k) = {Y (k)

1 , . . . , Y
(k)
s′ } of

(V
k

)
so that

(RAL.S1 ) S is ti+1-bounded, (ηi, εi(aS ),aS )-equitable family (since by (4.114) we
have ti+1 ≥ tRAL(oi, si, ηi, νi, εi(·, . . . , ·))),

(RAL.S2 ) S ≺ R0(k − 1) = {R(j)
0 }

k−1
j=1

(RAL.Y1 ) Y (k)
` is perfectly (εi(aS ))-regular w.r.t. S for every ` ∈ [s′],

(RAL.Y2 )
∣∣Y (k)
` 4X

(k)
`

∣∣ ≤ νink for every ` ∈ [s′], and

(RAL.Y3 ) if X(k)
` ⊆ Crossk(R

(1)
0 ) then Y

(k)
` ⊆ Crossk(R

(1)
0 ) for every ` ∈ [s′] and

Y (k) ≺ R
(k)
0 ≺ Crossk(R

(1)
0 ).

In particular, (P.4.50.i ) and (RAL.Y3 ) show that both partitions X (k) and Y (k) re-
fine Crossk(R

(1)
0 ), respectively. Hence, due to (RAL.Y2 ) and the first part of (RAL.Y3 )

the assumptions of Proposition 4.45 are satisfied for V , R
(1)
0 , H (k+1), X (k), Y (k),

sP.4.45 = s′ ≤ si, and νP.4.45 = νi and, consequently, Proposition 4.45 yields

ind(Y (k)) ≥ ind(X (k))−3(k + 1)sRLs
k+1
i νi

(4.112)
≥ ind(X (k))− δ4

k+1,RL
4

(P.4.50.iii )
≥ ind(R(k)

i ) + δ4
k+1,RL

4 . (4.121)

Our next goal is to construct a partition Z (k) of Crossk(S (1)) which forms a family
of partitions together with S (k − 1,aS ). This means, that such an Z (k) has to satisfy
two conditions – it must partition Crossk(S (1)) and it must refine

{Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)} .

The partition Y (k) fails to satisfy any of these two requirements. It partitions all of
(V
k

)
(rather than only Crossk(S (1))) and, more importantly, we cannot ensure that it refines
{Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)}. However, we easily “fix” these shortcomings of Y (k)

and define Z (k) as follows

Z (k) =
{
Y (k) ∩ Kk(Ŝ(k−1)) : Y (k) ∈ Y (k) and Ŝ(k−1) ∈ Ŝ (k−1)} . (4.122)

For convenience we set for every Ŝ(k−1) ∈ Ŝ (k−1)

Z (k)(Ŝ(k−1)) = {Z(k) ∈ Z (k) : Z(k) ∩ Kk(Ŝ(k−1)) 6= ∅} . (4.123)

The partition Z (k) has the following properties which we verify below.

(Z1 ) Z (k) partitions Crossk(S (1)) and Z (k)≺{Kk(Ŝ(k−1)) : Ŝ(k−1)∈Ŝ (k−1)},
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4 Strong regular partitions of hypergraphs

(Z2 ) |Z (k)(Ŝ(k−1))| ≤ si for every Ŝ(k−1) ∈ Ŝ (k−1), and

(Z3 ) for every Ŝ(k−1) ∈ Ŝ (k−1) and Z(k) ∈ Z (k)(Ŝ(k−1)) we have that Z(k) is (εi(aS ))-
regular w.r.t. Ŝ(k−1),

(Z4 ) Z (k) ≺ R
(k)
0 ≺ Crossk(R

(1)
0 ), and

(Z5 ) ind(Z (k)) ≥ ind(R(k)
i ) +δ4

k+1,RL/4 .

Property (Z1 ) follows from the fact that Y (k) partitions all of
(V
k

)
and the definition

of Z (k) in (4.122). Assertion (Z2 ) is an immediate consequence of (4.123) and |Y (k)| =
s′ ≤ si (cf. (RAL.c )). We also note that (Z3 ) is simply a reformulation of (RAL.Y1 ).
Hence, it is only left to verify (Z4 ) and (Z5 ). First we consider (Z4 ). For that

we first note that {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)} partitions a superset of Crossk(R
(1)
0 )

due to (RAL.S2 ). Consequently, (Z4 ) follows from the definition of Z (k) in (4.122)
and (RAL.Y3 ).
Finally we focus on (Z5 ). For that we consider the restriction of Y (k) on Crossk(R

(1)
0 ),

i.e.,
Y (k)∣∣

Crossk(R(1)
0 ) =

{
Y (k) ∈ Y (k) : Y (k) ⊆ Crossk(R

(1)
0 )

}
.

It follows from Definition 4.43 that the index of Y (k)∣∣
Crossk(R(1)

0 ) w.r.t. R
(1)
0 and H (k+1)

satisfies

ind
(
Y (k)∣∣

Crossk(R(1)
0 )
)

= ind(Y (k))
(4.121)
≥ ind(R(k)

i ) + δ4
k+1,RL

4 . (4.124)

On the other hand, in view of (Z4 ) the restriction of Z (k) on Crossk(R
(1)
0 )

Z (k)∣∣
Crossk(R(1)

0 ) =
{
Z(k) ∈ Z (k) : Z(k) ⊆ Crossk(R

(1)
0 )

}
is a partition of Crossk(R

(1)
0 ) and, therefore,

ind(Z (k)) = ind
(
Z (k)∣∣

Crossk(R(1)
0 )
)
.

Moreover, we observe that

Z (k)∣∣
Crossk(R(1)

0 ) ≺ Y (k)∣∣
Crossk(R(1)

0 )

due to (4.122). Finally, Proposition 4.47 then yields (Z5 )

ind(Z (k)) = ind
(
Z (k)∣∣

Crossk(R(1)
0 )
)

≥ ind
(
Y (k)∣∣

Crossk(R(1)
0 )
) (4.124)
≥ ind(R(k)

i ) + δ4
k+1,RL

4 .
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Having verified (Z1 )–(Z5 ) we come to the last part of the proof and define the family
of partitions Ri+1. The careful reader (who managed not to get lost in details so far)
will note that due to (Z1 ) the partition Z (k) together with S (k−1,aS ) forms a family
of partitions on V . Moreover, due to (RAL.S2 ) and (Z4 ) it satisfies (Ri+1.2 ) and due
to (RAL.S1 ), (Z2 ), and (Z3 ) it “almost” satisfies (Ri+1.1 ). But unfortunately, the
densities of the Z(k) ∈ Z (k) vary and thus this family of partitions Z (k) ∪S (k− 1,aS )
is not equitable. In the final step of this proof we derive Ri+1 from S (k−1,aS )∪Z (k) by
“cleaning the imperfections” of Z (k) mentioned above. For that we will use the following
claim, which somewhat dry proof is based on repeated applications of Proposition 4.33.

Claim 4.53. There exist a partition T (k) of Crossk(S (1)) such that

(T1 ) T (k) ≺ {Kk(Ŝ(k−1)) : Ŝ(k−1) ∈ Ŝ (k−1)},

(T2 )
∣∣{T (k) ∈ T (k) : T (k) ⊆ Kk(Ŝ(k−1))

}∣∣ = f(si) for every fixed Ŝ(k−1) ∈ Ŝ (k−1),

(T3 ) every T (k) ∈ T (k) is
(
δRL

(
aS , f(si)

)
, 1/f(si)

)
-regular w.r.t. unique Ŝ(k−1) ∈

Ŝ (k−1) which satisfies T (k) ⊆ Kk(Ŝ(k−1)),

(T4 ) T (k) ≺ R
(k)
0 , and

(T5 ) T (k) is a (δ4
k+1,RL/8)-refinement of Z (k).

We first finish the proof of Lemma 4.52 and give the proof of Claim 4.53, which makes
use of (Z1 )–(Z4 ), afterwards. In order to conclude the proof of Lemma 4.52 we have to
define a family of partitions Ri+1 on V , which satisfies (Ri+1.1 ), (Ri+1.2 ), and (4.119).
With this in mind we set

aRi+1 =
(
aS

1 , . . . , a
S
k−1, f(si)

)
,

R
(j)
i+1 =

{
S (j) for j ∈ [k − 1]
T (k) for j = k

, and Ri+1(k,aRi+1) =
{
R

(j)
i+1
}k
j=1 .

We now first show that Ri+1 = Ri+1(k,aRi+1) is a family of partitions on V . Due to
the fact that S (k − 1,aS ) is a family of partitions on V , we only have to verify that
R

(k)
i+1 = T (k) fulfills both requirements of part (ii ) of Definition 4.8. However, this is

immediate from (T1 ) and (T2 ).
Next we consider (Ri+1.1 ). Note that (RAL.S1 ) (combined with (4.113)) and (T3 )

show that Ri+1 is (ηRL, δRL(aRi+1),aRi+1)-equitable. Moreover, (RAL.S1 ) and the
choice of ti+1 ≥ f(si) in (4.114) imply maxj∈[k] a

Ri+1
j ≤ ti+1. In other words, Ri+1

is ti+1-bounded and (Ri+1.1 ) holds.
The property (Ri+1.2 ) follows from (RAL.S2 ) and (T4 ) and (4.119) is a consequence

of (Z5 ) and (T5 ), combined with Proposition 4.49.
Hence Ri+1 has the desired properties and we conclude the proof of Lemma 4.52 based

on Claim 4.53.

117



4 Strong regular partitions of hypergraphs

Proof of Claim 4.53. We have to show that there is a partition T (k) of Crossk(S (1))
satisfying (T1 )–(T5 ). For technical reasons we first extend the partition R

(k)
0 from a

partition of Crossk(R
(1)
0 ) to a partition of

(V
k

)
and we set

R̃(k) =
(
V

k

)
\ Crossk(R

(1)
0 ) and R̃

(k)
0 = R

(k)
0 ∪ R̃(k) . (4.125)

In view of (T1 ) and (T4 ) it seems natural to define T (k) separately for every pair

Ŝ(k−1) ∈ Ŝ (k−1) , R(k) ∈ R̃
(k)
0 satisfying Kk(Ŝ(k−1)) ∩R(k) 6= ∅ . (4.126)

In fact, we will prove the following claim.
Claim 4.53′. Suppose the hypergraphs Ŝ(k−1) and R(k) satisfy (4.126). Then there exists
a partition T (k)(Ŝ(k−1), R(k)) of Kk(Ŝ(k−1)) ∩R(k) satisfying the following properties

(T2 ′) ∣∣T (k)(Ŝ(k−1), R(k))
∣∣ =


f(si)
a

R0
k

if R(k) 6= R̃(k) , 5

f(si) if R(k) = R̃(k) ,

(T3 ′) every T (k) ∈ T (k)(Ŝ(k−1), R(k)) is
(
δRL(aS , f(si)), 1/f(si)

)
-regular w.r.t. Ŝ(k−1),

and

(T5 ′)

∣∣⋃{
T (k) : T (k) ∈ T (k)(Ŝ(k−1), R(k))

and T (k) * Z(k) ∀Z(k) ∈ Z (k)}∣∣ ≤ δ4
k+1,RL

8
∣∣Kk(Ŝ(k−1)) ∩R(k)∣∣ .

Before we verify Claim 4.53′, we deduce Claim 4.53 from it. So let T (k)(Ŝ(k−1), R(k))
be given for every Ŝ(k−1), R(k) satisfying (4.126). We then set

T (k) =
⋃{

T (k)(Ŝ(k−1), R(k)) : Ŝ(k−1) and R(k) satisfy (4.126)
}
.

Clearly, T (k) is a partition of Crossk(S (1)), since R̃
(k)
0 is a partition of

(V
k

)
(cf. (4.125)).

Furthermore, (T1 ) and (T4 ) are immediate since we constructed T (k) separately on
Kk(Ŝ(k−1))∩R(k). Moreover, it is easy to see that (T2 ), (T3 ), and (T5 ) are implied by
its “prime” counterpart.
This finishes the reduction of Claim 4.53 to Claim 4.53′, which is the last missing piece

in the proof of the implication RAL(k) =⇒ RL(k + 1).

5Note that f(si)/aR0
k is an integer since aR0

k ≤ t0 (cf. (R0.1 )) and due to the fact that the definition
of the function f(·) in (4.111) ensures that f(si) is a multiple of (t0)!.
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Below we prove Claim 4.53′. The proof resembles ideas from [NRS06a, Section 5].
The main tool in that proof is the somewhat technical slicing lemma, Proposition 4.33
and we first give an informal outline to convey the idea.
Suppose Ŝ(k−1) and R(k) satisfy (4.126). Let Z (k)(Ŝ(k−1), R(k)) be the collection of

those partition classes Z(k) of Z (k) which are contained in Kk(Ŝ(k−1)) ∩R(k), i.e.,

Z (k)(Ŝ(k−1), R(k)) =
{
Z(k) ∈ Z (k) : Z(k) ⊆ Kk(Ŝ(k−1)) ∩R(k)} . (4.127)

Note that due to (Z1 ) and (Z4 ){
Z(k) : Z(k) ∈ Z (k)(Ŝ(k−1), R(k))

}
partitions Kk(Ŝ(k−1)) ∩R(k) . (4.128)

Indeed by (Z1 ), Z (k) has each of its partition classes completely within or outside
Kk(Ŝ(k−1)) and by (Z4 ) the same is true for R(k).
We will use the slicing lemma twice. In the first round we apply the slicing lemma

separately to each Z(k) ∈ Z (k)(Ŝ(k−1), R(k)) to slice it in such a way that all but at
most one slice (“leftover” part) has density 1/f(si) w.r.t. Ŝ(k−1). On the other hand,
we infer from the choice of µi+1 ≥ µd8/δ4

k+1,RLe
and (R0.1 ) that Kk(Ŝ(k−1)) ∩ R(k) is

still (δ′, 1/aR0
k )-regular with δ′ � δRL(aS , f(si)) (cf. (4.115)). (In the special case

R(k) = R̃(k) we have (δ′, 1)-regularity for any δ′ > 0.) Consequently, the union of the
earlier produced “leftovers” must have a density very close to a multiple of 1/f(si),
since it is Kk(Ŝ(k−1)) ∩ R(k) minus regular pieces of density 1/f(si). Therefore, we can
use the slicing lemma again (second round) to “recycle” the “leftovers”, splitting it into
regular pieces of density 1/f(si) and the “recycled” partition will satisfy (T2 ′) and (T3 ′).
Finally, we will show that it also exhibits (T5 ′) since we chose f(·) in (4.111) in such
a way that |Z (k)(Ŝ(k−1), R(k))| × 1/f(si) ≤ si/f(si) � δk+1,RL/8, which is an upper
bound on the density of the union of the “leftovers”.
Below we give the technical details of the plan outlined above.

Proof of Claim 4.53 ′. Let Ŝ(k−1) ∈ Ŝ (k−1) and R(k) ∈ R̃
(k)
0 satisfying (4.126) be given.

We start with a few observations. From the choice of the function εi in (4.113) and ni
in 4.116 combined with (S1 ) we infer by Theorem 4.19 that

∣∣Kk(Ŝ(k−1))
∣∣ ≥ 1

2

k−1∏
j=2

(
1
aS
j

)(k
j)
×
(
n

aS
1

)k
≥ nk

2t2k

i+1
. (4.129)

Suppose R(k) 6= R̃(k). Let R̂(k−1) be the polyad in R̂
(k−1)
0 such that R(k) ⊆ Kk(R̂(k−1)).

Since, S (k−1) ≺ R
(k−1)
0 (cf. (RAL.S2 )) and R(k) ∩Kk(Ŝ(k−1)) 6= ∅ (cf. (4.126)) we have

that Ŝ(k−1) ⊆ R̂(k−1). Consequently, we infer from an application of Proposition 4.29,
combined with (4.129), and (R0.1 ) that if R(k) 6= R̃(k) then

R(k) ∩ Kk(Ŝ(k−1)) is
(
2t2k

i+1µd8/δ4
k+1,RLe

, 1/aR0
k

)
-regular w.r.t. Ŝ(k−1) .
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Moreover, if R(k) = R̃(k), then assumption (4.126) yields that Kk(Ŝ(k−1)) ⊆ R(k) and
R(k) ∩ Kk(Ŝ(k−1)) is (δ′, 1)-regular w.r.t. Ŝ(k−1) for every δ′ > 0. Therefore, in view of

µd8/δ4
k+1,RLe

≤ µi+1
(4.115)
≤ δRL(ti+1, . . . , ti+1, f(si))

12t2k

i+1

(RAL.S1 )
≤ δRL(aS , f(si))

12t2k

i+1

we have for every R(k) ∈ R̃
(k)
0 that

R(k) ∩ Kk(Ŝ(k−1)) is
(1

6δRL(aS , f(si)), dR(k)
)
-regular w.r.t. Ŝ(k−1) , (4.130)

where

dR(k) =
{

1/aR0
k if R(k) 6= R̃(k)

1 if R(k) = R̃(k) . (4.131)

Furthermore, we infer from (4.130) and dR(k) ≥ 1/aR0
k ≥ 1/t0 (cf. (R0.1 )) that

d
(
R(k)|Ŝ(k−1)) ≥ 1

t0
− 1

6δRL(aS , f(si))
(4.110)
> max

{1
3δRL

(
aS , f(si)

)
,

2
3t0

}
. (4.132)

Recall the definition of Z (k)(Ŝ(k−1), R(k)) from (4.127) and consider an enumeration
{Z(k)

1 , . . . , Z
(k)
z } of its members. Clearly, Z (k)(Ŝ(k−1), R(k)) ⊆ Z (k)(Ŝ(k−1)) (cf. (4.123))

and due to (Z2 ) we have
z ≤ si . (4.133)

We apply the slicing lemma to every member Z(k)
j of Z (k)(Ŝ(k−1), R(k)). For that we

have to satisfy the assumptions of the slicing lemma among which we have to ensure
that d(Z(k)

j |Ŝ(k−1)) is not “too small”. However, since the Z(k)
j arose from an application

of RAL(k), we only have limited control over their densities, which leads to the following
definition

ZTHIN =
{
j ∈ [z] : d

(
Z

(k)
j |Ŝ

(k−1)) < 1
f(si)

}
. (4.134)

Moreover, for every j ∈ [z] we set

ζj =
⌊
f(si)× d

(
Z

(k)
j |Ŝ

(k−1))⌋ . (4.135)

Clearly, ζj > 0 if and only if j 6∈ ZTHIN. We now apply the slicing lemma, Proposi-
tion 4.33, for every j ∈ [z] \ ZTHIN separately with

jSL = k , s0,SL = s4.38 , rSL = 1 , δ0,SL = εi
( (k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1

)
,

%0,SL = 1
f(si) , and p0,SL = 1

f(si) ,
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to P̂ (k−1)
SL = Ŝ(k−1) and P (k)

SL = Z
(k)
j with

sSL = ζj , δSL = εi(aS ) , %SL = d(Z(k)
j |Ŝ

(k−1)) ,

and
pξ,SL = 1/f(si)

d(Z(k)
j |Ŝ(k−1))

for every ξ ∈ [ζj ] .

It follows from (4.129) that the assumption (i ) of Proposition 4.33 is satisfied for
P̂

(k−1)
SL = Ŝ(k−1). Moreover, (ii ) is a consequence of (Z3 ) (yielding the (δSL, %SL, rSL)-

regularity of P (k)
SL = Z

(k)
j ), the definition of ZTHIN (yielding %SL ≥ %0,SL), (RAL.S1 ) and

the monotonicity of the function εi (yielding δSL ≥ δ0,SL), and the choice of εi in (4.113)
(yielding %0,SL ≥ 2δSL). Furthermore, assumption (iii ) of Proposition 4.33 is a conse-
quence of the fact that d(Z(k)

j |Ŝ(k−1)) ≤ 1 (yielding pξ,SL ≥ p0,SL for ξ ∈ [ζj ] and the
choice of the integer parameter ζj in (4.135) (yielding

∑
ξ∈[ζj ] pξ,SL ≤ 1).

Having verified the assumptions of Proposition 4.33 for all j ∈ [z] \ ZTHIN, we infer
that for every such j there exists a family

{
T

(k)
j,0 , T

(k)
j,1 , . . . , T

(k)
j,ζj

}
such that

{
T

(k)
j,0 , T

(k)
j,1 , . . . , T

(k)
j,ζj

}
partitions Z(k)

j , (4.136)

T
(k)
j,ξ is

(
3εi(aS ), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) for every ξ = 1, . . . , ζj , (4.137)

and

T
(k)
j,0 is (3εi(aS ), dj,0)-regular (4.138)

for some
0 ≤ dj,0 ≤ d(Z(k)

j |Ŝ
(k−1))− ζj

f(si)
(4.135)
≤ 1

f(si)
.

Unfortunately, the “leftover” hypergraph T
(k)
j,0 might not be empty and has a density

differing from 1/f(si). Moreover, in general ZTHIN is not empty and we have to recycle
the “leftovers” T (k)

j,0 with j 6∈ ZTHIN and the hypergraphs Z(k)
j with j ∈ ZTHIN. For that

we consider their union

U (k) =
⋃

j∈[z]\ZTHIN

T
(k)
j,0 ∪

⋃
j∈ZTHIN

Z
(k)
j . (4.139)

Clearly, U (k) is the complement of
⋃
j∈[z]\ZTHIN

⋃
ξ∈[ζj ] T

(k)
j,ξ in R(k) ∩ Kk(Ŝ(k−1)). Con-

sequently, in view of (4.137), |ZTHIN| ≤ z ≤ si (cf. (4.133)), and (4.130) a consecutive
application of Proposition 4.30 and Proposition 4.28 yields that

U (k) is
(

1
6δRL(aS , f(si))+3εi(aS )si, dR(k)−

∑
j 6∈ZTHIN

ζj

f(si)

)
-regular w.r.t. Ŝ(k−1) . (4.140)
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Recall, that dR(k) is an integer multiple of 1/f(si). (This is obvious if R(k) = R̃(k) since
f(si) is an integer-valued function. Moreover, if R(k) 6= R̃(k), then dR(k) = 1/aR0

k which
is a multiple of 1/f(si) since (t0)! divides f(si) (cf. (4.111)) and t0 ≥ aR0

k (cf. (R0.1 )).)
Consequently,

dR(k) −
∑
j 6∈ZTHIN

ζj

f(si)
= u

f(si)
for some integer 0 ≤ u ≤ f(si) . (4.141)

This observation and the choice of the function εi in (4.113) allows us to rewrite (4.140)

U (k) is
(

1
3δRL(aS , f(si)), u

f(si)

)
-regular w.r.t. Ŝ(k−1) . (4.142)

The further treatment of U (k) depends on the value of and we consider two cases.

Case 1 (u = 0). Note that the assumption u = 0 and (4.142) not necessarily implies
that U (k) = ∅. It rather yields, that

d
(
U (k)|Ŝ(k−1)) ≤ 1

3δRL
(
aS , f(si)

)
.

On the other hand, by (4.132)

d
(
R(k)|Ŝ(k−1)) > 1

3δRL(aS , f(si)) .

Therefore, from (4.128), we infer that ZTHIN 6= [z] and there exist some j0 ∈ [z] \
ZTHIN with ζj0 ≥ 1 and hence T (k)

j0,1 exists. We then define, the promised partition
T (k)(Ŝ(k−1), R(k)) as follows

T (k)(Ŝ(k−1), R(k)) =
{
T

(k)
j,ξ : j ∈ [z] \ ZTHIN, j 6= j0, and ξ ∈ [ζj ]

}
∪
{
T

(k)
j0,ξ

: ξ = 2, . . . , ζj
}
∪
{
T

(k)
j0,1 ∪ U

(k)
}
.

It follows from the definition of U (k) in (4.139) in conjunction with (4.136) and (4.128)
that T (k)(Ŝ(k−1), R(k)) defined above partitions Kk(Ŝ(k−1)) ∩ R(k). We conclude this
case with the verification of properties (T2 ′), (T3 ′), and (T5 ′).

First we consider (T2 ′). Clearly,
∣∣T (k)(Ŝ(k−1), R(k))

∣∣ =
∑
j∈[z]\ZTHIN

ζj . So in view
of (4.141), we infer from the assumption u = 0 in this case, that

∣∣T (k)(Ŝ(k−1), R(k))
∣∣ =

∑
j∈[z]\ZTHIN

ζj = dR(k)f(si)
(4.131)=


f(si)
a

R0
k

if R(k) 6= R̃(k)

f(si) if R(k) = R̃(k)
,

which is (T2 ′).

Since εi(aS ) ≤ 1
3δRL(aS , f(si)) (cf. (4.113)), (4.137) guarantees (T3 ′) for all members

of T (k)(Ŝ(k−1), R(k)) with exception T (k)
j0
∪ U (k). Consequently, verifying (T3 ′) reduces
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to showing that

T
(k)
j0,1 ∪ U

(k) is
(
δRL(aS , f(si)), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) . (4.143)

However, this follows from (4.137) and (4.142) by Proposition 4.30, since u = 0 and since
by the choice in (4.113) we have 3εi(aS ) ≤ 2

3δRL(aS , f(si)).

Finally, we consider (T5 ′). Here we note that due to the definition of the partition
T (k)(Ŝ(k−1), R(k)) it suffices to show that

d
(
T

(k)
j0,1 ∪ U

(k)|Ŝ(k−1)) ≤ δ4
k+1,RL

8 d
(
R(k)|Ŝ(k−1)) . (4.144)

For that we first derive from (4.143) combined with the definition of the function f(·)
in (4.111) and the bound from (4.110) that

d
(
T

(k)
j0,1 ∪ U

(k)|Ŝ(k−1)) (4.143)
≤ 1

f(si)
+ δRL(aS , f(si)) ≤

δ4
k+1,RL
12t0

. (4.145)

Therefore, the estimate (4.144) follows from (4.145) and (4.132). This concludes the
proof of Claim 4.53′ in this case. ♦

Case 2 (u > 0). Recall that U (k) is
(1

3δRL(aS , f(si)), u
f(si)

)
-regular with respect to

Ŝ(k−1) by (4.142). In this case we are going to apply the slicing lemma to “recycle” the
edges of U (k), i.e., to partition it into regular pieces of density 1/f(si). More precisely,
we apply Proposition 4.33 with

jSL = k , s0,SL = f(si) , rSL = 1 , δ0,SL = 1
3δRL(

(k−1)-times︷ ︸︸ ︷
ti+1, . . . , ti+1, f(si)) ,

%0,SL = 1
f(si) , and p0,SL = 1

f(si) ,

to P̂ (k−1)
SL = Ŝ(k−1) and P (k)

SL = U (k) with

sSL = u , δSL = 1
3δRL(aS , f(si)) , %SL = u

f(si)
,

and
pξ,SL = 1

u
for every ξ ∈ [u] .

It follows from (4.129) that the assumption (i ) of Proposition 4.33 is satisfied for
P̂

(k−1)
SL = Ŝ(k−1). Moreover, property (ii ) is a consequence of (4.142) (yielding the

(δSL, %SL, rSL)-regularity of P (k)
SL = U

(k)
j ), the assumption of the case u ≥ 1 (yielding

%SL ≥ %0,SL), (RAL.S1 ) and the monotonicity (cf. (4.108)) of the function δRL (yielding
δSL ≥ δ0,SL), and of (4.110) (yielding %0,SL ≥ 2δSL). Furthermore, note that pξ,SL ≥ p0,SL,
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4 Strong regular partitions of hypergraphs

since u ≤ f(si) (cf. (4.141)) and that that∑
ξ∈[u]

pξ,SL = 1 . (4.146)

Consequently, assumption (iii ) of Proposition 4.33 holds for the choice of parameters
above.
Having verified the assumptions of Proposition 4.33, we infer that there exists a family{
U

(k)
1 , . . . , U

(k)
u
}
(note that due to (4.146) there is “leftover” class U (k)

0 ) such that

{
U

(k)
1 , . . . , U (k)

u

}
partitions U (k) (4.147)

U
(k)
ξ is

(
δk,RL(aS , f(si)), 1/f(si)

)
-regular w.r.t. Ŝ(k−1) for every ξ ∈ [u] . (4.148)

We finally define the required family T (k)(Ŝ(k−1), R(k)) in a straightforward manner

T (k)(Ŝ(k−1), R(k)) =
{
T

(k)
j,ξ : j ∈ [z]\ZTHIN and ξ ∈ [ζj ]

}
∪
{
U

(k)
1 , . . . , U (k)

u

}
. (4.149)

Again it directly follows from the definition of U (k) in (4.139) in conjunction with (4.147)
and (4.128) that T (k)(Ŝ(k−1), R(k)) defined above partitions Kk(Ŝ(k−1)) ∩R(k) and it is
left to verify (T2 ′), (T3 ′), and (T5 ′) for this partition.
First we consider (T2 ′). By the definition of T (k)(Ŝ(k−1), R(k)) we have

∣∣T (k)(Ŝ(k−1), R(k))
∣∣ =

∑
j∈[z]\ZTHIN

ζj + u

(4.141)= dR(k)f(si)
(4.131)=


f(si)
a

R0
k

if R(k) 6= R̃(k)

f(si) if R(k) = R̃(k)
,

which is (T2 ′).
Property (T3 ′) is immediate from (4.148) and (4.137) combined with the choice of

the function εi in (4.113), which easily ensures 3εi(aS ) ≤ δRL(aS , f(si)).
Finally, we discuss (T5 ′). Due to (4.136) and due to the definition of T (k)(Ŝ(k−1), R(k))

in (4.149), the left-hand side of (T5 ′) is bounded by
∣∣U (k)∣∣ and thus it suffices to show

that

d
(
U (k)|Ŝ(k−1)) ≤ δ4

k+1,RL
8 d

(
R(k)|Ŝ(k−1)) . (4.150)

From the definition of U (k) in (4.139), combined with (4.138) and the definition of ZTHIN
in (4.134) we infer that

d
(
U (k)|Ŝ(k−1)) ≤ ∣∣[z] \ ZTHIN

∣∣( 1
f(si)

+ 3εi(aS )
)

+
∣∣ZTHIN

∣∣ 1
f(si)

(4.133)
≤ si

f(si)
+ 3εi(aS )si ,
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which in view of the definition of f(·) in (4.111) and (4.113) yields

d
(
U (k)|Ŝ(k−1)) ≤ δ4

k+1,RL
12t0

.

Therefore, (4.150) follows from the last inequality and (4.132). This verifies (Z5 ′), which
finishes the proof of Claim 4.53′ in this case. ♦
In both cases the partition T (k)(Ŝ(k−1), R(k)) of Kk(Ŝ(k−1))∩R(k) has properties (T2 ′),

(T3 ′), and (T5 ′), as required in Claim 4.53′.

4.6 Proofs of the counting lemmas
In this section we prove the counting lemmas, Theorem 4.17 and Theorem 4.18, which
complement the hypergraph regularity lemmas Theorem 4.12 and Theorem 4.15, re-
spectively. The proof of Theorem 4.17 will be a consequence of the results from Sec-
tion 4.2.1, i.e., the dense counting lemma (Theorem 4.19) and dense extension lemma
(Corollary 4.26).

Proof of Theorem 4.17. Given integers ` ≥ k ≥ 2 and positive constants γ and dk set

ν = dkγ

16
(`
k

) . (4.151)

After fixing ν the constant d0 is displayed and we set

γDEL = γ

8
(`
k

) ×min{d0, dk}2
`
, (4.152)

and then for h = k and F (k) = K
(k)
` Corollary 4.26 yields positive constants

εDEL = εDEL(K(k)
` , γDEL,min{d0, dk})

and mDEL = mDEL(K(k)
` , γDEL,min{d0, dk}) . (4.153)

We finally set ε = min{εDEL,
dk
2 } and m0 = mDEL.

Let now R = {R(j)}k−1
j=1 , G(k), and H(k) satisfying assumptions (i )–(iii ) of Theo-

rem 4.17 be given. Hence {R(j)}(k−1)
j=1 ∪ {G(k)} is an (εDEL,d)-regular (m, `, k)-complex

with d = (d2, . . . , dk) and dj ≥ min{d0, dk} for j = 1, . . . , k. Observe that the choice of
γDEL in (4.152) yields

γDEL ≤
γ

8
(`
k

) k∏
j=2

d
(`

j)
j ≤ γ

8
(`
k

) k∏
j=2

d
(`

j)−(k
j)

j . (4.154)

By Definition 4.20 we may view {R(j)}k−1
j=1∪{G(k)} as an (εDEL,d,K

(k)
` )-regular complex.

By the choice of constants in (4.153), we therefore can apply the dense extension lemma,
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4 Strong regular partitions of hypergraphs

Corollary 4.26, to G(k) and infer that

∣∣G(k)∣∣ =
(
`

k

)
× (1± γDEL)

k∏
j=2

d
(k

j)
j ×mk , (4.155)

and, more importantly, that all but γDEL|G(k)| edges e ∈ G(k) obey

extG(k)
(
e,K

(k)
`

)
= (1± γDEL)

k∏
j=2

d
(`

j)−(k
j)

j ×m`−k . (4.156)

In view of the last assertion let X ⊆ G(k) be the set of exceptional edges in G(k).
Consequently,

|X| ≤ γDEL|G(k)| , (4.157)

and we infer∣∣K`(G(k))
∣∣ = 1(`

k

) ∑
e∈G(k)

extG(k)
(
e,K

(k)
`

)
≥ 1(`

k

) ∑
e∈G(k)\X

extG(k)
(
e,K

(k)
`

)
(4.156)
≥ 1(`

k

) ∣∣G(k) \X
∣∣× (1− γDEL)

k∏
j=2

d
(`

j)−(k
j)

j ×m`−k

(4.157)
≥ 1(`

k

)(1− γDEL)
∣∣G(k)∣∣× (1− γDEL)

k∏
j=2

d
(`

j)−(k
j)

j ×m`−k

(4.155)
≥ (1− γDEL)3

k∏
j=2

d
(`

j)
j ×m

` ≥
(

1− γ

2

) k∏
j=2

d
(`

j)
j ×m

` ,

(4.158)

where we used γDEL ≤ γ/6 in the last inequality. We also note that (4.157) and (4.154)
imply

|X| ≤ γ

8
(`
k

) k∏
j=2

d
(`

j)−(k
j)

j ×
∣∣G(k)∣∣ . (4.159)

Having estimated the number of cliques in G(k) we are going to bound the corresponding
quantity in H(k). First observe that

∣∣K`(H(k))
∣∣ ≥ ∣∣K`(H(k) ∩ G(k))

∣∣ ≥ ∣∣K`(G(k))
∣∣ − ∑

e∈G(k)\H(k)

extG(k)
(
e,K

(k)
`

)
. (4.160)

Since the first term of the last estimate has been estimated (cf. (4.158)), we will now
focus on the second. Since G(k) and H(k) are ν-close by assumption (iii ) of Theorem 4.17
we have ∣∣G(k) \H(k)∣∣ ≤ ν∣∣Kk(R(k−1))

∣∣ ≤ ν
∣∣G(k)∣∣
dk − ε

≤ 2ν
dk

∣∣G(k)∣∣ , (4.161)
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where we appealed to the (ε, dk)-regularity of G(k) in the second inequality and ε ≤ dk/2
in the last one. Consequently,∑

e∈G(k)\H(k)

extG(k)
(
e,K

(k)
`

)
(4.156)
≤

∣∣∣(G(k) \H(k)) \X
∣∣∣(1 + γDEL)

k∏
j=2

d
(`

j)−(k
j)

j ×m`−k +
∣∣X∣∣m`−k

(4.161)
≤ 2ν

dk

∣∣G(k)∣∣(1 + γDEL)
k∏
j=2

d
(`

j)−(k
j)

j ×m`−k +
∣∣X∣∣m`−k (4.162)

(4.159)
≤

(
2ν
dk

(1 + γDEL) + γ

8
(`
k

)) ∣∣G(k)∣∣ k∏
j=2

d
(`

j)−(k
j)

j ×m`−k

(4.155)
≤ γ

2

k∏
j=2

d
(`

j)
j ×m

` ,

where we also used γDEL < 1 and (4.151) in the last step. Then, (4.158) and (4.162)
combined with (4.160), yields

∣∣K`(H(k))
∣∣ ≥ (1− γ)

k∏
j=2

d
(`

j)
j ×m

` ,

which concludes the proof of Theorem 4.17.

We now deduce Theorem 4.18 from Theorem 4.17. Theorem 4.18 gives a lower bound
on the number of cliques in a (δk, dk, r)-regular hypergraph H(k). In order to apply The-
orem 4.17 we have to find an ε-regular G(k), which is ν-close to H(k) (cf. Definition 4.16).
Such a regular approximation will be provided by Lemma 4.38.

Proof of Theorem 4.18. Let ` ≥ k ≥ 2 be integers and γ and dk be positive reals, given
by Theorem 4.18. We first have to fix δk. For that let

ν4.17 = ν
(
Thm.4.17(`, k, γ2 , dk)

)
, (4.163)

be given by Theorem 4.17. We set δk

δk = ν4.17
24 . (4.164)

After displaying δk we get dk−1, . . . , d2 > 0 satisfying 1
di
∈ N for i = 2, . . . , k − 1 and

have to fix constants δ, r, and m0. For that we first use Theorem 4.17, which gives

ε4.17 = ε
(
Thm.4.17(`, k, γ2 , d0 = min{d2, . . . , dk−1, dk})

)
,

m4.17 = m0
(
Thm.4.17(`, k, γ2 , d0 = min{d2, . . . , dk−1, dk})

)
.

(4.165)
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4 Strong regular partitions of hypergraphs

As mentioned earlier, we intend to apply Lemma 4.38. For that we now fix the constants

s4.38 = 2 , ν4.38 = ν4.17 , ε4.38 = 1
2ε4.17 , and d4.38 = (d2, . . . , dk−1) (4.166)

to obtain the constants

δ4.38 , ξ4.38 , t4.38 , and m4.38 .

Finally, we fix δ, r, and m0 required by Theorem 4.18 to

δ = min
{1

2ε4.17 ,
1
2δ4.38

}
, r = t2

k

4.38 , and (4.167)

m0 = max
{
m4.17 + (t4.38)! ,m4.38 + (t4.38)! , 2

γ `(t4.38)!
}
. (4.168)

Having fixed all constants, let m ≥ m0, along with an (δ, (d2, . . . , dk−1))-regular
(m, `, k − 1)-complex R = {R(j)}k−1

j=1 , and a hypergraph H(k) ⊆ Kk(R(k−1)), satisfy-
ing H(k) is (δk, dk, r)-regular w.r.t. R(k−1)[Λk] for every Λk ∈

([`]
k

)
, be given.

First we obtain an (m̃, `, k − 1)-complex R̃ = {R̃(j)}k−1
j=1 and a hypergraph H̃(k) ⊆

Kk(R̃(k−1)) from R and H(k), respectively, by removing at most (t4.38)! vertices from
each vertex class so that

(t4.38)! divides m̃ and m− (t4.38)! ≤ m̃ ≤ m. (4.169)

Since we remove only constantly many vertices, we may assume w.l.o.g. that R̃ is a
(2δ, (d2, . . . , dk−1))-regular complex and H̃(k) is (2δk, dk, r)-regular w.r.t. R̃(k−1)[Λk] for
every Λk ∈

([`]
k

)
and

d
(
H̃(k)|R̃(k−1)[Λk]

)
= d

(
H(k)|R(k−1)[Λk]

)
± o(1) = dk ± ε4.38 . (4.170)

Now we want to apply Lemma 4.38
(`
k

)
times for every Λk ∈

([`]
k

)
, with the constants

chosen in (4.166) to

R̃[Λk] =
{
R̃(j)[Λk]

}k−1
j=1 , F

(k)
Λk

= Kk
(
R̃(k−1)[Λk]

)
,

and {
H̃

(k)
1,Λk

= H̃(k) ∩ F (k)
Λk

, H̃
(k)
2,Λk

= F
(k)
Λk
\ H̃(k)

1,Λk

}
.

We now verify that R̃[Λk], F
(k)
Λk

, H̃(k)
1,Λk

, and H̃(k)
1,Λk

satisfy the assumptions (a )–(d ) of
Lemma 4.38. In fact, (a ) follows from m ≥ m0, (4.168), and (4.169).
Similarly, (b ) follows from the fact that R̃ is a (2δ, (d2, . . . , dk−1))-regular (m̃, `, k−1)-

complex and the choice of δ ≤ δ4.38/2 in (4.167).
Regarding property (c ), we note that by definition F (k)

Λk
is ξ-regular w.r.t. R̃(k−1)[Λk]

for every ξ > 0.
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Finally, we consider (d ). Clearly,
{
H̃

(k)
1,Λk

, H̃
(k)
2,Λk

}
is a partition of F (k)

Λk
. Moreover, H̃(k)

is (2δk, dk, r)-regular w.r.t. R̃(k−1) and, hence, from the choice of δk in (4.164), ν4.17

in (4.166), and r in (4.167) we have that H̃(k)
1,Λk

is (ν4.38/12, dk, t2
k

4.38)-regular w.r.t.
R̃(k−1)[Λk]. The regularity of H̃(k)

2,Λk
then follows from Proposition 4.28.

Having verified the assumptions of Lemma 4.38, we repeatedly apply Lemma 4.38 for
every Λk ∈

([`]
k

)
and infer that for each Λk ∈

([`]
k

)
there exist an

(
ε4.38, d(H̃(k)

1,Λk
|R̃(k−1)[Λk])

)
-regular hypergraph G̃

(k)
1,Λk

which satisfies ∣∣G̃(k)
1,Λk
4H̃(k)

1
∣∣ ≤ ν4.38

∣∣Kk(R̃(k−1)[Λk])
∣∣ .

Moreover, since d(H̃(k)
1,Λk
|R̃(k−1)[Λk]) = d(H̃(k)|R̃(k−1)[Λk]) = dk±ε4.38 for every Λk ∈

([`]
k

)
(cf. (4.170)) setting

G̃(k) =
⋃

Λk∈([`]
k )
G̃

(k)
1,Λk

,

gives rise to a sub-hypergraph of Kk(R̃(k−1)), which is ν4.38-close to H̃(k) and which
is (2ε4.38, dk)-regular w.r.t. R̃(k−1)[Λk] for every Λk ∈

([`]
k

)
. Since, 2ε4.38 = ε4.17 and

ν4.38 = ν4.17 (cf. (4.166)) we can apply Theorem 4.17 to R̃, G̃(k), and H̃(k), which yields
by the choices in (4.163) and (4.165) that

∣∣K`(H̃(k))
∣∣ ≥ (1− γ

2

) k∏
i=2

d
(`

i)
i × m̃

` , (4.171)

and, consequently, since H(k) ⊇ H̃(k) we have

∣∣K`(H(k))
∣∣ (4.171)
≥

(
1− γ

2

) k∏
i=2

d
(`

i)
i × m̃

`

(4.169)
≥ 1− γ

1− γ
2

k∏
i=2

d
(`

i)
i × (m− (t4.38)!)`

(4.168)
≥ (1− γ)

k∏
i=2

d
(`

i)
i ×m

` .
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5 Property testing and the removal lemma

In this Chapter we prove Theorem 1.19. The proof combines ideas from the work of
Alon, Fischer, Krivelevich, and M. Szegedy [AFKS00] and from the recent work of
Lovász and B. Szegedy [LS05] and is based on the hypergraph regularity lemma of
Rödl and Skokan [RS04] and the corresponding counting lemma of Nagle, Rödl, and
Schacht [NRS06a]. We introduce those lemmas in the next section.

5.1 The Rödl-Skokan lemma

We mainly follow the notation developed in Chapter 4. In contrast to the notions of
regularity considered in Chapter 4, here we use the concepts of (δ, d, r)-regularity on all
layers and not only on the k-th layer (compare Definition 5.2 below with Definition 4.6).
We extend the notion of (δ, d, r)-regular (m, j, j)-hypergraphs from Definition 4.13

to (m, `, j)-hypergraphs.
Definition 5.1 ((δ, d, r)-regular). For m, ` ≥ j ≥ 1 we say an (m, `, j)-hypergraph
H(j) is (δ, d, r)-regular (resp. (δ,≥ d, r)-regular) w.r.t. an (m, `, j − 1)-hypergraph
H(j−1) if for every Λj ∈

(`
j

)
, the restriction H(j)[Λj ] = H(j)[⋃

λ∈Λj
Vλ
]
is (δ, d, r)-regular

(resp. (δ,≥d, r)-regular) w.r.t. the restriction H(j−1)[Λj ] = H(j−1)[⋃
λ∈Λj

Vλ
]
.

We now extend the notion of (δ, d, r)-regularity from hypergraphs to complexes.
Definition 5.2 ((δ,d, r)-regular complex). Let δ = (δ2, . . . , δh) be a vector of positive
reals and let d = (d2, . . . , dh) be a vector of non-negative reals. We say an (m, `, h)-
complex H = {H(j)}hj=1 is (δ,d, r)-regular (resp. (δ,≥d, r)-regular) if

(i ) H(2) is (δ2, d2, 1)-regular (resp. (δ2,≥d2, 1)-regular) w.r.t. H(1) and

(ii ) H(j) is (δj , dj , r)-regular (resp. (δj ,≥dj , 1)-regular) w.r.t. H(j−1) for every j =
3, . . . , h.

5.1.1 Counting lemma

The following theorem was proved by Nagle, Rödl, and Schacht in [NRS06a]. It was one
of the key ingredients for the proof of the removal lemma, Theorem 1.4, and will also
play a crucial rôle here.

Theorem 5.3 (Counting lemma). For all integers 2 ≤ k ≤ ` the following is true:
∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are
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5 Property testing and the removal lemma

integers r and m0 so that, with d = (d2, . . . , dk) and δ = (δ2, . . . , δk) and m ≥ m0,
whenever H = {H(j)}kj=1 is a (δ,≥d, r)-regular (m, `, k)-complex, then

∣∣K`(H(k))∣∣ ≥ (1− γ)
k∏
j=2

d
(`

j)
j ×m

` .

Since Theorem 1.19 concerns induced copies of hypergraphs an induced version of the
counting lemma, which is a simple corollary of Theorem 5.3, will be useful. For the
statement of that version we need the following definition.
Definition 5.4 ((δ,d, r)-regular, induced (m,F (k))-complex). Let F (k) be a k-
uniform hypergraph with V (F (k)) = [`]. Let δ = (δ2, . . . , δk) be a vector of positive
reals and let d = (d2, . . . , dk) be a vector of non-negative reals. We say an (m, `, k)-
complex H = {H(j)}kj=1 with vertex partition V1 ∪ · · · ∪ Vk is a (δ,≥d, r)-regular,
induced (m,F (k))-complex if

(i ) the complex {H(j)}k−1
j=1 is a (δ′,≥d′, r)-regular (m, `, k − 1)-complex with δ′ =

(δ2, . . . , δk−1) and d′ = (d2, . . . , dk−1),

(ii ) for every k-tuple in K = {λ1, . . . , λk} ∈
(`
k

)
we have

(a ) if K ∈ E(F (k)), then the (m, k, k)-hypergraph H(k)[K] = H(k)[
⋃k
j=1 Vλj

] is
(δk,≥dk, r)-regular w.r.t. H(k−1)[K]

(b ) if K is not an edge in F (k), then the (m, k, k)-hypergraph complement

Kk(H(k−1)[K]) \H(k)[K]

is (δk,≥dk, r)-regular w.r.t. H(k−1)[K].

We then state the induced version of Theorem 5.3.

Corollary 5.5. For all integers 2 ≤ k ≤ ` the following is true: ∀γ > 0 ∀dk > 0 ∃δk >
0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r and m0 so that for
every m ≥ m0 and for every k-uniform hypergraph F (k) with vertex set [`] the following
holds.
Let d = (d2, . . . , dk), δ = (δ2, . . . , δk), and let H = {H(j)}kj=1 be a (δ,≥d, r)-regular,

induced (m,F (k))-complex with vertex partition V1∪· · ·∪Vk. Then H(k) contains at least

(1− γ)
k∏
j=2

d
(`

j)
j ×m

`

induced copies of F (k).
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5.1 The Rödl-Skokan lemma

Proof. It follows from Definition 5.4, that if H = {H(j)}kj=1 is a (δ,≥d, r)-regular,
induced (m,F (k))-complex, then

H̃ = {H(1), . . . ,H(k−1), H̃(k)}

is a (δ,≥d, r)-regular (m, `, k)-complex, where H̃(k) is defined by setting for every K ∈(`
k

)
H̃(k)[K] =

{
H(k)[K] if K ∈ F (k) ,

Kk(H(k−1)[K]) \H(k)[K] if K 6∈ F (k) .

Moreover, every clique K(`)
k in H̃(k) corresponds to an induced copy of F (k) in H(k) and,

hence, Corollary 5.5 follows from Theorem 5.3 applied to H̃.

5.1.2 Regularity lemma

In this section we introduce some more notation needed for the statement of the hyper-
graph regularity lemma, Theorem 5.7, from [RS04].
The following two definitions describe the “regularity” properties of the partition the

regularity lemma shall provide. While the first definition deals with regularity properties
of the auxiliary structure, the second definition describes how H(k) interacts with the
partition.
Definition 5.6 ((µ, δ,d, r)-equitable). Suppose V is a set of n vertices, µ > 0, δ =
(δ2, . . . , δk−1) ∈ (0, 1]k−2 and d = (d2, . . . , dk−1) ∈ [0, 1]k−2 are vectors of reals and r is
a positive integer.
We say a family of partitions P = P(k − 1,a) on V is (µ, δ,d, r)-equitable if:

(a )
∣∣(V
k

)
\ Crossk(P(1))

∣∣ ≤ µ(nk),
(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |V1| ≤ · · · ≤ |Va1 | ≤
|V1|+ 1, and

(c ) for all but at most µ
(n
k

)
k-tuples K ∈ Crossk(P(1)) the complex P (K) (see (4.1))

is a (δ,d, r)-regular (n/a1, k, k − 1)-complex.

Next we state the regularity lemma for hypergraphs of Rödl and Skokan.

Theorem 5.7 (Rödl-Skokan lemma). Let k ≥ 2 be a fixed integer. For every positive
integer S, all positive µ and δk and functions δj : (0, 1]k−j → (0, 1] for j = 2, . . . k − 1
and r : N× (0, 1]k−2 → N there are integers T0 and n0 and d0 > 0 so that the following
holds.
For every k-uniform hypergraph H(k) satisfying |V (H(k))| = n ≥ n0 and every S-

bounded family of partitions Q = Q(k−1,aQ) with an equitable vertex partition, i.e., the
vertex partition Q(1) = {V1, . . . , VaQ

1
} satisfies |V1| ≤ · · · ≤ |Va1 | ≤ |V1|+ 1, there exists

a family of partitions P = P(k − 1,aP) and a vector d = (d2, . . . , dk−1) ∈ (0, 1]k−2 so
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5 Property testing and the removal lemma

that for

δ = δ(d) = (δ2, . . . , δk−1), where δj = δj(dj , . . . , dk−1) for j = 2, . . . , k − 1,
and r = r(aP

1 , d2, . . . , dk−1)

the following holds:

(i ) P is (µ, δ,d, r)-equitable and T0-bounded,

(ii ) H(k) is (δk, ∗, r)-regular w.r.t. P (cf. Definition 4.14 in Chapter 4),

(iii ) P ≺ Q, i.e., P(j) ≺ Q(j) for every j = 1, . . . , k − 1, and

(iv ) dj ≥ d0 for every j = 2, . . . , k − 1.

Theorem 5.7 slightly differs from the stated hypergraph regularity lemma of Rödl and
Skokan from [RS04]. However, a proof of Theorem 5.7 follows along the lines of [RS04].
We discuss the the five small differences below.

1. In the definition of family of partitions (Definition 4.8), we require that for every
j = 2, . . . , k − 1 and every P̂ (j−1) ∈ P̂(j−1) there are precisely aj partition classes
in P(j), which decompose Kj(P̂ (k−1)). In [RS04] aj is only an upper bound of
the number of partition classes contained in Kj(P̂ (k−1)). We may think of simply
adding some artificial empty classes to P(j) to have precisely aj classes for every
P̂ (j−1) ∈ P̂(j−1).

2. By Definition 5.6 part (b ) we require that the vertex classes of P(1) differ in
size by at most 1. We can require this additional assertion, provided the initial
vertex partition of Q has the same property, since it is well know that such an
assertion holds for the graph regularity lemma of Szemerédi [Sze78] and since the
hypergraph regularity lemma in [RS04] is proved by induction on the uniformity.
For more details we refer to [RS04, Remark 7.19].

3. We also use a slightly different notation for the boundedness of a partition. More
precisely the lemma in [RS04] admits a family of partitions P = P(k − 1,a)
such that |P̂(k−1)| ≤ T0. However, this clearly implies by Definition 4.8 that
maxj∈[k−1] aj ≤ T0, i.e., P is T0-bounded as stated in (i ) of Theorem 5.7.

4. Another difference concerns assertion (iii ) in Theorem 5.7. Recall that the proof
of Szemerédi’s regularity lemma relies on a procedure in which a given non-regular
vertex partition V0 ∪ V1 ∪ · · · ∪ Vs will be “almost” refined by a partition W0 ∪
W1 ∪ · · · ∪Wt. Here “almost” refinement means that only the “exceptional” class
W0 may not be contained in V0, while for every other class Wj there exist some
Vi ⊇Wj . However the initial vertex partition U1 ∪ · · · ∪Ur is completely arbitrary
and one can insist that the partitions obtained in the proof always refine the initial
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one, if one allows not only one “exceptional” class, but one exceptional class, say
Ui,0 ⊆ Ui, for each i ∈ [r], i.e., one exceptional class for every vertex class from the
initial partition.

Similar adjustments can be made in the proof of the hypergraph regularity lemma
from [RS04], this way we will have for every j = 1, . . . , k−1 and every Q(j) ∈ Q(j)

(of the given partition) always precisely one exceptional class Q(j)
0 .

We also note that such an argument was carried out in [RS04, Corollary 12.1],
where the additional assertion (iii ) of Theorem 5.7 was proved in the similar case
when Q is replaced by an (`, k−1)-complexG = {G(j)}k−1

j=1 and “refinement” means
for every j = 1, . . . , k−1 and every P (j) either P (j) ⊆ G(j) or P (j)∩G(j) = ∅. The
proof for a bounded partition Q instead of a complex G is the same and follows
the lines of the proof of [RS04, Corollary 12.1].

5. The last difference concerns (iv ). This condition was not “built in” the regularity
lemma of [RS04], but was explicitly proved, e.g., in [RS06, Claim 6.1]. We outline
the simple proof here.

First recall that by Definition 5.6 the number of non-crossing k-tuples, as well
as, the number of k-tuples in irregular polyads is bounded by µ

(n
k

)
for each rea-

son. Therefore if µ < 1/8 (an assumption one can clearly make without loss of
generality) there are at least (1 − 2µ)

(n
k

)
> (3/4)

(n
k

)
k-tuples in regular polyads.

Now all those k-tuples have its
(k
j

)
j-tuples (2 ≤ j < k) in (dj , δj , r)-regular (j, j)-

hypergraphs from P(j). Since the number of such hypergraphs is bounded by
T 2j

0 ≤ T 2k

0 we infer by the (dj , δj , r)-regularity that T 2k

0 (dj + δj)
(n
k

)
≥ 3

4
(n
k

)
, which

provided δj(dj , . . . , dk−1) ≤ dj/2 (an assumption one can clearly make without loss
of generality) implies dj ≥ 1/(2T 2k

0 ) =: d0.

5.2 Auxiliary lemmas

5.2.1 Cluster hypergraphs.

An important part of the argument in the proof of Theorem 1.19 will be to compare
hypergraphs of very different sizes to find two of “similar structure.” For that we will use
the hypergraph regularity lemma. Suppose hypergraphs of different size were regularized
by Theorem 5.7 with the same input parameters. Then sizes of all of the families of
partitions corresponding to each of the hypergraphs are bounded by the same T0. Let us
assume for now that all the partitions have the same size or more precisely have the same
vector a. Then we would like to say that two hypergraphs have the same structure, if
there densities are similar on “every pair of corresponding polyads,” for an appropriate
bijection between the polyads of two partitions.
The similar idea of comparing “cluster graphs” corresponding to graphs of various

sizes was used by Lovász and B. Szegedy [LS05]. The structure of partition yielded
by the hypergraph regularity lemma is unfortunately more complicated than that for
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5 Property testing and the removal lemma

Szemerédi’s regularity lemma. In Section 5.2.1 we first introduce the notion of a labeled
family of partitions, which in the graph case corresponds to a labeling of the vertex
classes of the regular partition. Then, in Section 5.2.1, we develop the notion, which
will later allow us to identify hypergraphs of the same structure, which is similar to the
edge weights of the cluster graph.

Labeled partitions

It will be convenient to consider labeled families of partitions. Let P(k−1,a) be a family
of partitions on V (see Definition 4.8). Consider an arbitrary numbering of the vertex
classes of P(1), i.e., P(1) = {Vi : i ∈ [a1]}. For j = 2, . . . , k− 1 let ϕ(j) : P(j) → [aj ] be
a labeling such that for every polyad P̂ (j−1) ∈ P̂(j−1) the members of

{P (j) ∈P(j) : P (j) ⊆ Kj(P̂ (j−1))}

are numbered from 1 to aj in an arbitrary way.
This way, we obtain for every k-tuple K = {v1, . . . , vk} ∈ Crossk(P(1)) an integer

vector x̂K = (x(1)
K , . . . ,x

(k−1)
K ), where

x
(1)
K = (α1 < · · · < αk) so that w.l.o.g. K ∩ Vαi = {vi} (5.1)

and for j = 2, . . . , k − 1 we set

x
(j)
K =

(
ϕ(j)(P (j)) : {vλ : λ ∈ Λ} ∈ P (j)

)
Λ∈([k]

j )
(5.2)

Let
([a1]
k

)
<

= {(α1, . . . , αk) : 1 ≤ α1 < · · · < αk ≤ a1} be the set of all “naturally”
ordered k-element subsets of [a1] and set

Â(k − 1,a) =
(

[a1]
k

)
<

×
k−1∏
j=2

[aj ]× · · · × [aj ]︸ ︷︷ ︸
(k

j)-times

(5.3)

for the address space of all k-tuples K ∈ Crossk(P(1)). The definitions above yield
x̂K ∈ Â(k − 1,a) for every K ∈ Crossk(P(1)). Moreover, for every P̂ (k−1) ∈ P̂(k−1) we
have

x̂K = x̂K′ for all K,K ′ ∈ Kk(P̂ (k−1)) (5.4)

hence, for every P̂ (k−1) ∈ P̂(k−1) with Kk(P̂(k−1)) 6= ∅ we may set

x̂(P̂ (k−1)) = x̂K for some K ∈ Kk(P̂ (k−1)) . (5.5)

Let
P̂

(k−1)
6=∅ =

{
P̂ (k−1) ∈ P̂(k−1) : Kk(P̂(k−1)) 6= ∅

}
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and

Â6=∅ =
{
x̂ ∈ Â(k − 1,a) : ∃ P̂ (k−1) ∈ P̂

(k−1)
6=∅ such that x̂(P̂ (k−1)) = x̂

}
.

It is easy to see that the definition in (5.5) establishes a bijection between P̂
(k−1)
6=∅

and Â 6=∅.
Moreover, since |P̂(k−1)| = |Â(k − 1,a)| (see (4.3) and (5.3)) this bijection can be

extended to a bijection between P̂(k−1) and Â(k − 1,a). The inverse bijection maps
x̂ 7→ P̂ (k−1)(x̂) and in the case Kk(P̂ (k−1)(x̂)) 6= ∅, i.e., x̂ ∈ Â 6=∅ then

P (x̂) = P (K) for some K ∈ P̂ (k−1)(x̂) ,

is well defined due to (5.4). Note that P (x̂) = {P (j)}k−1
j=1 is a (k, k − 1)-complex with

P (k−1) = P̂ (k−1)(x̂). For later reference we summarize the above.

Definition 5.8 (labeled family of partitions). Suppose k ≥ 2 is an integer and
a = (a1, . . . , ak−1) is a vector of positive integers. We say

Â(k − 1,a) =
(

[a1]
k

)
<

×
k−1∏
j=2

[aj ]× · · · × [aj ]︸ ︷︷ ︸
(k

j)-times

,

is the address space.
For a family of partitions P(k − 1,a) on some vertex set V = V1 ∪ · · · ∪ Va1 we say a

set of mappings ϕ = {ϕ(2), . . . , ϕ(k−1)}, ϕ(j) : P(j) → [aj ] for every j = 2, . . . , k − 1 is
an a-labeling if for every P̂ (j−1) ∈ P̂(j−1) we have

ϕ(j)
({
P (j) ∈P(j) : P (j) ⊆ Kj(P̂ (j−1))

})
= [aj ] .

Then x̂K = (x(1)
K , . . . ,x

(k−1)
K ) ∈ Â(k− 1,a) defined in (5.1) and (5.2) defines an equiva-

lence relation on Crossk(P(1)) (see (5.4)).
Consequently, such a labeling ϕ defines a bijection between Â 6=∅ and P̂

(k−1)
6=∅ (see para-

graph below (5.5)) which can be extended to a bijection between Â(k−1,a) and P̂(k−1)

such that

(a ) x̂ ∈ Â(k − 1,a) 7→ P̂ (k−1)(x̂) ∈ P̂(k−1) and

(b ) if Kk(P̂ (k−1)(x̂)) 6= ∅, then P (x̂) = P (K) for some K ∈ P̂ (k−1)(x̂) is well defined,

(c ) K ∈ Kk(P̂ (k−1)(x̂K)) for every K ∈ Crossk(P(1)), and

(d ) P (x̂) = {P (j)}k−1
j=1 is a (k, k − 1)-complex with P (k−1) = P̂ (k−1)(x̂).
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Similarity of hypergraphs

The following definition will enable us to compare hypergraphs of different sizes. Very
roughly speaking, we will think of two hypergraphs of being “similar” if there exists an
integer vector a so that for each of them there exists an a-labeled family of partitions
on there respective vertex sets such that for every x̂ ∈ Â(k− 1,a) the hypergraphs have
the similar density on the respective polyad with address x̂.
Definition 5.9 ((da,k, ε)-partition). Suppose ε > 0, a = (a1, . . . , ak−1) is a vector of
positive integers, Â(k− 1,a) is an address space, da,k : Â(k− 1,a)→ [0, 1] is a density
function, and H(k) is a k-uniform hypergraph.
We say an a-labeled family of partitions P = P(k − 1,a) on V (H(k)) is a (da,k, ε)-

partition of H(k) if for every x̂ ∈ Â(k − 1,a)

d
(
H(k)∣∣P̂ (k−1)(x̂)

)
= da,k(x̂)± ε .

The concepts above allow to define an object similar to the cluster graph in the con-
text of Szemerédi’s regularity lemma. For a given δ > 0 Szemerédi’s regularity lemma
provides a partition of the vertex set V = V1 ∪ · · · ∪ Vt of a given graph G, so that
all but δt2 pairs (Vi, Vj) are (δ, ∗, 1)-regular. For many applications of that lemma it
suffices to “reduce” the whole graph to a weighted graph on [t], where the weight of the
edge ij corresponds to the density of the bipartite subgraph of G induced on (Vi, Vj)
(usually it will also be useful to mark those edges which correspond to irregular pairs).
With that notion of cluster graph, one may say that two graphs G1 and G2 have the
same structure if they admit a regular partition in the same number of parts so that the
weights (densities) of the cluster graphs are essentially equal or deviate by at most ε.
The notion of address space extends the concept of the vertex labeling of the cluster

graph in the context of the hypergraph regularity lemma. This way the function da,k
plays the rôle of the edge weights of the cluster graph. As we considered two graphs to be
similar if they admit a regular partition with essentially the same cluster graph, we will
view hypergraphs H(k)

1 and H(k)
2 to be ε-similar if there exists an integer vector a (and

hence an address space Â(k− 1,a)) and a density function function da,k such that there
is a “regular” (da,k, ε)-partition P1(k − 1,a) of H(k)

1 and a “regular” (da,k, ε)-partition
P2(k − 1,a) of H(k)

2 .
The following lemma, which is a simple corollary of the regularity lemma for hyper-

graphs, roughly states, that for any given infinite sequence (H(k)
i )∞i=1 of hypergraphs

and partitions, there exists a sub-sequence (H(k)
ji

)∞i=1 of “similar” hypergraphs (see (iv )
of Lemma 5.10) on a “regular family of partitions” (see (i ) and (ii )), which refine the
original partitions (see (iii )).

Lemma 5.10. Let a = (a1, . . . , ak−1) be a vector of positive integers. Suppose (H(k)
i )∞i=1

is a sequence of hypergraphs such that ni = |V (H(k)
i )| → ∞ and for every i ∈ N there is

a family of partitions Qi = Qi(k − 1,a) on V (H(k)
i ) with an equitable vertex partition,

Q(1) = {V1, . . . , Va1} satisfying |V1| ≤ · · · ≤ |Va1 | ≤ |V1|+ 1. Then the following is true.
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For all positive constants µ and δk and functions

δj : (0, 1]k−j → (0, 1] for j = 2, . . . k − 1 and r : N× (0, 1]k−2 → N

there exist an integer vector b = (b1, . . . , bk−1), an address space Â(k − 1, b), a density
function db,k : Â(k−1, b)→ [0, 1], some d0 > 0 and a sub-sequence (H(k)

ji
)∞i=1 of (H(k)

i )∞i=1
such that for every i ∈ N there is a vector dji = (dji,2, . . . , dji,k−1) ∈ [0, 1]k−2 and a b-
labeled family of partitions Pji = Pji(k − 1, b) on V (H(k)

ji
) such that

(i ) Pji is (µ, δ(dji),dji , r(b1,dji))-equitable,

(ii ) H(k)
ji

is (δk, ∗, r(b1,dji))-regular w.r.t. Pji,

(iii ) Pji ≺ Qji,

(iv ) min{dji,2, . . . , dji,k−1} ≥ d0, and

(v ) Pji is a (db,k, µ)-partition of H(k)
ji

.

Since we introduced three concepts related to the partitions, before we start with
the proof, we briefly recall their meaning. Part (i ) of Lemma 5.10 describes the reg-
ularity properties of the auxiliary partition Pji (see Definition 5.6) and (ii ) describes
the regularity of the hypergraph H(k)

ji
w.r.t. the partition Pji (see Definition 4.14). Fi-

nally (v ) states that the densities of all Hji (i ∈ N) on polyads with the same address
are essentially the same and described by the function db,k (see Definition 5.9).

Proof. Note that for given input parameters S = maxj∈[k−1] aj , µ, and δk and func-
tions δj and r the regularity lemma, Theorem 5.7, guarantees for every i ∈ N the
existence of a family of partitions Pi on H(k)

i with properties (i )–(iv ) for some b = bi
(which may depend on i) and some d0 (independent of i).
The proof of Lemma 5.10 relies on the observation that it suffices to consider only

finitely many choices for the integer vector b and for the density function db,k (in view
of (v )), which implies that for an infinite sub-sequence of (H(k)

i )∞i=1 those choices must
be the same. It is obvious, that there are only finitely many choices for b as Theorem 5.7
gives an upper bound T0 on maxj∈[k−1] bj , which is independent of H(k)

i . However, the
function db,k is real-valued and we have to use an appropriate discretization. In view of
Definition 5.8, one possible discretization is to consider intervals in [0, 1] of length about
2µ. More precisely, let µ0 ∈ (0, 1] such that d1/(2µ)e = 1/(2µ0) and for every b consider
special density functions

db,k : Â(k − 1, b)→ {(2j − 1)µ0 : j = 1, . . . , 1/(2µ0)} . (5.6)

Clearly, for every b there are only finitely many such density functions and, on the other
hand, for any hypergraph H(k)

i and any bi-labeled family of partitions Pi(k−1, bi) there
exist at least one such special function dbi,k so that (v ) holds.

139



5 Property testing and the removal lemma

Summarizing, since any given S = maxj∈[k−1] aj and input parameters µ, δk and
functions δj and r after an application of Theorem 5.7 to an S-bounded Qi and H

(k)
i

the entries of the resulting bi is bounded by T0 there exist some particular vector b
and an infinite sub-sequence (H(k)

ji
)∞i=1 and a sequence of partitions (Pji)∞i=1 such that

properties (i )–(iv ) hold. Considering then only density functions db,k as in (5.6), we
infer the existence of some function db,k and the existence of some infinite sub-sequences
of (H(k)

ji
)∞i=1 and (Pji)∞i=1 such that (v ) holds.

5.2.2 Index of a partition
In this section we recall the notion of index (or mean-square density) of a family of
partition, which plays a crucial rôle in the proofs of the aforementioned (hyper)graph
regularity lemmas (cf. Definition 4.43 in Chapter 4).
Definition 5.11 (index). Let H(k) be a k-uniform hypergraph on n vertices and P be
a family of partitions on V (H(k)). The index of P w.r.t. H(k) is defined by

ind(P|H(k)) = 1(n
k

) ∑{
d2(H(k)|P̂ (k−1))

∣∣Kk(P̂ (k−1))
∣∣ : P̂ (k−1) ∈ P̂(k−1)

}
.

As an immediate consequence from the definition of index we have

0 ≤ ind(P|H(k)) ≤ 1 (5.7)

for every hypergraph H(k) and every family of partitions P on V (H(k)). The following
is a simple consequence of the Cauchy–Schwarz inequality.

Fact 5.12. If H(k) is a k-uniform hypergraph and P ≺ Q are two refining families of
partitions on V (H(k)), then ind(P|H(k)) ≥ ind(Q|H(k)).

A proof of Fact 5.12 can be found in [RS04, Lemma 10.3].
The main lemma of this section, Lemma 5.14, considers two refining partitions, with

“almost” the same index. For the statement of that lemma we need the following defi-
nition.
Definition 5.13 (ν-misbehaved). Let ν > 0 and P ≺ Q be two refining families of
partitions on the same vertex set. We say a polyad Q̂(k−1) ∈ Q̂(k−1) is ν-misbehaved
w.r.t. P, if∑{∣∣Kk(P̂ (k−1))

∣∣ : P̂ (k−1) ∈ P̂(k−1) , P̂ (k−1) ⊆ Q̂(k−1) , (5.8)

and
∣∣d(H(k)|P̂ (k−1))− d(H(k)|Q̂(k−1))

∣∣ > ν
}
≥ ν

∣∣Kk(Q̂(k−1))
∣∣ .

We denote by MBP(Q, ν) the set of all ν-misbehaved polyads Q̂(k−1) ∈ Q̂(k−1).
The following is the main lemma of the section. It asserts that if the index of two

refining partitions is “close,” then there are only few misbehaved polyads in the coarser
partition (cf. Lemma 2.6 in Chapter 2).
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Lemma 5.14. Let ε, ν > 0, H(k) be a k-uniform hypergraph on n vertices and P ≺ Q
be two refining families of partitions on V (H(k)). If ind(P|H(k)) ≤ ind(Q|H(k)) + ε,
then ∑{∣∣Kk(Q̂(k−1))

∣∣ : Q̂(k−1) ∈ MBP(Q, ν)
}
≤ 2ε
ν3

(
n

k

)
.

The proof of Lemma 5.14 relies on the defect form of the Cauchy–Schwarz inequality,
Lemma 2.4.

Proof of Lemma 5.14. Let Q̂(k−1) ∈ MBP(Q, ν) be fixed and let all the hypergraphs
P̂ (k−1) ∈ P̂(k−1) with P̂ (k−1) ⊆ Q̂(k−1) be indexed by some set I and set for every i ∈ I

di = d(H(k)|P̂ (k−1)
i ) and σi = |Kk(P̂

(k−1)
i )| .

Clearly, with σI = |Kk(Q̂(k−1))| and d = d(H(k)|Q̂(k−1)) we have
∑
i∈I σi = σI and

|H(k) ∩ Kk(Q̂(k−1))| = dσI =
∑
i∈I

diσi . (5.9)

Moreover, (5.8) corresponds to
∑
{σj : |dj − d| > ν} ≥ νσI and, consequently, for some

J ⊆ I we obtain ∣∣∣∣∑
j∈J

σj
σJ
dj −

∑
i∈I

σi
σI
di

∣∣∣∣ =
∣∣∣∣∑
j∈J

σj
σJ
dj − d

∣∣∣∣ ≥ ν .
where σJ is defined as σJ =

∑
j∈J σj and J satisfies

σJ ≥
ν

2σI

Therefore, Lemma 2.4 implies

∑
i∈I

σid
2
i ≥ σI

(∑
i∈I

σi
σI
di

)2
+ ν3

2 σI . (5.10)

Summarizing, due to (5.10) and (5.9) we showed for all Q̂(k−1) ∈ MBP(Q, ν) that

∑{
d2(H(k)|P̂ (k−1))|Kk(P̂ (k−1))| : P̂ (k−1) ∈ P̂(k−1) , P̂ (k−1) ⊆ Q̂(k−1)

}
≥ d2(H(k)|Q̂(k−1))|Kk(Q̂(k−1))|+ ν3

2 |Kk(Q̂
(k−1))| .

Hence, we infer from Lemma 2.4 (applied to every Q̂(k−1) 6∈ MBP(Q, ν) with α = 0)
and the last inequality (applied to every Q̂(k−1) ∈ MBP(Q, ν)) that

ind(P|H(k)) ≥ ind(Q|H(k)) + ν3

2
(n
k

) ∑{∣∣Kk(Q̂(k−1))
∣∣ : Q̂(k−1) ∈ MBP(Q, ν)

}
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and hence the assumption of Lemma 5.14 implies

∑{∣∣Kk(Q̂(k−1))
∣∣ : Q̂(k−1) ∈ MBP(Q, ν)

}
≤ 2ε
ν3

(
n

k

)
.

5.3 Proof of the general removal lemma
5.3.1 Proof of Theorem 1.19
In our argument we will assume that Theorem 1.19 fails. This means that there exists a
family of k-uniform hypergraphs F and a constant η > 0 such that for every c, C, and
n0 there exists a hypergraph H(k) on n ≥ n0 vertices which is η-far from Forbind(F ) and
which for every ` ≤ C contains at most cn` induced copies of F (k) for every F (k) ∈ F
on ` vertices. Applying this assumption successively with c = 1/i and C = i for i ∈ N
yields the following fact.

Fact 5.15. If Theorem 1.19 fails for a family of k-uniform hypergraphs F and η > 0,
then there exists a sequence of hypergraphs (H(k)

i )∞i=1 with ni = |V (H(k)
i )| → ∞ such

that for every i ∈ N

(i ) H(k)
i is η-far from Forbind(F ) and

(ii ) for every ` ≤ i and every F (k) ∈ F with |V (F (k))| = ` the number of induced
copies of F (k) in H(k)

i is less than n`i/i.

The same assumption was considered by Lovász and B. Szegedy in [LS05]. While they
derived a contradiction based on the properties of a “limit object” of a carefully chosen
sub-sequence of (H(k)

i )∞i=1 the existence of which was established in [LS04], here we will
only consider hypergraphs of the sequence (H(k)

i )∞i=1. More precisely, the following, main
lemma in the proof of Theorem 1.19, will locate two special hypergraphs I(k) = H

(k)
i

and J (k) = H
(k)
j in the sequence from which we derive a contradiction.

Lemma 5.16. Suppose Theorem 1.19 fails for F and η > 0. Then there exists a
hypergraph I = I(k) on ` vertices, an integer vector a = (a1, . . . , ak−1), a density function
da,k : Â(k− 1,a)→ [0, 1], and a family of partitions QI = QI(k− 1,a) on V (I(k)) such
that

(I1 ) QI is a (da,k, η/24)-partition of I(k),

(I2 ) |Crossk(Q
(1)
I )| ≥ (1− η

24)
(`
k

)
, and

(I3 ) I(k) is η-far from Forbind(F ).

Furthermore, there exists a hypergraph J = J (k) on n ≥ ` vertices, a family of partitions
QJ = QJ(k − 1,a) on V (J (k)), an integer vector b = (b1, . . . , bk−1), and a family of
partitions PJ = PJ(k − 1, b) on V (J (k)) such that
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(J1 ) QJ is a (da,k, η/24)-partition of J (k) and

(J2 ) PJ ≺ QJ .

Moreover, there exists an `-set L ∈ Cross`(P
(1)
J ) such that

(L1 ) |L ∩ Vi| = |Ui| where Q
(1)
I = {Ui : i ∈ [a1]} and Q

(1)
J = {Vi : i ∈ [a1]},

(L2 )

∣∣∣∣∣
{
K ∈

(L
k

)
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K))− d(J (k)|Q̂(k−1)

J (K))| > η

12

}∣∣∣∣∣ ≤ 4η
9

(
`

k

)
,

(L3 ) any k-uniform hypergraph G(k) with vertex set L and with the property

K ∈ G(k) ⇒ d(J (k)|P̂ (k−1)
J (K)) ≥ η

12

and

K 6∈ G(k) ⇒ d(J (k)|P̂ (k−1)
J (K)) ≤ 1− η

12 ,

belongs to Forbind(F ).

For the proof of Lemma 5.16 we will successively chose sub-sequences of (H(k)
i )∞i=1 (see

Fact 5.15), with each sequence being a sub-sequence of the previous. The sub-sequences
will be obtained by Lemma 5.10 and after finitely many iterations we will select I(k) and
J (k) from the “most current” sub-sequence (from which properties (I1-I3 ) and (J1-J2 )
will follow). We stop the iterations when the last sub-sequence (H(k)

ji
)∞i=1 satisfies for

every i ∈ N
ind(Pji |H

(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε (5.11)

for some appropriately chosen ε = ε(η). Clearly, we will reach this situation after at
most 1/ε iterations (see (5.7) and Fact 5.12). By Lemma 5.14, we will infer from (5.11)
that a randomly selected `-tuple from the set of all `-tuples satisfying (L1 ) admits (L2 ).
Moreover, if we select J (k) “far enough” in the sequence, then (ii ) of Fact 5.15 will be
the key for proving (L3 ). We give the precise details in Section 5.3.2 and below we
derive Theorem 1.19 from Lemma 5.16.

Proof of Theorem 1.19. The proof is by contradiction. Suppose there exists a family
of k-uniform hypergraphs F and some η > 0 so that Theorem 1.19 fails. We apply
Lemma 5.16 which yields hypergraphs I(k) (on ` vertices) and J (k) (on n vertices) and
an `-set L ⊆ V (J (k)). In view of property (L3 ) we will define a hypergraph G(k) on the
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vertex set L. In order to obtain the desired contradiction we will “compare” the `-vertex
hypergraph G(k) with the `-vertex hypergraph I(k). For that we need some bijection ψ
from L to V (I(k)). We will chose some bijection ψ which “agrees” with the labellings of
QJ and QI , i.e., we require that for any k-tuple K ∈ Crossk(Q

(1)
J ) the address x̂K (see

Definition 5.8) of K w.r.t. the a-labeled partition QJ coincides with the address x̂ψ(K) of
ψ(K) w.r.t. the a-labeled partition QI . More precisely, fix a bijection ψ : L → V (I(k))
such that for every K ∈

(L
k

)
the following holds: if K ∈ Crossk(Q

(1)
J ) then

ψ(K) ∈ Crossk(Q
(1)
I ) and x̂K = x̂ψ(K) . (5.12)

For a subset of E ⊆
(L
k

)
we set ψ(E) = {ψ(K) : K ∈ E}.

We then define the hypergraph G(k) on L by

K ∈ G(k) ⇐⇒

either d(J (k)|P̂ (k−1)
J (K)) ≥ η

12 and ψ(K) ∈ I(k)

or d(J (k)|P̂ (k−1)
J (K)) > 1− η

12 .
(5.13)

for every k-tuple K ∈
(L
k

)
. Consequently, by (L3 ) of Lemma 5.16

G(k) ∈ Forbind(F ) . (5.14)

It is left to show ∣∣I(k)4ψ(G(k))
∣∣ ≤ η(`

k

)
, (5.15)

which due to (5.14) contradicts (I3 ) of Lemma 5.16, i.e., (5.15) contradicts the fact that
I(k) is η-far from Forbind(F ).

We cover the symmetric difference I(k)4ψ(G(k)) by four sets D1, . . . , D4 defined by

D1 =
(
V (I(k))

k

)
\ Crossk(Q

(1)
I ) ,

D2 = ψ
(
{K ∈

(L
k

)
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K))− d(J (k)|Q̂(k−1)

J (K))| > η/12
})
,

D3 = I(k) ∩
⋃{
Kk(Q̂

(k−1)
I ) : d(I(k)|Q̂(k−1)

I ) < η/4
}
,

and

D4 =
(
L

k

)
\
(
I(k) ∩

⋃{
Kk(Q̂

(k−1)
I ) : d(I(k)|Q̂(k−1)

I ) > 1− η/4
})

.

We first show that indeed I(k)4ψ(G(k)) ⊆ D1 ∪ · · · ∪ D4. For that first consider some
K ′ ∈ I(k) \ ψ(G(k)) and set K = ψ−1(K ′). By the definition of G(k) in (5.13) we have
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d(J (k)|P̂ (k−1)
J (K)) < η

12 . Then it is easy to show that if K ′ 6∈ D1 ∪ D2 then K ′ ∈ D3.
Indeed, we have:

K ′ ∈ I(k) \
(
ψ(G(k)) ∪D1 ∪D2

)
(5.13)=⇒ d(J (k)|P̂ (k−1)

J (K)) < η

12
K′ 6∈D1∪D2=⇒ d(J (k)|Q̂(k−1)

J (K)) < η

6 . (5.16)

Due to (J1 ) and (I1 ) of Lemma 5.16, QJ and QI are (da,k, η/24)-partitions having the
same density function da,k : Â(k − 1,a)→ [0, 1].

Hence, on the one hand, we infer d(J (k)|Q̂(k−1)
J (K)) = da,k(x̂K) ± η/24 and, on the

other hand, due to (5.12) and K = ψ−1(K ′), we have

d(I(k)|Q̂(k−1)
I (K ′)) = da,k(x̂K)± η/24 .

Thus,
|d(J (k)|Q̂(k−1)

J (K))− d(I(k)|Q̂(k−1)
I (K ′))| ≤ η/12

and the right-hand side of (5.16) implies

K ′ ∈ I(k) \
(
ψ(G(k)) ∪D1 ∪D2

) (5.16)=⇒ d(J (k)|Q̂(k−1)
J (K)) < η

6
(J1 )&(I1 )=⇒ d(I(k)|Q̂(k−1)

I (K ′)) < η

6 + η

12 = η

4 =⇒ K ′ ∈ D3 .

Similarly, for K ′ ∈ ψ(G(k)) \ I(k) and K = ψ−1(K ′) we infer by similar arguments as
above:

K ′ ∈ ψ(G(k)) \
(
I(k) ∪D1 ∪D2

)
(5.13)=⇒ d(J (k)|P̂ (k−1)

J (K)) > 1− η

12
K′ 6∈D1∪D2=⇒ d(J (k)|Q̂(k−1)

J (K)) > 1− η

6
(J1 )&(I1 )=⇒ d(I(k)|Q̂(k−1)

I (K ′)) > 1− η

4 =⇒ K ′ ∈ D4 .

Consequently, I(k)4ψ(G(k)) ⊆ D1 ∪ · · · ∪ D4 and from (I2 ) of Lemma 5.16 we infer
|D1| = |

(V (I(k))
k

)
\ Crossk(Q

(1)
I )| ≤ η

(`
k

)
/24 and (L2 ) implies |D2| ≤ 4η

(`
k

)
/9. Finally,

the definitions of D3 and D4 yield |D3| ≤ η
(`
k

)
/4 and |D3| ≤ η

(`
k

)
/4. Summarizing the

above, we obtain

∣∣I(k)4ψ(G(k))
∣∣ ≤ |D1|+ |D2|+ |D3|+ |D4| ≤

( η
24 + 4η

9 + η

4 + η

4
)(`
k

)
< η

(
`

k

)
.

Thus we proved (5.15), which together with (5.14) yields a contradiction to (I3 ) of
Lemma 5.16.
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5.3.2 Proof of Lemma 5.16

Since the proof is a bit technical, we will first give a sketch. The proof of Lemma 5.16 is
based on iterative applications of Lemma 5.10. Given an infinite sequence of hypergraphs
(H(k)

i )∞i=1 each with a partition Qi(k − 1,a) (where a is the same for every i ∈ N)
and “measures of precision” (constants µ, δk and functions δk−1, . . . , δ2), Lemma 5.10
guarantees a vector b and a function db,k : Â(k − 1, b)→ [0, 1], a subsequence (H(k)

ji
)∞i=1

of (H(k)
i )∞i=1 and b-labeled partitions Pji(k − 1, b) ≺ Qji such that

(a ) Pji is “sufficiently regular” and

(b ) Pji is (db,k, µ)-partition of H(k)
ji

.

We will show that after at most 1/ε iterations, we will get two consecutive partitions
Pji ≺ Qji with the refining polyads having similar densities, more precisely Pji and Qji

will satisfy the assumptions of Lemma 5.14. We then set J (k) equal to H(k)
ji

(for some
appropriately chosen i) and I(k) equal to the smallest hypergraph of the last sequence
(H(k)

i )∞i=1 (to which we applied Lemma 5.10 in the last application). Then Lemma 5.14
will imply that a random `-tuple (chosen uniform at random from all `-sets satisfy-
ing (L1 )) will exhibit property (L2 ). Moreover, since by part (ii ) of Fact 5.15, which
holds since we assume that Theorem 1.19 fails, J (k) = H

(k)
ji

contains only a “few” in-
duced copies of forbidden hypergraphs F (k) ∈ F and, hence, the counting lemma (in
form of Corollary 5.5) will yield (L3 ) of Lemma 5.16.

Proof of Lemma 5.16. Let F be a family of k-uniform hypergraphs and η > 0 and
suppose Theorem 1.19 fails for F and η. By Fact 5.15 there exist a sequence of hy-
pergraphs (H(k)

i )∞i=1 with ni = |V (H(k)
i )| → ∞ admitting properties (i ) and (ii ) of

Fact 5.15. Without loss of generality we may assume that

|V (H(k)
i )|k = nki ≤ 3

2ni × · · · × (ni − k + 1) (5.17)

for every i ∈ N. In the proof we need an auxiliary constant ε defined by

ε = 1
6

(
η

12

)4
. (5.18)

We want to iterate Lemma 5.10. This lemma locates a sub-sequence (H(k)
ji

)∞i=1 of hy-
pergraphs satisfying (i )–(v ) of Lemma 5.10 within a sequence of hypergraphs (H(k)

i )∞i=1.
Note that in particular property (i ) of the sub-sequence (H(k)

ji
)∞i=1 yields (among other

things) the assumption allowing the next iteration, i.e., after an appropriate renaming
and relabeling (i ) implies that there exist an integer vector a and for every i ∈ N there
is a family of partitions Qi = Qi(k− 1,a) on V (H(k)

i ) each of them having an equitable
vertex partition (see (b ) of Definition 5.6).
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For the first iteration let a = (1, . . . , 1) ∈ Nk−1 and for every i ∈ N let Qi = Qi(k−1,a)
be the trivial partition Qi = {{V (H(k)

i }, {∅}, . . . , {∅}} on V (H(k)
i ) with only one vertex

class and Crossj(Q(1)
i ) being empty for j ≥ 2.

More generally, suppose that after p− 1 ≥ 0 iterations we are given an integer vector
a = (a1, . . . , ak−1) and sequences (H(k)

i )∞i=1 and (Qi)∞i=1 such that Qi = Qi(k − 1,a)
is a family of partitions on V (H(k)

i ). We will now choose µ, δk, and functions δj (j =
2, . . . , k − 1) and r with which we want to apply Lemma 5.10 in the p-th iteration. For
that set

`p = |V (H(k)
1 )| , µ = min

{
η
24 ,

`k

9k!

}
, (5.19)

and

δk = min
{
`k

9k! , δk(ICL(`p, γ = 1/2, dk = η/12))
}
, (5.20)

where δk(ICL(`p, γ = 1/2, dk = η/12)) is given by the “induced counting lemma,” Corol-
lary 5.5, applied for hypergraphs on `p vertices with γ = 1/2 and dk = η/12. Similarly,
for j = 2, . . . , k − 1 let δj : (0, 1]k−j → (0, 1] be the function in variables Dj , . . . , Dk−1
given by Corollary 5.5 for `p, γ = 1/2, and dk = η/12, i.e., for j = 2, . . . , k − 1 we set

δj(Dj , . . . , Dk−1) = δj(ICL(`p, γ = 1/2, dk = η/12, Dk−1, . . . , Dj)) (5.21)

and

r(B1, D2, . . . , Dk−1) = r(ICL(`p, γ = 1/2, dk = η/12, Dk−1, . . . , D2)) (5.22)

where we make no use of the variable B1 in the definition of r. For those choices
Lemma 5.10 yields an integer vector b, a density function db,k : Â(k − 1, b) → [0, 1], a
constant d0 > 0, a sub-sequence (H(k)

ji
)∞i=1 of (H(k)

i )∞i=1, and for every i ∈ N a b-labeled
family partitions Pji = Pji(k − 1, b) on H

(k)
ji

satisfying (i )–(v ) of Lemma 5.10. We
consider the index (see Definition 5.11) of the partitions Pji and define

Sp =
{
i ∈ N : ind(Pji |H

(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε
}
,

where ε was defined in (5.18). We distinguish two cases.
If Sp is finite then we iterate Lemma 5.10 and apply it in the next iteration (after an

appropriate relabeling) to the infinite sub-sequence

(H(k)
ji

)i∈N\Sp
with `p+1 = |V (H(k)

minN\Sp
)| .

If, on the other hand, Sp is infinite, then we stop iterating. Note that in each iteration
the index of Pji compared to the index of Qji with respect to H(k)

ji
increases by a fixed ε

(chosen independent of p) for every i ∈ N \ Sp. Hence, in view of (5.7), after at most
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1/ε iterations the above procedure ends with an infinite set Sp.
Let a, (H(k)

i )∞i=1, (Qi)∞i=1, b, db,k : Â(k − 1, b) → [0, 1], d0 > 0, (H(k)
ji

)∞i=1, (Pji)∞i=1,
and Sp0 be the the input and outcome of that “final,” say p0-the, iteration of Lemma 5.10.
In other words for every i ∈ Sp0 we have a b-labeled family partitions Pji = Pji(k−1, b)
on H(k)

ji
satisfying

(L5.10.i ) Pji is (µ, δ(dji),dji , r(b1,dji))-equitable,

(L5.10.ii ) H
(k)
ji

is (δk, ∗, r(b1,dji))-regular w.r.t. Pji ,

(L5.10.iii ) Pji ≺ Qji ,

(L5.10.iv ) min{dji,2, . . . , dji,k−1} ≥ d0, and

(L5.10.v ) Pji is a (db,k, µ)-partition of H(k)
ji

,

where µ, δk, and functions δj and r were chosen in (5.19), (5.20), (5.21) and (5.22)
depending on `p0 = ` = |V (H(k)

1 )|. Moreover, by the definition of Sp0 for every i ∈ Sp0

we have
ind(Pji |H

(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε (5.23)

Without loss of generality we may assume that p0 ≥ 1 and due to the choice of µp0−1
in (5.19) and from properties (i ) and (v ) of the penultimate iteration of Lemma 5.10
there exist a density function da,k : Â(k − 1,a)→ [0, 1] such that for every i ∈ N

|Crossk(Q
(1)
i )| ≥

(
1− η

24

)(|V (H(k)
i )|
k

)
(5.24)

Q
(1)
i is an equitable vertex partition (see (b ) of Definition 5.6) (5.25)

and Qi is a (da,k, η/24)-partition of H(k)
i . (5.26)

Next we choose the special hypergraphs I(k) and J (k) and verify properties (I1-I3 )
and (J1-J2 ). Then we will focus on (L1-L3 ). We set I(k) equal to the first hypergraph
in the given sequence for the last iteration, i.e.,

I(k) = H
(k)
1 , ` = `p0 = |V (I(k))| , and QI = QI(k − 1,a) = Q1(k − 1,a) . (5.27)

Note, however, that due to the relabeling in every iterationH(k)
1 in (5.27) can be different

from the first hypergraph in the sequence (H(k)
i )∞i=1 originally obtained by Fact 5.15,

which holds since by assumption of Lemma 5.16 Theorem 1.19 fails.
Next we select J (k) from the last sub-sequence (H(k)

ji
)∞i=1. It will be essential for our

proof that the selected J (k) contains only a “few” induced copies of forbidden hyper-
graphs F (k) ∈ F on ` or less vertices. For that we define the auxiliary constant

α = 1
2

(
η

12

)(`
k) k−1∏
h=2

d
(`

h)
0 ×

( 1
b1

)`
, (5.28)
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5.3 Proof of the general removal lemma

where d0 is given by Lemma 5.10 (see (L5.10.iv )). We consider the subset S∗p0 ⊆ Sp0

with the property that for every i ∈ S∗p0

#
{
F (k) ind

⊆ H
(k)
ji

}
< α|V (H(k)

ji
)||V (F (k))| (5.29)

for all F (k) ∈ F with |V (F (k))| ≤ `. In fact S∗p0 is an infinite subset of Sp0 , since Sp0

is infinite and since (H(k)
ji

)∞i=1 is a sub-sequence of the original sequence of hypergraphs,
which satisfy in particular (ii ) of Fact 5.15. For technical reasons we also want the
hypergraph J (k) to be large and we select i0 in S∗p0 sufficiently large, so that

1
b1

∣∣V (H(k)
ji0

)
∣∣ ≥ m0(ICL(`, γ = 1/2, dk = η/12, dk−1 = d0, . . . , d2 = d0)) , (5.30)

where m0(ICL(`, γ = 1/2, dk = η/12, dk−1 = d0, . . . , d2 = d0)) is given by Corollary 5.5.
We then set J (k) = H

(k)
ji0

, n = |V (J (k))|

dJ = (dJ,2, . . . , dJ,k−1) = (dji0 ,2, . . . , dji0 ,k−1) ,
QJ = QJ(k − 1,a) = Qji0

(k − 1,a) ,

and

PJ = PJ(k − 1, b) = Pji0
(k − 1, b) .

Properties (I1-I3 ) and (J1-J2 ) of Lemma 5.16 are immediate for those choices of I(k)

and J (k). Indeed (I1 ) and (J1 ) follow from (5.26) and (I2 ) is satisfied due to (5.24).
Property (I3 ) follows from part (i ) of Fact 5.15 and, finally, (J2 ) is a consequence
of (L5.10.iii ).

It is left to prove the existence of an `-set L ∈ Cross`(P
(1)
J ) which displays prop-

erties (L1-L3 ). For that we consider a random `-set from V (J (k)). More precisely,
let the labeled vertex partitions of QI and QJ be Q

(1)
I = {U1, . . . , Ua1} and Q

(1)
J =

{V1, . . . , Va1}. We select an `-set uniformly at random from the probability space

Ω =
a1∏
i=1

(
Vi
|Ui|

)
,

i.e., we select precisely |Ui| vertices from Vi for every i = 1, . . . , a1. Due to that particular
choice of L, it displays property (L1 ). In view of the other “desired” properties of L we
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5 Property testing and the removal lemma

consider the following “bad” events

B1 : L 6∈ Cross`(P
(1)
J ) ,

B2 : ∃K ∈
(L
k

)
∩ Crossk(P

(1)
J ) : P J(K) is not a

(δ(dJ),dJ , r(b1,dJ))-regular (n/b1, k, k − 1)-complex ,

B3 : ∃K ∈
(L
k

)
∩ Crossk(P

(1)
J ) : J (k) is not

(δk, ∗, r(b1,dJ))-regular w.r.t. P̂J(K) ,

and

B4 :
∣∣∣{K ∈ (Lk) ∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K)− d(J (k)|Q̂(k−1)

J (K))| > η/12
}∣∣∣ > 4η

9

(
`

k

)
.

Next we estimate the probabilities of the events B1, . . . , B4. For that the following
observation will be useful.

Fact 5.17. For every K ∈ Crossk(P
(1)
J )

extL(K) := |{L ∈ Ω: K ⊆ L}| = (1± o(1))
(
`

n

)k (n/a1
`/a1

)a1

,

where o(1)→ 0 as both ` and n tend to infinity and a1 is fixed.

Proof. Recall that by the definition of Ω, extL(K) is counting for a fixed k-set K the
number of `-sets L each of which contain K and for every i ∈ [a1] intersect the set Vi
in |Ui| = `/a1. This number is smallest if K ⊆ Vi for some i ∈ [a1] and largest when
|K ∩ Vi| ≤ 1 for every i ∈ [a1]. Consequently and (5.25) we have for every K ∈

(V (J(k))
k

)
(
n/a1 − k
`/a1 − k

)(
n/a1
`/a1

)a1−1

≤ extL(K) ≤
(
n/a1 − 1
`/a1 − 1

)k(
n/a1
`/a1

)a1−k

,

and straightforward calculations yield Fact 5.17.

Without loss of generality we assume that ` and n are sufficiently large, so that for
every K ∈

(V (J(k))
k

)
extL(K) =

(
1± 1

3

)(
`

n

)k (n/a1
`/a1

)a1

. (5.31)

(This can easily be achieved by focusing on only sufficiently large hypergraphs in the
sub-sequence (H(k)

ji
)∞i=1 in the iteration procedure.) We now turn our attention to the

events B1, . . . , B4 and prove upper bounds on the probabilities of those “bad” events.
We start with B1 ∪B2 ∪B3, i.e., we estimate the events that there is some k-set K ⊂ L
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5.3 Proof of the general removal lemma

such that either K 6∈ Crossk(P
(1)
J ) or P J(K) (see (4.1)) is not regular of J (k) is not

regular w.r.t. P̂J(K).

By (L5.10.i ) we have

∣∣{K ∈ (V (J(k))
k

)
: K 6∈ Crossk(P

(1)
J )

}∣∣ ≤ µ(n
k

)
.

Moreover, it follows from (L5.10.i ) that

∣∣{K ∈ Crossk(P
(1)
J ) : P J(K) is not (δ(dJ),dJ , r(b1,dJ))-regular

∣∣} ≤ µ(n
k

)

and from (L5.10.ii ) that

∣∣{K ∈ Crossk(P
(1)
J ) : J (k) is not (δk, ∗, r(b1,dJ))-regular w.r.t. P̂J(K)

∣∣} ≤ δk
(
n

k

)
.

Due to (5.31) each k-tuple K ∈
(V (J(k))

k

)
extends to at most

4
3

(
`

n

)k (n/a1
`/a1

)a1

different `-sets L ∈ Ω. Consequently, the number of pairs (L,K), with L ∈ Ω and
K ∈

(L
k

)
which is bad, i.e., K 6∈ Crossk(P

(1)
J ), or P J(K) is not regular, or J (k) is not

regular w.r.t. P̂J(K), is at most

(2µ+ δk)
(
n

k

)
× 4

3

(
`

n

)k (n/a1
`/a1

)a1

. (5.32)

As |Ω| =
(n/a1
`/a1

)a1 , the expected number of bad k-tuples K in
(L
k

)
for a random `-set L is

at most
(2µ+ δk)×

4`k

3k! <
1
2 (5.33)

(see (5.19), (5.20), and (5.27)). Therefore, by Markov’s inequality we have

P(B1 ∪B2 ∪B3) < 1
2 . (5.34)

Next, we consider B4. We use the abortion criteria for the iteration of Lemma 5.10,
i.e., we use (5.23). By Lemma 5.14 we infer from (5.23) that

∣∣∣{K ∈ Crossk(Q
(1)
J ) : Q̂(k−1)

J (K) ∈ MBPJ
(QJ , η/12)

}∣∣∣ ≤ 2ε
(η/12)3

(
n

k

)
.
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We say a k-tuple K ∈ Crossk(Q
(1)
J misbehaves if∣∣∣d(J (k)|P̂ (k−1)

J (K)− d(J (k)|Q̂(k−1)
J (K))

∣∣∣ > η

12 .

Hence for every Q̂(k−1)
J 6∈ MBPJ

(QJ ,
η
12) it follows from the definition of MBPJ

(QJ ,
η
12)

(see Definition 5.13) that∣∣{K ∈ Kk(Q̂(k−1)
J ) : K misbehaves

}∣∣ ≤ η

12
∣∣Kk(Q̂(k−1)

J )
∣∣ .

Therefore, the combination of the last two estimates yields

∣∣{K ∈ Crossk(Q
(1)
J ) : K misbehaves

}∣∣ ≤ ( 2ε
(η/12)3 + η

12
)(n
k

)
(5.18)
≤ η

9

(
n

k

)
.

Consequently, similar calculations as in (5.32) and (5.33) give that for randomly chosen
`-set L ∈ Ω the expected number of misbehaved k-tuples K ∈

(L
k

)
∩ Crossk(Q

(1)
J ) is at

most
η

9 ×
4`k

3k!
(5.17)
≤ 2η

9

(
`

k

)
, (5.35)

since ` = |V (I(k))| and I(k) is a hypergraph from the sequence (H(k)
i )∞i=1.

Recalling that B4 is the event that a random `-set L ∈ Ω contains more than (4η/9)
(`
k

)
misbehaved k-tuples we infer from (5.35) by Markov’s inequality

P(B4) ≤ 1
2 . (5.36)

From (5.34) and (5.36) we infer that there exist a “good” `-set, i.e., there exist an `-set
L ∈ Ω\(B1∪· · ·∪B4). We now show that such an `-set has the desired properties (L1-L3 )
of Lemma 5.16.
First, since L 6∈ B1 we have L ∈ Cross`(P

(1)
J ) as required. Moreover, (L1 ) holds by

definition of Ω and (L2 ) is equivalent to L 6∈ B4.
Finally, we focus on property (L3 ). Let a hypergraph G(k) with vertex set L be given

as in (L3 ). Let P J(L) = {P (j)
J (L)}kj=1 be defined for j ∈ [k] by

P
(j)
J (L) =


⋃{

P
(j)
J (K) : K ∈

(L
k

)}
if j = 1 . . . , k − 1 ,⋃{

J (k) ∩ Kk(P̂
(k−1)
J (K)) : K ∈

(L
k

)}
if j = k .

(5.37)

Since L 6∈ B2 ∪ B3 the complex P J(K) is a (δ(dJ),dJ , r(b1,dJ))-regular (n/b1, k, k −
1)-complex for every K ∈

(L
k

)
and J (k) is (δk, ∗, r(b1,dJ))-regular w.r.t. P̂ (k−1)

J (K).
Furthermore, the assumptions on G(k) in (L3 ) imply d(J (k)|P̂ (k−1)

J (K)) ≥ η/12 for
K ∈ G(k) and d(J (k)|P̂ (k−1)

J (K)) ≤ 1− η/12 for K 6∈ G(k). Consequently, the definition
of P J(L) in (5.37) yields that P J(L) is a (δ′,≥d′, r(b1,dJ))-regular, induced (n/b1, G(k))-
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5.3 Proof of the general removal lemma

complex with δ′ = (δ(dJ), δk) and d′ = (dJ , η/12). Due to the choice of δk, and the
functions δj and r in (5.20), (5.21), and (5.22) and due to (5.30) we can apply the
“induced” counting lemma, Corollary 5.5. It follows that J (k) contains at least

1
2

(
η

12

)(`
k) k−1∏
j=2

d
(`

j)
J,j ×

(
n

b1

)` (L5.10.iv )
≥ 1

2

(
η

12

)(`
k) k−1∏
j=2

d
(`

j)
0 ×

(
n

b1

)` (5.28)= α|n|`

induced copies of G(k). Then the choice of J (k) due to (5.29) implies that G(k) 6∈ F .
Similarly, for every subset L′ ⊆ L we infer from Corollary 5.5 applied to P J(L′) that
the number of induced copies of G(k)[L′] in J (k) is at least

1
2

(
η

12

)(|L′|k ) k−1∏
j=2

d
(|L′|j )
J,j ×

(
n

b1

)|L′|

subsection
(L5.10.iv )
≥ 1

2

(
η

12

)(`
k) k−1∏
j=2

d
(`

j)
0 × n|L

′|

b`1

(5.28)= α|n||L′| .

Hence, the choice of J (k) in view of (5.29) implies G(k)[L′] 6∈ F . Since we inferred
G(k)[L′] 6∈ F for any L′ ⊆ L we have G(k) ∈ Forbind(F ), which is (L3 ) of Lemma 5.16.
We thus showed that L displays all required properties and this concludes the proof of
Lemma 5.16.
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6 Sparse partition universal graphs

In 1983, Chvátal, Rödl, Szemerédi, and Trotter proved that for any ∆ there exists B so
that, for any n, any 2-coloring of the edges of the complete graph KN with N ≥ Bn
vertices yields a monochromatic copy of any graph H that has n vertices and maximum
degree ∆. In this Chapter prove that the complete graph may be replaced by a sparser
graph G that has N vertices and O(N2−1/∆ log1/∆N) edges, with N = bB′nc for some
constant B′ that depends only on ∆. Consequently, the so called size-Ramsey number of
any H with n vertices and maximum degree ∆ is O(n2−1/∆ log1/∆ n). Our approach is
based on random graphs; in fact, we show that the classical Erdős–Rényi random graph
with the numerical parameters above satisfies a stronger partition property with high
probability, namely, that any 2-coloring of its edges contains a monochromatic universal
graph for the class of graphs on n vertices and maximum degree ∆.
The main tool in our proof is the regularity method, adapted to a suitable sparse

setting. The novel ingredient developed here is an embedding strategy that allows one to
embed bounded degree graphs of linear order in certain quasi-random graphs. Crucial to
our proof is a rather surprising phenomenon, namely, the fact that regularity is typically
inherited at a scale that is much finer than the scale at which it is assumed.
In Section 6.1 we recall some basic facts about regularity, including the results on

inheritance of regularity proved in [GKRS07] (see Section 6.2). In Section 6.3.3, the
results on the hereditary nature of regularity, in the form that is required here, are
derived from the results quoted in Section 6.2. Other relevant results on random graphs
are given in Sections 6.3.1 and 6.3.2. The proof of Theorem 1.23 is given in Section 6.4.

6.1 The sparse regularity lemma

Let G = (V,E) be a graph. Suppose 0 < p ≤ 1, η > 0 and K > 1. For two disjoint
subsets X, Y of V , we let eG(X,Y ) be the number of edges of G with one endpoint in X
and the other endpoint in Y . Furthermore, we let

dG,p(X,Y ) = eG(X,Y )
p|X||Y |

,

which we refer to as the p-density of the pair (X,Y ). We say that G is an (η,K)-
bounded graph with respect to density p if for all pairwise disjoint sets X, Y ⊂ V , with
|X|, |Y | ≥ η|V |, we have

eG(X,Y ) ≤ Kp|X||Y | .

For ε > 0 fixed and X, Y ⊂ V , X∩Y = ∅, we say that the pair (X,Y ) is (ε, p)-regular
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6 Sparse partition universal graphs

if for all X ′ ⊂ X and Y ′ ⊂ Y with

|X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |,

we have
|dG,p(X,Y )− dG,p(X ′, Y ′)| ≤ ε.

Note that for p = 1 we get the well-known definition of ε-regularity [Sze78].
Let

⋃̇t
j=0Vj be a partition of V . We call V0 the exceptional class. This partition is

called (ε, t)-equitable if |V0| ≤ ε|V | and |V1| = · · · = |Vt|.
We say that an (ε, t)-equitable partition

⋃̇t
j=0Vj of V is (ε,G, p)-regular if all but

at most ε
(t
2
)
pairs (Vi, Vj), 1 ≤ i < j ≤ k, are (ε, p)-regular. Now we state a vari-

ant of the Szemerédi’s regularity lemma [Sze78] for sparse graphs, which was observed
independently by Kohayakawa and Rödl (see, e.g., [Koh97, KR03b]).

Theorem 6.1 (Sparse regularity lemma). For any ε > 0, K > 1, and t0 ≥ 1, there exist
constants T0, η, and N0 such that any graph G with at least N0 vertices that is (η,K)-
bounded with respect to density 0 < p ≤ 1 admits an (ε, t)-equitable (ε,G, p)-regular
partition of its vertex set with t0 ≤ t ≤ T0.

6.2 The hereditary nature of sparse regularity
We shall also use the fact that ε-regularity is typically inherited on “small” (sublinear)
subsets. This was essentially observed for the classical notion of (dense) regular pairs
by Duke and Rödl [DR85] and for sparse regular pairs in [GKRS07, KR03a]. Here we
shall use a result from [GKRS07] regarding the hereditary nature of (ε, α, p)-denseness
(or “one sided-regularity”).
Definition 6.2. Let α, ε > 0, and 0 < p ≤ 1 be given and let G = (V,E) be a graph.
For sets X, Y ⊂ V , X ∩ Y = ∅, we say that the pair (X,Y ) is (ε, α, p)-dense if for all
X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have

dG,p(X ′, Y ′) ≥ α− ε.

It follows immediately from the definition that (ε, α, p)-denseness is inherited on large
sets, i.e., that for a (ε, α, p)-dense pair (X,Y ) and any sets X ′ ⊆ X and Y ′ ⊆ Y with
|X ′| ≥ µ|X| and |Y ′| ≥ µ|Y | the pair (X ′, Y ′) is (ε/µ, α, p)-dense. The following result
from [GKRS07] states that this “denseness-property” is even inherited on randomly
chosen subsets of much smaller size with overwhelming probability.

Theorem 6.3 ([GKRS07, Theorem 3.6]). For every α, β > 0 and ε′ > 0, there exist
ε0 = ε0(α, β, ε′) > 0 and L = L(α, ε′) such that, for any 0 < ε ≤ ε0 and 0 < p < 1, every
(ε, α, p)-dense pair (X,Y ) in a graph G satisfies that the number of sets X ′ ⊆ X with
|X ′| = m ≥ L/p such that (X ′, Y ) is an (ε′, α, p)-dense pair is at least (1−βm)

(|X|
m

)
.

The following is a direct consequence of Theorem 6.3, which we obtain by applying it
first to X and then to subsets of Y .
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Corollary 6.4 ([GKRS07, Corollary 3.8]). For every α, β > 0 and ε′ > 0, there exist
ε0 = ε0(α, β, ε′) > 0 and L = L(α, ε′) such that for any 0 < ε ≤ ε0 and 0 < p < 1, every
(ε, α, p)-dense pair (X,Y ) in a graph G satisfies that the number of pairs (X ′, Y ′) of sets
X ′ ⊆ X and Y ′ ⊆ Y with |X ′| = m1 ≥ L/p and |Y ′| = m2 ≥ L/p such that (X ′, Y ′) is
an (ε′, α, p)-dense pair is at least (1− βmin{m1,m2})

(|X|
m1

)(|Y |
m2

)
.

6.3 Properties of the random graph
In this section we shall verify a few properties of random graphs that will be useful for
the proof of Theorem 1.21.

6.3.1 Uniform edge distribution
We start with a well known fact, which follows easily from the properties of the binomial
distribution, concerning the edge distribution of G(N, p).
Definition 6.5. For an integer N and 0 < p ≤ 1 we define the family of graphs UN,p
on [N ] = {1, . . . , N} with uniform edge distribution by

UN,p :=
{
G : V (G) = [N ] and

∀U,W ⊂ V (G) with U ∩W = ∅, |U | ≥ N
logN ,

and |W | ≥ N
logN we have eG(U,W ) = (1± 1

logN )p|U ||W |
}
.

The following proposition follows directly from the Chernoff bound for binomially
distributed random variables.

Proposition 6.6. If p = p(N)� (logN)4/N , then P(G(N, p) ∈ UN,p) = 1− o(1).

In Proposition 6.6 and in the remainder of this chapter, o(1) denotes a function that
tends to 0 as N →∞. We also use the symbols � and �; e.g., we write f(N)� g(N)
to mean that f(N)/g(N)→ 0 as N →∞.

6.3.2 Expansion properties of neighbourhoods
For a graph G = (V,E) and an integer k ≥ 1, we define the auxiliary, bipartite graph
Γ(k,G) = (

(V
k

)
∪ V,EΓ(k,G)) by

(K, v) ∈ EΓ(k,G) ⇐⇒ {w, v} ∈ E(G) for all w ∈ K . (6.1)

Proposition 6.8, given below, states that ifG is the random graphG(N, p), then the graph
Γ(k,G) has no “dense patches”. More precisely, we consider the following property.
Definition 6.7. Let integers N and k ≥ 1 and reals ξ > 0 and 0 < p ≤ 1 be given.
We say that a graph G = (V,E) with V = [N ] has the neighbourhood expansion prop-
erty EkN,p(ξ) if for every U ⊆ V and every family Fk ⊆

(V \U
k

)
of pairwise disjoint k-sets

with
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(i ) |Fk| ≤ ξN and

(ii ) |U | ≤ |Fk|

we have
eΓ(k,G)(Fk, U) ≤ pk|Fk||U |+ 6ξNpk|Fk| . (6.2)

We show that for appropriate p the random graph G(N, p) asymptotically almost
surely has property EkN,p(ξ).

Proposition 6.8. For every integer k ≥ 1 and real ξ > 0, there exists C > 1 such that
if p > C(logN/N)1/k, then P(G(N, p) ∈ EkN,p(ξ)) = 1− o(1).

Proof. For given k and ξ we let C be a constant satisfying

Ck > k/ξ .

Let Fk and U satisfy (i ) and (ii ) of Definition 6.7. We consider two cases depending on
the size of Fk.
Case 1 (|Fk| ≥ N/ logN). Note that for fixed Fk and U the edges of

Γ[Fk, U ] = Γ(k,G(N, p))[Fk, U ]

appear independently with probability pk. Thus eΓ(Fk, U) is a binomial random variable
with distribution Bi(pk, |Fk||U |). From Chernoff’s inequality

P(X ≥ EX + t) ≤ exp(−t)

for a binomial random variable X and t ≥ 6EX (see e.g. [JŁR00, Corollary 2.4]), we
infer

P
(
eΓ(Fk, U) > pk|Fk||U |+ 6ξNpk|Fk|

)
≤ exp

(
− 6ξNpk|Fk|

)
,

since we have |U | ≤ |Fk| ≤ ξN from (i ) and (ii ) of Definition 6.7.
Moreover, the number of choices for Fk (satisfying the assumptions of this case) and

U is at most
∑ξN
f=N/ logN N

kf and 2N , respectively, and since

ξN∑
f=N/ logN

Nkf2N exp(−6ξNpkf)→ 0

as N →∞ follows from the choice of Ck > k/ξ and p > C(logN/N)1/k, the proposition
is established in this case.
Case 2 (|Fk| < N/ logN). The analysis in this case is very similar to the first, but
instead of Chernoff’s inequality we use that

P(X ≥ t) ≤ qt
(
M

t

)
≤
(eqM

t

)t
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for a binomial random variable X ∼ Bi(q,M). Consequently,

P
(
eΓ(Fk, U) ≥ pk|Fk||U |+ 6ξNpk|Fk|

)
≤ P

(
eΓ(Fk, U) ≥ 6ξNpk|Fk|

)
≤
( e|U |

6ξN

)6ξNpk|Fk|
≤ exp

(
− 6ξNpk|Fk| ln(2ξN/|U |)

)
.

In this case, the number of choices for the pair (Fk, U) is at most

N/ logN∑
f=1

f∑
u=1

Nkf

(
N

u

)
.

Consequently, from the union bound we infer that the probability that there exists a
family Fk and a set U with |U | ≤ |Fk| < N/ logN such that eΓ(Fk, U) ≥ pk|Fk||U | +
6ξNpk|Fk| is at most

N/ logN∑
f=1

f∑
u=1

exp
(
kf lnN + u ln(eN/u)− 6ξNpkf ln(2ξN/u)

)
→ 0 ,

as N →∞ since pkN � logN/ log logN .
This concludes the proof of Proposition 6.8.

6.3.3 Hereditary nature of (ε, α, p)-denseness

In this section we shall show that in the random graph G(N, p) all sufficiently large (not
necessarily induced) 3-partite subgraphs, say, with vertex set X ∪ Y ∪ Z, in which all
the three pairs (X,Y ), (X,Z) and (Y, Z) are (ε, α, p)-dense, have the following property:
The (ε, α, p)-denseness of the pair (Y,Z) is “typically” inherited on the one-sided neigh-
bourhood (N(x)∩Y, Z) as well as on the two-sided neighbourhood (N(x)∩Y,N(x)∩Z)
for x ∈ X. Below we introduce classes BI

p and BII
p of “bad” tripartite graphs, which fail

to have the above one-sided and two-sided property (for similar concepts see [KR03a]).
Definition 6.9. Let integers m1, m2, and m3 and reals α, ε′, ε, µ > 0, and 0 < p ≤ 1 be
given.

(I) Let BI
p(m1,m2,m3, α, ε

′, ε, µ) be the family of tripartite graphs with vertex set
X ∪ Y ∪ Z, where |X| = m1, |Y | = m2, and |Z| = m3, satisfying

(a ) (X,Y ) and (Y,Z) are (ε, α, p)-dense pairs and

(b ) there exists X ′ ⊆ X with |X ′| ≥ µ|X| such that (N(x) ∩ Y, Z) is not an
(ε′, α, p)-dense pair for every x ∈ X ′.

(II) Let BII
p (m1,m2,m3, α, ε

′, ε, µ) be the family of tripartite with vertex set X∪Y ∪Z,
where |X| = m1, |Y | = m2, and |Z| = m3, satisfying

(a ) (X,Y ), (X,Z), and (Y, Z) are (ε, α, p)-dense pairs and
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6 Sparse partition universal graphs

(b ) there exists X ′ ⊆ X with |X ′| ≥ µ|X| such that (N(x) ∩ Y,N(x) ∩ Z) is not
an (ε′, α, p)-dense pair for every x ∈ X ′.

Definition 6.10. For integers N and ∆ ≥ 2 and reals α, γ, ε′, ε, µ > 0 and 0 < p ≤ 1 we
say that a graph G = (V,E) with V = [N ] has the denseness property D∆

N,p(γ, α, ε′, ε, µ),
if G contains no member from

BI
p(mI

1,m
I
2,m

I
3, α, ε

′, ε, µ) ∪BII
p (mII

1 ,m
II
2 ,m

II
3 , α, ε

′, ε, µ)

with mI
1,m

I
3 ≥ γp∆−1N and mI

2,m
II
1 ,m

II
2 ,m

II
3 ≥ γp∆−2N as a (not necessarily induced)

subgraph.

Proposition 6.11. For an integer ∆ ≥ 2 and positive reals α, ε′, and µ there exists

ε = ε(∆, α, ε′, µ) > 0 (6.3)

such that for every γ > 0 there exists C > 1 such that if p > C(logN/N)1/∆, then

P(G(N, p) ∈ D∆
N,p(γ, α, ε′, ε, µ)) = 1− o(1).

Proof of Proposition 6.11

We first verify Proposition 6.11 for the special case in which mI
1 = pmI

2 = mI
3 and

mII
1 = mII

2 = mII
3 . To that end, we consider the families of graphs BI

p(m,α, ε′, ε, µ) and
BII
p (m,α, ε′, ε, µ) for m ∈ N and α, ε′, ε, µ > 0 defined as

BI
p(m,α, ε′, ε, µ) = BI

p(pm,m, pm,α, ε′, ε, µ)

and
BII
p (m,α, ε′, ε, µ) = BII

p (m,m,m,α, ε′, ε, µ) .

Similarly, for integers N and ∆ and positive reals α, γ, ε′, ε, µ > 0 and 0 < p ≤ 1, we say
that a graph G = (V,E) with V = [N ] has property D̂∆

N,p(γ, α, ε′, ε, µ) if G contains no
member from BI

p(m,α, ε′, ε, µ)∪BII
p (m,α, ε′, ε, µ) withm = γp∆−2N as a (not necessarily

induced) subgraph. Next we prove that G(N, p) has property D̂∆
N,p(γ, α, ε′, ε, µ) with

high probability.

Proposition 6.12. For an integer ∆ ≥ 2 and positive reals α, ε′ and µ > 0 there exists
ε > 0 such that for every γ > 0 there exists C > 1 such that if p > C(logN/N)1/∆, then
P(G(N, p) ∈ D̂∆

N,p(γ, α, ε′, ε, µ)) = 1− o(1).

Proof. Below we shall only show that a.a.s. G(N, p) contains no subgraphs from BII
p .

The proof for graphs from BI
p is analogous.

Let ∆, α, ε′, and µ be given. We set

β =
(1

4

)4/µ α2

4e2

(1
e

)4/(αµ)
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6.3 Properties of the random graph

and let ε0 and L be given by Corollary 6.4 applied with α, β, and ε′. We fix

ε = min{α/2 , µ/4 , ε0} ,

and for every γ > 0 we let C = 1. (In fact, any choice of C > 0 would suffice for the
proof presented here, which concerns only subgraphs from BII

p (m,α, ε′, ε, µ). For BI
p a

more careful choice of C is required.)

Suppose T = (X ∪ Y ∪ Z,ET ) is a tripartite graph from BII
p (m,α, ε′, ε, µ). We shall

find a subgraph of T that, as we shall show, is unlikely to appear in G(N, p). Because of
the assumption on T , the bipartite subgraphs T [X,Y ], T [X,Z], and T [Y, Z] of T contain
at least (α − ε)pm2 edges each. Furthermore, there is a set X ′ ⊆ X with |X ′| ≥ µ|X|
such that for every x ∈ X ′ the pair (NT (x) ∩ Y,NT (x) ∩ Z) is not (ε′, α, p)-dense. Set

X ′′ = {x ∈ X ′ : |NT (x) ∩ Y | ≥ αpm/2 and |NT (x) ∩ Z| ≥ αpm/2} .

From the (ε, α, p)-denseness of T [X,Y ] and T [X,Z] we infer that

|X ′′| ≥ (1− 2ε/µ)|X ′| ≥ |X ′|/2 ≥ µm/2 .

Fix x ∈ X ′′. An easy averaging argument shows that there are sets Y ′x ⊆ NT (x) ∩ Y
and Z ′x ⊆ NT (x) ∩ Z of size ε′αpm/2 each such that dT,p(Y ′x, Z ′x) < α − ε′. Now let Yx
and Zx be such that Y ′x ⊂ Yx ⊆ NT (x) ∩ Y and Z ′x ⊂ Zx ⊆ NT (x) ∩ Z and |Yx| =
|Zx| = αpm/2. Then, clearly, T [Yx, Zx] is not (ε′, α, p)-dense. We may thus find a
family of pairs {(Yx, Zx) : x ∈ X ′′} that are not (ε′, α, p)-dense. We shall show that such
a configuration is unlikely to occur in G(N, p).

Indeed we can fix the sets X ′′, Y , Z and the edges of the bipartite graph T [Y, Z] in
at most ∑

t≥(α−ε)pm2

(
N

m

)3(
m2

t

)

ways. Sincem = γp∆−2N (see the definition of D̂∆
N,p(γ, α, ε′, ε, µ)) and p∆N > C logn >

2L/(αγ) for sufficiently large N we have αpm/2 ≥ L/p and, hence, we can apply Corol-
lary 6.4 and infer that there are at mostβαpm/2( m

αpm/2

)2
µm/2

possibilities for choosing all pairs (Yx, Zx) for x ∈ X ′′. Combining the two estimates
above we infer that the probability that such a configuration appears in G(N, p) is
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6 Sparse partition universal graphs

bounded from above by

∑
t≥(α−ε)pm2

(
N

m

)3(
m2

t

)
pt ×

βαpm/2( m

αpm/2

)2
µm/2 pµαpm2/2

≤
∑

t≥(α−ε)pm2

(
Ne
m

)3m
(
pm2e
t

)t
×
(√

β
2e
α

)µαpm2/2

≤ m2
(
Ne
m

)3m
(
e1/α

(2e
α

)µ/2
βµ/4

)αpm2

,

where, for the last inequality, we used the fact that the function f(t) = (pm2e/t)t is
maximized for t = pm2. Finally, we note that the right-hand side of the last inequality
tends to 0 as N → ∞, since e1/α(2e/α)µ/2βµ/4 = 1/4 (owing to the choice of β) and
pm2 � m logN (owing to the choice of p and m).

Now we deduce Proposition 6.11 from Proposition 6.12.

Proof of Proposition 6.11. In order to prove Proposition 6.11 we will strengthen Propo-
sition 6.12 and consider the families BI

p and BII
p with more general parameters m1, m2,

and m3. We shall show that, perhaps surprisingly, this more general statement fol-
lows from the “weaker” Proposition 6.12. Indeed, roughly speaking, we show that each
“bad” tripartite graph T ∈ BII

p (m1,m2,m3, α, ε
′, ε, µ) with arbitrary m1, m2, m3 ≥ m

contains a subgraph T̂ ∈ BII
p (m,α, ε′/2, ε̂, µ/4) for some appropriate ε̂. The following

deterministic statement makes this precise.

Claim 6.13. For every integer ∆ ≥ 2 and all positive reals α, ε′, µ, and ε̂ there ex-
ists ε > 0 such that for every γ > 0 there exist C > 1 and N0 such that if N ≥
N0 and p > C(logN/N)1/∆, then every tripartite graph T = (X ∪ Y ∪ Z,ET ) ∈
BII
p (m1,m2,m3, α, ε

′, ε, µ) with

min{m1,m2,m3} ≥ m = γp∆−2N

contains a subgraph T̂ ∈ BII
p (m,α, ε′/2, ε̂, µ/4).

The same claim holds for BI
p (and, in fact, the proof is a little simpler), but we only

focus on BII
p here. Before we prove Claim 6.13, we note that that claim, combined

with Proposition 6.12, yields Proposition 6.11, as Proposition 6.12 guarantees that with
probability 1− o(1) the random graph G(N, p) contains no such T̂ from

BI
p(m,α, ε′/2, ε̂, µ/4) ∪BII

p (m,α, ε′/2, ε̂, µ/4) .

Proof of Claim 6.13. Let ∆ ≥ 2 and α, ε′, µ, and ε̂ be given. We let ε1, ε2, and ε be
as given by Theorem 6.3, so that for β = 1/2 we have ε2 = ε0(α, β, ε̂), ε1 = ε0(α, β, ε2),
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6.3 Properties of the random graph

and ε = min{ε0(α, β, ε1), α/2, µ/4}. Now for any given γ let C ≥ L/γ , where L =
max{L1, L2, L3} and L1, L2, and L3 are given by the three applications of Theorem 6.3
referred to above. Moreover, let C be sufficiently large, so that the asymptotic estimates
in the calculations below become valid. Finally, let δ = ε′/8.

Let T = (X ∪ Y ∪ Z,ET ) ∈ BII
p (m1,m2,m3, α, ε

′, ε, µ) be given. Hence, there exists a
set X ′ ⊆ X with |X ′| ≥ µ|X| such that for every x ∈ X ′ the pair (NT (x)∩Y,NT (x)∩Z)
is not (ε′, α, p)-dense. We consider the set

X ′′ = {x ∈ X ′ : |NT (x) ∩ Y | ≥ αpm2/2 and |NT (x) ∩ Z| ≥ αpm3/2} .

Owing to the choice of ε ≤ µ/4, we infer from the (ε, α, p)-denseness of T [X,Y ] and
T [X,Z] that |X ′′| ≥ µm1/2.

Let each of X̂ ∈
(X
m

)
, Ŷ ∈

(Y
m

)
, and Ẑ ∈

(Z
m

)
be chosen uniformly at random and let

T̂ = T [X̂, Ŷ , Ẑ]. We shall show that with positive probability T̂ ∈ BII
p (m,α, ε′/2, ε̂, µ/4).

By Theorem 6.3, with probability at least 1 − 2βm the pairs (X̂, Y ) and (X̂, Z) are
(ε1, α, p)-dense. Applying Theorem 6.3 again, we infer that with probability at least 1−
4βm the pairs (X̂, Ŷ ), (X̂, Z), and (Ŷ , Z) are (ε2, α, p)-dense and yet another application
finally yields that with probability at least 1− 6βm the pairs

(X̂, Ŷ ), (X̂, Ẑ), and (Ŷ , Ẑ) are (ε̂, α, p)-dense, (6.4)

which is property (a ) of part (II) in Definition 6.9. Below we shall verify that prop-
erty (b ) also holds with high probability.

The concentration of the hypergeometric distribution tells us that, with probability
at least 1− exp(−Ω(m)), if we set X̂ ′′ = X̂ ∩X ′′, we have

|X̂ ′′| ≥ 1
4µm. (6.5)

Similarly, with probability at least 1−m exp(−Ω(pm)), we have, for every x ∈ X̂ ′′, that

|NT̂ (x) ∩ Ŷ | = (1± δ) |NT (x) ∩ Y |
m2

m = Ω(pm) (6.6)

and
|NT̂ (x) ∩ Ẑ| = (1± δ) |NT (x) ∩ Z|

m3
m = Ω(pm). (6.7)

Recall that for every x ∈ X̂ ′′ ⊆ X ′ there exist sets Yx ⊆ NT (x)∩Y and Zx ⊆ NT (x)∩Z
of size at least ε′|NT (x) ∩ Y | ≥ ε′αpm2/2 and ε′|NT (x) ∩ Z| ≥ ε′αpm3/2, respectively,
such that

dT,p(Yx, Zx) < α− ε′. (6.8)

As before, applying the concentration of the hypergeometric distribution, we obtain that,
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6 Sparse partition universal graphs

with probability at least 1−m exp(−Ω(pm)), we have, for every x ∈ X̂ ′′, that

|Yx ∩ Ŷ | = (1± δ) |Yx|
m2

m = Ω(pm) (6.9)

and
|Zx ∩ Ẑ| = (1± δ) |Zx|

m3
m = Ω(pm). (6.10)

Below we shall show that, with probability 1 − o(1/m), for any given x ∈ X̂ ′′, the pair
(NT̂ (x)∩ Ŷ , NT̂ (x)∩Ẑ) is not (ε′/2, α, p)-dense. Summing the failure probability o(1/m)
over all choices of x, we deduce that T̂ = T [X̂, Ŷ , Ẑ] ∈ BII

p (m,α, ε′/2, ε̂, µ/4) with
probability 1− o(1) (recall (6.4)).
Fix x ∈ X̂ ′′. Below, we may and shall assume that (6.6), (6.7), (6.9), and (6.10) hold.

Let ζ = (1 ± δ)|Zx|m/m3 = Ω(pm). In what follows, we shall consider the conditional
space in which |Zx ∩ Ẑ| = ζ. To remind ourselves of this conditioning, we shall write Pζ
and Eζ to denote the probability and the expectation in this space.
For all y ∈ Yx, let Γ(y) = NT (y) ∩ Zx and set dy = |Γ(y)|. We have

Eζ(|Γ(y) ∩ Ẑ|) = dyζ

|Zx|
.

Suppose now that dy ≥ (ε′/20e)p|Zx|. Then

Pζ

(
|Γ(y) ∩ Ẑ| ≥ (1 + δ) dy

|Zx|
ζ

)
≤ exp

(
−1

3δ
2 dy
|Zx|

ζ

)
≤ exp

(
−1

3δ
2 ε′

20epζ
)

= exp
(
−Ω(p2m)

)
. (6.11)

Consider now the case in which dy < (ε′/20e)p|Zx|. Then

Pζ

(
|Γ(y) ∩ Ẑ| ≥ dy

|Zx|
ζ + ε′

10pζ
)
≤ Pζ

(
|Γ(y) ∩ Ẑ| ≥ ε′

10pζ
)

≤
( e

(ε′/10)pζ
dy
|Zx|

ζ

)(ε′/10)pζ

≤
( e

(ε′/10)p(ε′/20e)p
)(ε′/10)pζ

=
(1

2

)(ε′/10)pζ

= exp
(
−Ω(p2m)

)
. (6.12)

Let us note that, if dy < (ε′/20e)p|Zx|, then

dy
|Zx|

ζ + ε′

10pζ ≤
ε′

20epζ + ε′

10pζ ≤
1
8ε
′pζ. (6.13)
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6.4 Ramsey universal graphs

Because of (6.8), (6.11), (6.12), and (6.13), we have, with probability 1− o(1/m), that

e(Yx, Zx ∩ Ẑ) ≤
∑
y∈Yx

(1 + δ) dy
|Zx|

ζ +
∑
y∈Yx

1
8ε
′pζ

= (1 + δ) ζ

|Zx|
∑
y∈Yx

dy + 1
8ε
′pζ|Yx|

≤ (1 + δ) ζ

|Zx|
(α− ε′)p|Yx||Zx|+

1
8ε
′pζ|Yx|,

whence, recalling that |Zx ∩ Ẑ| = ζ,

dT,p(Yx, Zx ∩ Ẑ) ≤ (1 + δ)(α− ε′) + 1
8ε
′ ≤ α− 1

4ε
′. (6.14)

Repeating the same argument with Yx replaced with Zx∩Ẑ and with Zx replaced with Yx,
we obtain that, with probability 1− o(1/m),

dT,p(Yx ∩ Ŷ , Zx ∩ Ẑ) ≤ α− 1
2ε
′.

This concludes the proof of Claim 6.13.

6.4 Ramsey universal graphs
6.4.1 Proof of Theorem 1.23
In this section we prove Theorem 1.23, namely, we show that for

p = p(N) ≥ C(logN/N)1/∆

the random graph G(N, p) is partition universal for H∆,n for n of the form bcNc for
some c > 0. In view of the results from Section 6.3 this follows directly from the
following deterministic statement.

Lemma 6.14. For every ∆ ≥ 2 there exist ∆̃ ≥ 2 and positive constants µ, α, ε0, . . . , ε∆̃,
ξ, γ, B, and n0 such that for every n ≥ n0 the following holds. If G = (V,E) is a graph
on V = [N ], where N ≥ Bn, such that for some 0 < p ≤ 1 we have

(i ) G ∈ UN,p,

(ii ) G ∈ EkN,p(ξ) for every k = 1, . . . ,∆, and

(iii ) G ∈ D∆
N,p(γ, α, εk, εk−1, µ) for every k = 1, . . . , ∆̃,

then G is partition universal for H∆,n.

Before we prove Lemma 6.14, we deduce Corollary 6.15 below, which implies Theo-
rem 1.23 immediately.
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6 Sparse partition universal graphs

Corollary 6.15. For every ∆ ≥ 2 there exist B and C > 0 such that, if p = p(N) ≥
C(logN/N)1/∆ and n = n(N) = bN/Bc, then

P
(
G(N, p) is partition universal for H∆,n

)
= 1− o(1) . (6.15)

Proof. For a given ∆ ≥ 2, let ∆̃, µ, α, ε0, . . . , ε∆̃, ξ, γ, and B be given by Lemma 6.14.
Then let C be large enough so that Proposition 6.8 holds for every k = 1, . . . ,∆, and ξ
and so that Proposition 6.11 holds for every k = ∆̃, . . . , 1 with µ, α, ε′k = εk, and
εk−1 = ε(∆ − 1, α, ε′ = εk, µ) from Proposition 6.11. Consequently, with probability
1 − o(1), the random graph G(N, p) satisfies properties (ii )–(iii ) of Lemma 6.14 due
to Propositions 6.8 and 6.11. Finally, property (i ) holds with probability 1 − o(1) by
Proposition 6.6 as ∆ ≥ 2. Thus (6.15) follows.

6.4.2 Proof of Lemma 6.14

In this section we prove the main technical lemma, Lemma 6.14. The proof follows
the strategy in the proof of Chvátal et al. in [CRST83], but includes ideas from [AF92]
and [RR99], and is based on the sparse regularity lemma.

Proof of Lemma 6.14. The proof consists of four parts. In the first part we fix all con-
stants needed in the proof. In the second part we consider the given graph G along
with a fixed 2-coloring of its edges. We have to show that G contains a monochromatic
H∆,n-universal graph. In other words, we have to embed every graph H ∈ H∆,n into
one of the two monochromatic subgraphs of G. To that end, we first prepare the graph
G and here the sparse regularity lemma will be the key tool. In the third part we shall
prepare a given graph H ∈ H∆,n for the embedding. In the last part we then embed H
into a monochromatic subgraph of G.
Constants. Let ∆ ≥ 2 be an integer. We first fix

∆̃ = ∆4 + 2∆ + 1

and we set
r = R(∆̃, ∆̃) ,

where R(∆̃, ∆̃) is the Ramsey number that guarantees that every 2-coloring of the edges
of the complete graph Kr yields a monochromatic copy of K∆̃. Next we define the
constants µ, α, ε0, . . . , ε∆̃, ξ, γ, B, and n0 of Lemma 6.14. First we set

µ = 1
4∆2 and α = 1

4 , (6.16)

and we fix εk for k = ∆̃, ∆̃− 1, . . . , 0 by setting

ε∆̃ = 1
12∆̃

and εk−1 = min
{
ε(∆− 1, α, ε′ = εk, µ), εk

}
for k = ∆̃, . . . , 1 , (6.17)
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where ε(∆− 1, α, ε′ = εk, µ) is given by Proposition 6.11.
Next we set

ε = min
{
ε0
2 ,

1
2(r − 1)

}
, K = 2 , and t0 = 2r (6.18)

and let T0, η, and N0 be the constants guaranteed by the sparse regularity lemma,
Theorem 6.1, for ε, K, and t0 given above. Finally, we set

γ = 1− ε
4∆−1T0

, ξ = 1
7 · 4∆+1 · T0

, B = 1
ξ
, (6.19)

and
n0 = max

{
N0
B
,

1
η2 , T

2
0 , 24/ε0 , e1/η

}
. (6.20)

This concludes the definition of the constants involved in the proof of Lemma 6.14.
Preparing G. Now let n ≥ n0 be given and let G = (V,E) be a graph on V = [N ],
where N ≥ Bn ≥ N0, satisfies assumptions (i )–(iii ) of Lemma 6.14 for some 0 < p ≤ 1.
We fix an arbitrary coloring of the edges E = ER ∪ EB of G with two colors, say red
and blue, and let GR = (V,ER) and GB = (V,EB) be the corresponding monochromatic
subgraphs. We have to show that one of GR or GB will contain every H in H∆,n. To that
end, first use the sparse regularity lemma to “locate” an appropriate “regular” subgraph
in either GR or GB.
More precisely, we apply the sparse regularity lemma, Theorem 6.1, to GR with

ε = min
{
ε0
2 ,

1
r − 1

}
, K = 2 , t0 = 2r , and p .

Note that, owing to property (i ) of Lemma 6.14 (see Definition 6.5), the graph G is
(1/ logN, 1 + 1/ logN)-bounded. Since GR ⊆ G, 1/ logN ≤ 1, and N/ logN ≤ ηN
(because of the choice of n0 in (6.20)) we infer that indeed GR is (η,K)-bounded
(see (6.18)). Consequently, Theorem 6.1 yields an (ε, t)-equitable (ε,GR, p)-regular par-
tition V0 ∪ V1 ∪ . . . ∪ Vt of V with t0 ≤ t ≤ T0.
We consider an auxiliary graph A with vertex set [t] = {1, . . . , t} and {i, j} being

an edge if and only if the pair (Vi, Vj) is (ε, p)-regular for GR. Since the partition
V0 ∪ V1 ∪ . . . Vt is (ε,GR, p)-regular, at most ε

(t
2
)
≤ 1

2(r−1)
(t
2
)
< (r − 1)

(t/(r−1)
2

)
of the

pairs of the auxiliary graph are missing and hence, by Turán’s theorem, A contains a
clique Kr with r vertices. In other words, there exists an index set Ir = {i1, . . . , ir} ⊆ [t]
such that (Vi, Vj) is (ε, p)-regular for GR for all {i, j} ∈

(Ir

2
)
. Moreover, since G ∈ UN,p

and since 1/ logN ≤ N/T0 (see (6.20)) it follows directly from the definition of (ε, p)-
regularity that (Vi, Vj) is (ε + 2/ logN, p)-regular for the graph GB. Because of (6.18)
and (6.20), we have ε+ 2/ logN ≤ ε0/2 + ε0/2 and, hence, (Vi, Vj) is (ε0, p)-regular for
GR and for GB for all {i, j} ∈

(Ir

2
)
.

Next we color the edges of the clique Kr ⊆ A red and blue. We color an edge
{i, j} ∈

(Ir

2
)
red if dGR,p(Vi, Vj) ≥ dGB ,p(Vi, Vj) and blue otherwise. Note that, again from

the fact that G ∈ UN,p and 1/ logN ≤ N/T0 we infer that dGR,p(Vi, Vj)+dGB ,p(Vi, Vj) ≥
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1− 1/ logN and, therefore,

max {dGR,p(Vi, Vj), dGB ,p(Vi, Vj)} ≥
1
2 −

1
2 logN ≥

1
3

for every {i, j} ∈
([t]

2
)
.

Because of the choice of r ≥ R(∆̃, ∆̃) there exists a monochromatic clique K∆̃ ⊆
Kr ⊆ A on ∆̃ vertices. Let J ⊆ I be the vertex set of the monochromatic clique K∆̃.
Summarizing, the above ensures the existence of a set J ⊆ I of cardinality ∆̃ such that
either

(Vi, Vj) is (ε0, p)-regular for GR and dGR,p(Vi, Vj) ≥ 1/3 for all {i, j} ∈
(J

2
)

(6.21)

or the same statement holds for GB. Without loss of generality we assume that (6.21)
holds and we shall show that GR induced on

⋃
i∈J Vi will contain any H from H∆,n.

Preparing H. Fix some H = (W,F ) ∈ H∆,n. We consider the third power H3 =
(W,F 3) of H, i.e., {w,w′} ∈ F 3 if and only if w 6= w′ and there exists a w–w′-path with
at most three edges in H. Since ∆(H) ≤ ∆ we have

∆(H3) ≤ ∆ + ∆(∆− 1) + ∆(∆− 1)2 = ∆3 −∆2 + ∆

and consequently χ(H3) ≤ ∆3−∆2 + ∆ + 1. Fix a (∆3−∆2 + ∆ + 1)-vertex coloring f
of H3 with colors 1, . . . ,∆3 − ∆2 + ∆ + 1. This way we obtain a partition of W into
∆3 − ∆2 + ∆ + 1 classes such that if two vertices w and w′ are elements of the same
class, then their distance in H is at least four; in particular, there are no edges between
NH(w) and NH(w′), since otherwise {w,w′} would be an edge in H3. We now refine the
partition induced by the color classes of f according to the “left-degrees” of the vertices.
More precisely, we say two vertices w and w′ are equivalent if f(w) = f(w′) and∣∣NH(w) ∩ {x ∈W : f(x) < f(w)}

∣∣ =
∣∣NH(w′) ∩ {x ∈W : f(x) < f(w′)}

∣∣ ,
i.e., w and w′ are equivalent if they have the same color in f and the same number
of neighbours with colors of smaller number. Clearly, this equivalence relation parti-
tions W into at most (∆3 − ∆2 + ∆ + 1)(∆ + 1) = ∆̃ classes. Denote the partition
classes by W1, . . . ,W∆̃ (allowing empty classes if necessary) and let g : W → [∆̃] be the
corresponding partition function, i.e.,

g(w) = j if and only if w ∈Wj .

Thus, if g(w) = g(w′), then
∣∣NH(w) ∩ {x ∈ W : g(x) < g(w)}

∣∣ =
∣∣NH(w′) ∩ {x ∈

W : g(x) < g(w′)}
∣∣. For an integer ` ≤ g(w) we denote by

ldeg`g(w) :=
∣∣NH(w) ∩ {x ∈W : g(x) ≤ `}

∣∣
the left-degree of w with respect to g and `.
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6.4 Ramsey universal graphs

Embedding of H into G. After the preparation of G and H we are able to embed H
into GR. We may relabel the vertex classes Vi of GR with i ∈ J and assume J = [∆̃]. We
proceed inductively and embed the vertex classW` into V` one at a time, for ` = 1, . . . , ∆̃.
To this end, we verify the following statement (S`) for ` = 0, . . . , ∆̃.

(S`) There exists a partial embedding ϕ` of H[
⋃`
j=1Wj ] into GR[

⋃`
j=1 Vj ] such that for

every z ∈
⋃∆̃
j=`+1Wj there exists a candidate set C`(z) ⊆ V (G) given by

(a ) C`(z) =
⋂
{NGR

(ϕ`(x)) : x ∈ NH(z) and g(x) ≤ `} ∩ Vg(z),
satisfying

(b ) |C`(z)| ≥ (p/4)ldeg`
g(z)m, where m = |Vg(z)| ≥ (1− ε)N/t, and

(c ) for every {z, z′} ∈ F = E(H) with g(z), g(z′) > ` the pair
(
C`(z), C`(z′)

)
is

(ε`, 1/3− `ε∆̃, p)-dense in GR.

Remark 6.16. In what follows we shall use the following convention. Vertices from GR
will be denoted by v and vertices from H will be usually named w. However, since the
embedding of H into G will be divided into ∆̃ rounds, we shall find it convenient to
distinguish among the vertices of H. We shall use the letter x for vertices that have
already been embedded, the letter y for vertices that will be embedded in the current
round, while z will denote vertices that we shall embed at a later step.
Statement (S`) ensures the existence of a partial embedding of the first ` vertex classes
W1, . . . ,W` of H such that for every unembedded vertex z there exists a candidate set
C`(z) that is not too small (see part (b )). Moreover, if we embed z into its candidate
set, then its image will be adjacent to all vertices ϕ`(x) with x ∈ (W1∪· · ·∪W`)∩NH(z)
(see part (a )). The last property, part (c ), says that edges of H for which none of the
endvertices are embedded already the respective candidate sets induce (ε, α, p)-dense
pairs. This property will be crucial for the inductive proof.
Before we verify (S`) for ` = 0, . . . , ∆̃ by induction on ` we note that (S∆̃) implies

that H can be embedded into GR. Since H was an arbitrary graph from H∆,n and we
fixed an arbitrary coloring of the edges of G, this implies G −→ H for every H ∈ H∆,n.
Consequently, verifying (S`) yields the proof of Lemma 6.14.

Basis of the induction: ` = 0

We first verify (S0). In this case ϕ0 is the empty mapping and for every z ∈W we have,
according to (a ), C0(z) = Vg(z), as there is no vertex x ∈ NH(z) with g(x) ≤ 0. Also,
property (b ) holds by definition of C0(z) for every z ∈W . Finally, property (c ) follows
from the property that (Vi, Vj) is (ε0, p)-regular for GR and, consequently,

(
C0(z), C0(z′)

)
is (ε0, 1/3, p)-dense in GR for every edge {z, z′} of H (see (6.21)).

Induction step: `→ `+ 1

For the inductive step, we suppose that ` < ∆̃ and assume that statement (S`) holds;
we have to construct ϕ`+1 with the required properties. Our strategy is as follows. In
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6 Sparse partition universal graphs

the first step, we find for every y ∈ W`+1 an appropriate subset C(y) ⊆ C`(y) of the
candidate set such that if ϕ`+1(y) is chosen from C(y), then (*) the new candidate set
C`+1(z) := C`(z) ∩ NGR

(ϕ`+1(y)) of every “right-neighbour” z of y will not shrink too
much and (**) property (c ) will continue to hold.

Note, however, that in general |C(y)| ≤ |C`(y)| = o(N) � |W`+1| (if ldeg`g ≥ 1) and,
hence, we cannot “blindly” select ϕ`+1(y) from C(y). Instead, in the second step, we
shall verify Hall’s condition to find a system of distinct representatives for the family
{C(y) : y ∈W`+1} and we let ϕ`+1(y) be the representative of C(y). (A similar idea was
used in [AF92, RR99].) We now give the details of those two steps.

For the first step, fix y ∈W`+1 and set

N `+1
H (y) := {z ∈ NH(y) : g(z) > `+ 1} .

A vertex v ∈ C`(y) will be “bad” (i.e., we shall not select v for C(y)) if there exists a
vertex z ∈ N `+1

H (y) for which NGR
(v) ∩ C`(z), in view of (b ) and (c ) of (S`+1), cannot

play the rôle of C`+1(z).

We first prepare for (b ) of (S`+1). Fix a vertex z ∈ N `+1
H (y). Since (C`(y), C`(z)) is

an (ε`, 1/3− `ε∆̃, p)-dense pair, there exist at most

ε`|C`(y)| ≤ ε∆̃|C`(y)|

vertices v in C`(y) such that

|NGR
(v) ∩ C`(z)| <

(
dGR,p(C`(y), C`(z))− ε∆̃

)
p|C`(y)| .

Repeating the above for all z ∈ N `+1
H (y), we infer from (a ) and (b ) of (S`), that there

are at most ∆ε∆̃|C`(y)| vertices v ∈ C`(y) such that the following fails to be true for
some z ∈ N `+1

H (y):

|NGR
(v) ∩ C`(z)| ≥

(
dGR,p(C`(y), C`(z))− ε∆̃

)
p|C`(z)|

(a ), (b )
≥

(1
3 − (`+ 1)ε∆̃

)
p

(
p

4

)ldeg`
g(z)
|Vg(z)|

(6.17)
≥

(
p

4

)ldeg`+1
g (z)

|Vg(z)| . (6.22)

For property (c ) of (S`+1), we fix an edge e = {z, z′} with g(z), g(z′) > ` + 1 and
with at least one end vertex in N `+1

H (y). There are at most ∆(∆− 1) < ∆2 such edges.
Note that if both vertices z and z′ are neighbours of y, i.e., z, z′ ∈ N `+1

H (y), then

max
{

ldeg`g(y), ldeg`g(z), ldeg`g(z′)
}
≤ ∆− 2 ,

since all three vertices y, z, and z′ have at least two neighbours in W`+1 ∪ · · · ∪W∆̃.

170



6.4 Ramsey universal graphs

From property (b ) of (S`) we infer

min
{
|C`(y)| , |C`(z)| , |C`(z′)|

}
≥
(
p

4

)max{ldeg`
g(y),ldeg`

g(z),ldeg`
g(z′)}

(1− ε)N
T0

(6.19)
≥ γp∆−2N.

Furthermore,
1
3 − `ε∆̃ ≥ α = 1

4
(see (6.17)). Hence GR ⊆ G and G ∈ D∆

N,p(γ, α, ε`+1, ε`, µ) imply that there are at most
µ|C`(y)| vertices v ∈ C`(y) such that the pair (NGR

(v)∩C`(z), NGR
(v)∩C`(z′)) fails to

be (ε`+1, 1/3− (`+ 1)ε∆̃, p)-dense.
If, on the other hand, say, only z ∈ N `+1

H (y) and z′ 6∈ N `+1
H (y), then

max{ldeg`g(y), ldeg`g(z′)} ≤ ∆− 1 and ldeg`g(z) ≤ ∆− 2.

Consequently, (similarly as above)

min
{
|C`(y)| , |C`(z′)|

}
≥ γp∆−1N

and
|C`(z)| ≥ γp∆−2N

and we can appeal to G ∈ D∆
N,p(γ, α, ε`+1, ε`, µ) to infer that there are at most µ|C`(y)|

vertices v ∈ C`(y) with the property that the pair (NGR
(v) ∩ C`(z), C`(z′)) fails to be

(ε`+1, 1/3 − (` + 1)ε∆̃, p)-dense. For a given v ∈ C`(y), let Ĉ`(z) = C`(z) ∩ NGR
(v) if

z ∈ N `+1
H (y) and Ĉ`(z) = C`(z) if z 6∈ N `+1

H (w), and define Ĉ`(z′) analogously.
Summarizing the above we infer that there are at least

(1−∆ε∆̃ −∆2µ)|C`(y)| (6.23)

vertices v ∈ C`(y) such that

(b ′) |NGR
(v) ∩ C`(z)| ≥ (p/4)ldeg`+1

g (z)|Vg(z)| for every z ∈ N `+1
H (y) (see (6.22) and

(c ′) (Ĉ`(z), Ĉ`(z′)) is (ε`+1, 1/3−(`+1)ε∆̃, p)-dense for all edges {z, z
′} of H with g(z),

g(z′) > `+ 1 and {z, z′} ∩N `+1
H (y) 6= ∅.

Let C(y) be the set of those vertices v from C`(y) satisfying properties (b ′) and (c ′)
above. Recall that ldeg`g(y) = ldeg`g(y′) for all y, y′ ∈W`+1 and set

k = ldeg`g(y) for some y ∈W`+1.

Since y ∈ W`+1 was arbitrary, we infer from (6.23), the choices of µ and ε∆̃ in (6.16)
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6 Sparse partition universal graphs

and (6.17) and property (b ) of (S`) that

|C(y)| ≥ (1−∆ε∆̃ −∆2µ)|C`(y)|

≥ (1−∆ε∆̃ −∆2µ)
(
p

4

)k
(1− ε)N

T0
≥ 1

4k+1 p
kN

T0
. (6.24)

We now turn to the aforementioned second part of the inductive step. Here we ensure
the existence of a system of distinct representatives for the set system

C`+1 = {C(y) : y ∈W`+1} .

We shall appeal to Hall’s condition and show that for every subfamily C ′ ⊆ C`+1 we
have

|C ′| ≤
∣∣∣∣ ⋃
C∈C′

C

∣∣∣∣. (6.25)

Because of (6.24), assertion (6.25) holds for all families C ′ with 1 ≤ |C ′| ≤ 4−k−1pkN/T0.

Thus, consider a family C ′ ⊆ C`+1 with |C ′| > 4−k−1pkN/T0. For every y ∈ W`+1
we have ldeg`g(y) = k. Hence, we have a k-tuple K(y) = {u1(y), . . . , uk(y)} of already
embedded vertices of H such that K(y) = NH(y) \N `+1

H (y). Note that for two distinct
vertices y, y′ ∈ W`+1 the sets K(y) and K(y′) are disjoint. This follows from the fact
that the distance in H between y and y′ is at least four and if K(y) ∩K(y′) 6= ∅, then
this distance would be at most two. Consequently, the sets ϕ(K(y)) and ϕ(K(y′)) are
disjoint as well and, therefore, Fk = {ϕ(K(y)) : y ∈W`+1} ⊆

(V
k

)
is a family of pairwise

disjoint k-sets in V . Moreover,

C(y) ⊆
⋂

v∈ϕ(K(y))
NGR

(v) ⊆
⋂

v∈ϕ(K(y))
NG(v) .

Let
U =

⋃
C(y)∈C′

C(y) ⊆ V`+1 ,

and suppose for a contradiction that

|U | < |C ′| = |Fk|. (6.26)

We now use property (ii ) of Lemma 6.14, namely, G ∈ EkN,p(ξ) applied for Fk and U .
We deduce that

eΓ(k,G)(Fk, U) ≤ pk|Fk||U |+ 6ξNpk|Fk| .

On the other hand, because of (6.24), we have

eΓ(k,G)(Fk, U) ≥ 1
4k+1 p

kN

T0
|Fk|.
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Combining the last two inequalities we infer∣∣∣∣ ⋃
C(y)∈C′

C(y)
∣∣∣∣ = |U | ≥

( 1
4k+1

1
T0
− 6ξ

)
N

(6.19)
≥ ξN ≥ ξBn (6.19)= n ≥ |W`+1| ≥ |C ′|,

which contradicts (6.26). This contradiction shows that (6.26) does not hold, that is,
Hall’s condition (6.25) does hold. Hence, there exists a system of representatives for
C`+1, i.e., an injective mapping ψ : W`+1 →

⋃
y∈W`+1

C(y) such that ψ(y) ∈ C(y) for
every y ∈W`+1.

Finally, we extend ϕ` and define C`+1(z) for z ∈
⋃∆̃
j=`+2Wj . For that we set

ϕ`+1(w) =
{
ϕ`(w) , if w ∈

⋃`
j=1Wj ,

ψ(w) , if w ∈W`+1 .

Note that every z ∈
⋃∆̃
j=`+2Wj has at most one neighbour in W`+1, as otherwise there

would be two vertices y and y′ ∈W`+1 with distance at most 2 in H, which contradicts
the fact that g and f are valid vertex colorings of H3. Consequently, for every z ∈⋃∆̃
j=`+2Wj we can set

C`+1(z) =
{
C`(z) , if NH(z) ∩W`+1 = ∅,
C`(z) ∩NGR

(ϕ`+1(y)) , if NH(z) ∩W`+1 = {y}.

In what follows we show that ϕ`+1 and C`+1(z) for every z ∈
⋃∆̃
j=`+2Wj have the

desired properties and validate (S`+1).
First of all, from (a ) of (S`), combined with ϕ`+1(y) ∈ C(y) ⊆ C`(y) for every y ∈

W`+1 and the property that {ϕ`+1(y) : y ∈W`+1} is a system of distinct representatives,
we infer that ϕ`+1 is indeed a partial embedding of H[

⋃`+1
j=1Wj ].

Next we shall verify properties (a ) and (b ) of (S`+1). So let z ∈
⋃∆̃
j=`+2Wj be fixed.

If NH(z)∩W`+1 = ∅, then C`+1(z) = C`(z), ldeg`+1
g (z) = ldeg`g(z), which yields (a ) and

(b ) of (S`+1) for that case. If, on the other hand, NH(z) ∩W`+1 6= ∅, then there exists
a unique neighbour y ∈ W`+1 of H (owing to the fact that g is a refinement of a valid
vertex coloring of H3). Because of the definition of C`+1(z) = C`(z) ∩ NGR

(ϕ`+1(y))
part (a ) of (S`+1) follows in this case. Moreover, since ϕ`+1(y) ∈ C(y), we infer directly
from (b ′) that (b ) of (S`+1) is satisfied in this case.
Finally, we verify property (c ) of (S`+1). Let {z, z′} be an edge of H with z, z′ ∈⋃∆̃
j=`+2Wj . We consider three cases, depending on the size of NH(z) ∩ W`+1 and of

NH(z′) ∩W`+1. If NH(z) ∩W`+1 = ∅ and NH(z′) ∩W`+1 = ∅, then part (c ) of (S`+1)
follows directly from part (c ) of (S`) and ε`+1 ≥ ε`, combined with C`+1(z) = C`(z),
C`+1(z′) = C`(z′). If NH(z) ∩W`+1 = {y} and NH(z′) ∩W`+1 = ∅, then (c ) of (S`+1)
follows from (c ′) and the definition of C`+1(z) and C`+1(z′). If NH(z)∩W`+1 = {y} and
NH(z′) ∩W`+1 = {y′}, then y = y′, as otherwise there would be a y-y′-path in H with
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three edges, i.e., {y, y′} would be an edge in H3, which would imply that g(y) 6= g(y′).
Consequently, (c ) of (S`+1) follows from (c ′) and the definition of C`+1(z) and C`+1(z′).
We have therefore verified (a )–(c ) of (S`+1), thus concluding the induction step. The

proof of Lemma 6.14 follows by induction.

174



Bibliography
[AC07] Alon, N.; Capalbo, M. R.: Sparse universal graphs for bounded-degree

graphs. In: Random Structures Algorithms, volume 31(2):pp. 123–133, 2007.

[AC08] Alon, N.; Capalbo, M. R.: Optimal universal graphs with deterministic em-
bedding. In: Proceedings of the 19th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2008), pp. 373–378. 2008.

[ACK+00] Alon, N.; Capalbo, M. R.; Kohayakawa, Y.; Rödl, V.; Ruciński, A.; Sze-
merédi, E.: Universality and tolerance (extended abstract). In: Proceedings
of the 41st IEEE Annual Symposium on Foundations of Computer Science
(FOCS 2000), pp. 14–21. 2000.

[ACK+01] Alon, N.; Capalbo, M. R.; Kohayakawa, Y.; Rödl, V.; Ruciński, A.; Sze-
merédi, E.: Near-optimum universal graphs for graphs with bounded degrees
(extended abstract). In: Goemans, M.; abd J.D.P. Rolim abd L. Trevisan,
K. Jansen, editors, Approximation, Randomization and Combinatorial Opti-
mization: Algorithms and Techniques, Lecture Notes in Computer Science,
2129, pp. 170–180. Springer-Verlag, 2001.

[AF92] Alon, N.; Füredi, Z.: Spanning subgraphs of random graphs. In: Graphs
Combin., volume 8(1):pp. 91–94, 1992.

[AFKS00] Alon, N.; Fischer, E.; Krivelevich, M.; Szegedy, M.: Efficient testing of large
graphs. In: Combinatorica, volume 20(4):pp. 451–476, 2000.

[ARS07] Avart, Ch.; Rödl, V.; Schacht, M.: Every monotone 3-graph property is
testable. In: SIAM J. Discrete Math., volume 21(1):pp. 73–92 (electronic),
2007.

[AS05a] Alon, N.; Shapira, A.: A characterization of the (natural) graph properties
testable with one-sided error. In: Proceedings of the fourty-sixth annual
IEEE Symposium on Foundations of Computer Science, pp. 429–438. IEEE
Computer Society, 2005.

[AS05b] Alon, N.; Shapira, A.: Every monotone graph property is testable. In: Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory of comput-
ing, pp. 128–137. ACM Press, New York, NY, USA, 2005.

[AS08a] Alon, N.; Shapira, A.: A characterization of the (natural) graph properties
testable with one-sided error. In: SIAM J. Comput., volume 37(6):pp. 1703–
1727, 2008.

175



Bibliography

[AS08b] Alon, N.; Shapira, A.: Every monotone graph property is testable. In: SIAM
J. Comput., volume 38(2):pp. 505–522, 2008.

[AT] Austin, T.; Tao, T.: On the testability and repair of hereditary hypergraph
properties. Submitted.

[BC78] Bender, E. A.; Canfield, E. R.: The asymptotic number of labeled graphs with
given degree sequences. In: J. Combinatorial Theory Ser. A, volume 24(3):pp.
296–307, 1978.

[BCL+06] Borgs, C.; Chayes, J.; Lovász, L.; Sós, V. T.; Szegedy, B.; Vesztergombi, K.:
Graph limits and parameter testing. In: STOC’06: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pp. 261–270. ACM, New
York, 2006.

[Bec83] Beck, J.: On size Ramsey number of paths, trees, and circuits. I. In: J.
Graph Theory, volume 7(1):pp. 115–129, 1983.

[Bec90] Beck, J.: On size Ramsey number of paths, trees and circuits. II. In:
Mathematics of Ramsey theory, volume 5 of Algorithms Combin., pp. 34–
45. Springer, Berlin, 1990.

[BES73] Brown, W. G.; Erdős, P.; Sós, V. T.: Some extremal problems on r-graphs.
In: New directions in the theory of graphs (Proc. Third Ann Arbor Conf.,
Univ. Michigan, Ann Arbor, Mich, 1971), pp. 53–63. Academic Press, New
York, 1973.

[BESS78] Bollobás, B.; Erdős, P.; Simonovits, M.; Szemerédi, E.: Extremal graphs
without large forbidden subgraphs. In: Ann. Discrete Math., volume 3:pp.
29–41, 1978. Advances in graph theory (Cambridge Combinatorial Conf.,
Trinity Coll., Cambridge, 1977).

[Bol01] Bollobás, B.: Random graphs, volume 73 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2nd edition, 2001.

[Bou08] Bourgain, J.: Roth’s theorem on progressions revisited. In: J. Anal. Math.,
volume 104:pp. 155–192, 2008.

[CFKO] Cooley, O.; Fountoulakis, N.; Kühn, D.; Osthus, D.: Embeddings and Ram-
sey numbers of sparse k-uniform hypergraphs. To appear.

[CGW89] Chung, F. R. K.; Graham, R. L.; Wilson, R. M.: Quasi-random graphs. In:
Combinatorica, volume 9(4):pp. 345–362, 1989.

[CHPS] Conlon, D.; Hàn, H.; Person, Y.; Schacht, M.: Weak quasi-randomness for
uniform hypergraphs. Submitted.

[Chu91] Chung, F. R. K.: Regularity lemmas for hypergraphs and quasi-randomness.
In: Random Structures Algorithms, volume 2(2):pp. 241–252, 1991.

176



Bibliography

[CRST83] Chvátal, V.; Rödl, V.; Szemerédi, E.; Trotter, W. T., Jr.: The Ramsey
number of a graph with bounded maximum degree. In: J. Combin. Theory
Ser. B, volume 34(3):pp. 239–243, 1983.

[DLR95] Duke, R. A.; Lefmann, H.; Rödl, V.: A fast approximation algorithm for com-
puting the frequencies of subgraphs in a given graph. In: SIAM J. Comput.,
volume 24(3):pp. 598–620, 1995.

[DR85] Duke, R. A.; Rödl, V.: On graphs with small subgraphs of large chromatic
number. In: Graphs Combin., volume 1(1):pp. 91–96, 1985.

[EFR86] Erdős, P.; Frankl, P.; Rödl, V.: The asymptotic number of graphs not con-
taining a fixed subgraph and a problem for hypergraphs having no exponent.
In: Graphs Combin., volume 2(2):pp. 113–121, 1986.

[EFRS78] Erdős, P.; Faudree, R. J.; Rousseau, C. C.; Schelp, R. H.: The size Ramsey
number. In: Period. Math. Hungar., volume 9(1-2):pp. 145–161, 1978.

[EH72] Erdős, P.; Hajnal, A.: On Ramsey like theorems. Problems and results.
In: Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford,
1972), pp. 123–140. Inst. Math. Appl., Southend, 1972.

[Erd81] Erdős, P.: Problems and results in graph theory. In: The theory and appli-
cations of graphs (Kalamazoo, Mich., 1980), pp. 331–341. Wiley, New York,
1981.

[Erd90] Erdős, P.: Problems and results on graphs and hypergraphs: similarities and
differences. In: Nešetřil, J.; Rödl, V., editors, Mathematics of Ramsey theory,
volume 5 of Algorithms Combin., pp. 12–28. Springer, Berlin, 1990.

[ET36] Erdős, P.; Turán, P.: On some sequences of integers. In: J. Lond. Math.
Soc., volume 11:pp. 261–264, 1936.

[FK78] Furstenberg, H.; Katznelson, Y.: An ergodic Szemerédi theorem for commut-
ing transformations. In: J. Analyse Math., volume 34:pp. 275–291, 1978.

[FK85] Furstenberg, H.; Katznelson, Y.: An ergodic Szemerédi theorem for IP-
systems and combinatorial theory. In: J. Analyse Math., volume 45:pp.
117–168, 1985.

[FK91] Furstenberg, H.; Katznelson, Y.: A density version of the Hales-Jewett the-
orem. In: J. Anal. Math., volume 57:pp. 64–119, 1991.

[FK99] Frieze, A.; Kannan, R.: Quick approximation to matrices and applications.
In: Combinatorica, volume 19(2):pp. 175–220, 1999.

[FP87] Friedman, J.; Pippenger, N.: Expanding graphs contain all small trees. In:
Combinatorica, volume 7(1):pp. 71–76, 1987.

177



Bibliography

[FR92] Frankl, P.; Rödl, V.: The uniformity lemma for hypergraphs. In: Graphs
Combin., volume 8(4):pp. 309–312, 1992.

[FR02] Frankl, P.; Rödl, V.: Extremal problems on set systems. In: Random Struc-
tures Algorithms, volume 20(2):pp. 131–164, 2002.

[FRRT06] Friedgut, E.; Rödl, V.; Ruciński, A.; Tetali, P.: A sharp threshold for random
graphs with a monochromatic triangle in every edge coloring. In: Mem.
Amer. Math. Soc., volume 179(845):pp. vi+66, 2006.

[Fur77] Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of
Szemerédi on arithmetic progressions. In: J. Analyse Math., volume 31:pp.
204–256, 1977.

[Für95] Füredi, Z.: Extremal hypergraphs and combinatorial geometry. In: Pro-
ceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich,
1994), pp. 1343–1352. Birkhäuser, Basel, 1995.

[GGR98] Goldreich, O.; Goldwasser, S.; Ron, D.: Property testing and its connection
to learning and approximation. In: J. ACM, volume 45(4):pp. 653–750, 1998.

[GKRS07] Gerke, S.; Kohayakawa, Y.; Rödl, V.; Steger, A.: Small subsets inherit sparse
ε-regularity. In: J. Combin. Theory Ser. B, volume 97(1):pp. 34–56, 2007.

[Gow97] Gowers, W. T.: Lower bounds of tower type for Szemerédi’s uniformity
lemma. In: Geom. Funct. Anal., volume 7(2):pp. 322–337, 1997.

[Gow01] Gowers, W. T.: A new proof of Szemerédi’s theorem. In: Geom. Funct.
Anal., volume 11(3):pp. 465–588, 2001.

[Gow06] Gowers, W. T.: Quasirandomness, counting and regularity for 3-uniform
hypergraphs. In: Combin. Probab. Comput., volume 15(1-2):pp. 143–184,
2006.

[Gow07] Gowers, W. T.: Hypergraph regularity and the multidimensional Szemerédi
theorem. In: Ann. of Math. (2), volume 166(3):pp. 897–946, 2007.

[GR87] Graham, R. L.; Rödl, V.: Numbers in Ramsey theory. In: Surveys in com-
binatorics 1987 (New Cross, 1987), pp. 111–153. Cambridge Univ. Press,
Cambridge, 1987.

[Gre05] Green, B.: A Szemerédi-type regularity lemma in abelian groups, with ap-
plications. In: Geom. Funct. Anal., volume 15(2):pp. 340–376, 2005.

[GS05] Gerke, S.; Steger, A.: The sparse regularity lemma and its applications. In:
Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture
Note Ser., pp. 227–258. Cambridge Univ. Press, Cambridge, 2005.

178



Bibliography

[GT08] Green, B.; Tao, T.: The primes contain arbitrarily long arithmetic progres-
sions. In: Ann. of Math. (2), volume 167(2):pp. 481–547, 2008.

[GT09] Green, B.; Tao, T.: New bounds for Szemerédi’s theorem, II: A new bound
for r4(N). In: Chen, W. W. L.; Gowers, W. T.; Halberstam, H.; Schmidt,
W. M.; Vaughan, R. C., editors, Analytic number theory: essays in honour
of Klaus Roth, pp. 180–204. Cambridge University Press, 2009.

[Hat] Hatami, H.: Graph norms and Sidorenko’s conjecture. In: Israel J. Math.
To appear.

[HJ63] Hales, A. W.; Jewett, R. I.: Regularity and positional games. In: Trans.
Amer. Math. Soc., volume 106:pp. 222–229, 1963.

[HK95] Haxell, P. E.; Kohayakawa, Y.: The size-Ramsey number of trees. In: Israel
J. Math., volume 89(1-3):pp. 261–274, 1995. ISSN 0021-2172.

[HKŁ95] Haxell, P. E.; Kohayakawa, Y.; Łuczak, T.: The induced size-Ramsey number
of cycles. In: Combin. Probab. Comput., volume 4(3):pp. 217–239, 1995.

[JŁR00] Janson, S.; Łuczak, T.; Ruciński, A.: Random graphs. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience, New
York, 2000.

[KNR02] Kohayakawa, Y.; Nagle, B.; Rödl, V.: Efficient testing of hypergraphs (ex-
tended abstract). In: Automata, languages and programming, volume 2380
of Lecture Notes in Comput. Sci., pp. 1017–1028. Springer, Berlin, 2002.

[KNRS] Kohayakawa, Y.; Nagle, B.; Rödl, V.; Schacht, M.: Weak regularity and
linear hypergraphs. In: J. Combin. Theory Ser. B. To appear.

[Koh97] Kohayakawa, Y.: Szemerédi’s regularity lemma for sparse graphs. In: Foun-
dations of computational mathematics (Rio de Janeiro, 1997), pp. 216–230.
Springer, Berlin, 1997.

[KR03a] Kohayakawa, Y.; Rödl, V.: Regular pairs in sparse random graphs. I. In:
Random Structures Algorithms, volume 22(4):pp. 359–434, 2003.

[KR03b] Kohayakawa, Y.; Rödl, V.: Szemerédi’s regularity lemma and quasi-
randomness. In: Recent advances in algorithms and combinatorics, vol-
ume 11 of CMS Books Math./Ouvrages Math. SMC, pp. 289–351. Springer,
New York, 2003.

[KRS02] Kohayakawa, Y.; Rödl, V.; Skokan, J.: Hypergraphs, quasi-randomness, and
conditions for regularity. In: J. Combin. Theory Ser. A, volume 97(2):pp.
307–352, 2002.

[KRSS] Kohayakawa, Y.; Rödl, V.; Schacht, M.; Szemerédi, E.: Sparse partition
universal graphs for graphs of bounded degree. Submitted.

179



Bibliography

[KS96] Komlós, J.; Simonovits, M.: Szemerédi’s regularity lemma and its appli-
cations in graph theory. In: Combinatorics, Paul Erdős is eighty, Vol. 2
(Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pp. 295–352. János
Bolyai Math. Soc., Budapest, 1996.

[KSS97] Komlós, J.; Sárközy, G. N.; Szemerédi, E.: Blow-up lemma. In: Combina-
torica, volume 17(1):pp. 109–123, 1997.

[KSS98] Komlós, J.; Sárközy, G. N.; Szemerédi, E.: An algorithmic version of the
blow-up lemma. In: Random Structures and Algorithms, volume 12(3):pp.
297–312, 1998.

[KSSS02] Komlós, J.; Shokoufandeh, A.; Simonovits, M.; Szemerédi, E.: The regular-
ity lemma and its applications in graph theory. In: Theoretical aspects of
computer science (Tehran, 2000), volume 2292 of Lecture Notes in Comput.
Sci., pp. 84–112. Springer, Berlin, 2002.

[LPRS09] Lefmann, H.; Person, Y.; Rödl, V.; Schacht, M.: On colorings of hyper-
graphs without monochromatic Fano planes. In: Combin. Probab. Comput.,
volume 18(5):pp. 803–818, 2009.

[LS04] Lovász, L.; Szegedy, B.: Limits of dense graph sequences. Technical Report
MSR-TR-2004-79, Microsoft Research, 2004.

[LS05] Lovász, L.; Szegedy, B.: Graph limits and testing hereditary graph properties.
Technical Report MSR-TR-2005-110, Microsoft Research, 2005.

[LS06] Lovász, L.; Szegedy, B.: Limits of dense graph sequences. In: J. Combin.
Theory Ser. B, volume 96(6):pp. 933–957, 2006.

[LS07] Lovász, L.; Szegedy, B.: Szemerédi’s lemma for the analyst. In: Geom. Funct.
Anal., volume 17(1):pp. 252–270, 2007.

[Nik06] Nikiforov, V.: Edge distribution of graphs with few copies of a given graph.
In: Combin. Probab. Comput., volume 15(6):pp. 895–902, 2006.

[NORS08] Nagle, B.; Olsen, S.; Rödl, V.; Schacht, M.: On the Ramsey number of sparse
3-graphs. In: Graphs Combin., volume 24(3):pp. 205–228, 2008.

[NR03] Nagle, B.; Rödl, V.: Regularity properties for triple systems. In: Random
Structures Algorithms, volume 23(3):pp. 264–332, 2003.

[NRS06a] Nagle, B.; Rödl, V.; Schacht, M.: The counting lemma for regular k-uniform
hypergraphs. In: Random Structures Algorithms, volume 28(2):pp. 113–179,
2006.

[NRS06b] Nagle, B.; Rödl, V.; Schacht, M.: Extremal hypergraph problems and the
regularity method. In: Topics in discrete mathematics, volume 26 of Algo-
rithms Combin., pp. 247–278. Springer, Berlin, 2006.

180



Bibliography

[PS09] Person, Y.; Schacht, M.: Almost all hypergraphs without Fano planes are
bipartite. In: Mathieu, C., editor, Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 217–226. ACM, 2009.

[RNS+05] Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.: The hyper-
graph regularity method and its applications. In: Proc. Natl. Acad. Sci. USA,
volume 102(23):pp. 8109–8113 (electronic), 2005.

[Röd86] Rödl, V.: On universality of graphs with uniformly distributed edges. In:
Discrete Math., volume 59(1-2):pp. 125–134, 1986.

[Röd91] Rödl, V.: Some developments in Ramsey theory. In: Proceedings of the In-
ternational Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pp. 1455–
1466. Math. Soc. Japan, Tokyo, 1991.

[Rot53] Roth, K. F.: On certain sets of integers. In: J. London Math. Soc., vol-
ume 28:pp. 104–109, 1953.

[RR99] Rödl, V.; Ruciński, A.: Perfect matchings in ε-regular graphs and the blow-
up lemma. In: Combinatorica, volume 19(3):pp. 437–452, 1999.

[RS] Rödl, V.; Schacht, M.: Regularity lemmas for graphs. Submitted.

[RS78] Ruzsa, I. Z.; Szemerédi, E.: Triple systems with no six points carrying
three triangles. In: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely,
1976), Vol. II, volume 18 of Colloq. Math. Soc. János Bolyai, pp. 939–945.
North-Holland, Amsterdam, 1978.

[RS00] Rödl, V.; Szemerédi, E.: On size Ramsey numbers of graphs with bounded
degree. In: Combinatorica, volume 20(2):pp. 257–262, 2000.

[RS04] Rödl, V.; Skokan, J.: Regularity lemma for k-uniform hypergraphs. In:
Random Structures Algorithms, volume 25(1):pp. 1–42, 2004.

[RS05] Rödl, V.; Skokan, J.: Counting subgraphs in quasi-random 4-uniform hy-
pergraphs. In: Random Structures Algorithms, volume 26(1-2):pp. 160–203,
2005.

[RS06] Rödl, V.; Skokan, J.: Applications of the regularity lemma for uniform hy-
pergraphs. In: Random Structures Algorithms, volume 28(2):pp. 180–194,
2006.

[RS07a] Rödl, V.; Schacht, M.: Property testing in hypergraphs and the removal
lemma [extended abstract]. In: STOC’07—Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, pp. 488–495. ACM, New York,
2007.

[RS07b] Rödl, V.; Schacht, M.: Regular partitions of hypergraphs: Counting lemmas.
In: Combin. Probab. Comput., volume 16(6):pp. 887–901, 2007.

181



Bibliography

[RS07c] Rödl, V.; Schacht, M.: Regular partitions of hypergraphs: Regularity lem-
mas. In: Combin. Probab. Comput., volume 16(6):pp. 833–885, 2007.

[RS09] Rödl, V.; Schacht, M.: Generalizations of the removal lemma. In: Combina-
torica, volume 29(4):pp. 467–501, 2009.

[RSST07] Rödl, V.; Schacht, M.; Siggers, M.; Tokushige, N.: Integer and fractional
packings of hypergraphs. In: J. Combin. Theory Ser. B, volume 97(2):pp.
245–268, 2007.

[RSTT06] Rödl, V.; Schacht, M.; Tengan, E.; Tokushige, N.: Density theorems and
extremal hypergraph problems. In: Israel J. Math., volume 152:pp. 371–380,
2006.

[SEB73] Sós, V. T.; Erdős, P.; Brown, W. G.: On the existence of triangulated spheres
in 3-graphs, and related problems. In: Period. Math. Hungar., volume 3(3-
4):pp. 221–228, 1973.

[Sid91] Sidorenko, A. F.: Inequalities for functionals generated by bipartite graphs.
In: Diskret. Mat., volume 3(3):pp. 50–65, 1991.

[Sid93] Sidorenko, A. F.: A correlation inequality for bipartite graphs. In: Graphs
Combin., volume 9(2):pp. 201–204, 1993.

[Sol04] Solymosi, J.: A note on a question of Erdős and Graham. In: Combin.
Probab. Comput., volume 13(2):pp. 263–267, 2004.

[Sol05] Solymosi, J.: Regularity, uniformity, and quasirandomness. In: Proc. Natl.
Acad. Sci. USA, volume 102(23):pp. 8075–8076 (electronic), 2005.

[Ste90] Steger, A.: Die Kleitman–Rothschild Methode. Ph.D. thesis, Forschungsin-
stitut für Diskrete Mathematik, Rheinische Friedrichs–Wilhelms–Universität
Bonn, March 1990.

[Sze72] Szemerédi, E.: On graphs containing no complete subgraph with 4 vertices.
In: Mat. Lapok, volume 23:pp. 113–116 (1973), 1972.

[Sze75] Szemerédi, E.: On sets of integers containing no k elements in arithmetic
progression. In: Acta Arith., volume 27:pp. 199–245, 1975. Collection of
articles in memory of Jurĭı Vladimirovič Linnik.
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