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Abstract. We study Ramsey properties of randomly perturbed 3-uniform hypergraphs.
For t ě 2, write rK

p3q

t to denote the 3-uniform expanded clique hypergraph obtained from
the complete graph Kt by expanding each of the edges of the latter with a new additional
vertex. For an even integer t ě 4, let M denote the asymmetric maximal density of the pair
p rK

p3q

t , rK
p3q

t{2 q. We prove that adding a set F of random hyperedges satisfying |F | " n3´1{M

to a given n-vertex 3-uniform hypergraph H with non-vanishing edge density asymptotically
almost surely results in a perturbed hypergraph enjoying the Ramsey property for rK

p3q

t and
two colours. We conjecture that this result is asymptotically best possible with respect to
the size of F whenever t ě 6 is even. The key tools of our proof are a new variant of the
hypergraph regularity lemma accompanied with a tuple lemma providing appropriate control
over joint link graphs. Our variant combines the so called strong and the weak hypergraph
regularity lemmata.

§1 Introduction

1.1. Ramsey properties of random hypergraphs. Given a distribution R over n-vertex
hypergraphs, as well as an n-vertex hypergraph H, referred to as the seed hypergraph, unions
of the form HYR with R „ R define a distribution over the super-hypergraphs of H, denoted
by H Y R. The hypergraphs H Y R are referred to as random perturbations of H. The
study of the properties of such hypergraph distributions has its origins in the seminal work of
Spielman and Teng [52,53] who coined the term Smoothed Analysis whilst investigating the
performance of algorithms on randomly perturbed inputs.

Recently, the paradigm of Smoothed Analysis, originating from Theoretical Computer
Science, has captured the attention of numerous researchers in Combinatorics. In the latter
avenue, two dominant strands of results have emerged. One strand pertains to the study of the
thresholds for the emergence of various spanning and nearly-spanning configurations within
such structures (see, e.g., [3–6, 10–13, 21, 28, 34, 35, 41]). The second strand pertains to the
extremal and Ramsey-type properties (see, e.g., [1, 2, 6, 8, 18–20,36,46]) of such hypergraphs.
Our result lies in the latter vein. We recall the arrow notation G ÝÑ pH1, H2q , signifying the
validity of the asymmetric Ramsey statement that every 2-colouring of the edges of G yields
a monochromatic copy of H1 in the first colour or a monochromatic copy of H2 in the second
colour. Moreover, in the symmetric case when H1 “ H2 “ H we simply write G ÝÑ pHq.

Key words and phrases. Ramsey Theory, Smoothed Analysis, Random Hypergraphs.
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Ramsey properties of randomly perturbed graphs were first investigated by Krivelevich,
Sudakov, and Tetali [36]. In that work it was shown that n´2{pt´1q is the threshold for the
asymmetric Ramsey property G YGpn, pq ÝÑ pK3, Ktq, whenever G is an n-vertex graph of
edge density d P p0, 1{2q independent of n. The general problem, put forth by Krivelevich et al.,
of determining the threshold for the property G YGpn, pq ÝÑ pKs, Ktq, whenever G is dense
and s, t ě 4, was recently (essentially) resolved by Das and Treglown [20]. Those authors
showed that n´1{m2pKt,Krs{2sq is the threshold for the property GYGpn, pq ÝÑ pKs, Ktq, when G
is a dense n-vertex graph and t ě s ě 5, where m2pH1, H2q denotes the asymmetric maximal
2-density of two graphs H1 and H2 (see equation (1.2) for the definition). For other values
of t and s we also refer to the work of Das and Treglown [20, Theorem 1.7 and Theorem 5(ii)]
and for the special case s “ t “ 4 in addition to the work of Powierski [46, Theorem 1.8].

The aforementioned Ramsey-type results for randomly perturbed dense graphs are formu-
lated for 2-colourings only. This restriction is well-justified. Indeed, suppose that more than
two colours are available. The colouring in which the seed is coloured using one colour and
the random perturbation is coloured using all the remaining colours, reduces the problem to
that of studying the Ramsey property at hand for truly random hypergraphs.

The earlier results [20,36,46], as well as our result, stated in Theorem 1.1 below, are affected
by and closely related to research on Ramsey properties in random graphs and hypergraphs
(see, e.g., [17, 26,27, 29–31,38–40,42,44, 45,47–50]). For random graphs, the thresholds for
symmetric Ramsey properties are well-understood due to work of Rödl and Ruciński [47, 49].
Minor exceptions for F being a star forest aside, this work asserts that n´1{m2pF q is the
threshold for the property Gpn, pq ÝÑ pF q, where m2pF q denotes the maximal 2-density of
the given graph F (see equation (1.1) below). The 1-statement of the threshold was extended
to random k-uniform hypergraphs by Conlon and Gowers [17] and by Friedgut, Rödl, and
Schacht [26]. However, a complete characterisation of the exceptional cases is not yet available
and for the progress towards the 0-statement we refer to the work of Nenadov et al. [44] and
Gugelmann et al. [27].

The thresholds of asymmetric Ramsey properties in random graphs are the subject of the
Kohayakawa–Kreuter conjecture [30]. The 1-statement stipulated by this conjecture has been
fairly recently verified by Mousset, Nenadov, and Samotij [42] and progress has been made
with respect to the corresponding 0-statement by several researchers [27, 29, 39, 40]. Following
some progress [14,37,42], the conjecture was finally fully resolved by Christoph, Martinsson,
Steiner, and Wigderson [15].

1.2. Main result. We study Ramsey properties of randomly perturbed hypergraphs; stating
our results requires preparation. A hypergraph H is said to be linear if |e X f | ď 1 holds
whenever e, f P EpHq are distinct. Amongst the linear hypergraphs, expanded cliques are of
special interest. Given t ě 2 and k ě 2, the k-uniformly expanded clique of order t, denoted
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by rK
pkq

t , is the k-uniform hypergraph with vertex set of size t `
`

t
2

˘

pk ´ 2q obtained from
the complete graph Kt by expanding every edge of Kt by k ´ 2 new vertices; in particular,
rK

p2q

t “ Kt holds. Expanded cliques have attracted some attention in the literature and related
extremal and Ramsy-type questions were addressed by Mubayi [43] and by Conlon, Fox, and
Rödl [16].

Two natural measures of density, arising in the context of random hypergraphs, are the
maximum density of a k-uniform H “ pV,Eq, denoted mpHq, and its maximum k-density,
denoted mkpHq. The former is given by

mpHq “ max
"

epF q

vpF q
: F Ď H and vpF q ě 1

*

and the latter is defined by

mkpHq “ max
␣

dkpF q : F Ď H
(

, where dkpF q “

$

’

’

’

&

’

’

’

%

0, if epF q “ 0,
1
k
, if epF q “ 1, vpF q “ k,

epHq´1
vpHq´k

, otherwise.

(1.1)

It is well known that n´1{mpHq is the threshold for the appearance of H as a subhypergraph in
the binomial random k-uniform hypergraph Hpkqpn, pq. For Hpkqpn, pq to satisfy the Ramsey
property for H a.a.s. it is reasonable to expect that many intermingled copies of H are
required; this as to create colour restrictions forcing the Ramsey property for H. Indeed,
for (hypergraph) cliques it is necessary that many cliques sharing a single hyperedge would
appear a.a.s. in Hpkqpn, pq. This results in the higher threshold n´1{mkpHq being encountered
for Ramsey properties.

For asymmetric Ramsey properties, another notion of hypergraph density arises. This
notion traces back to the work of Kohayakawa and Kreuter [30]. Given two k-uniform
hypergraphs H1 and H2, each with at least one edge and satisfying mkpH1q ě mkpH2q, the
asymmetric maximal k-density of H1 and H2 is given by

mkpH1, H2q “ mkpH2, H1q “ max
"

epF q

vpF q ´ k ` 1{mkpH2q
: F Ď H1 and epF q ě 1

*

, (1.2)

where here we do not mean that mkp¨, ¨q is symmetric only that in our notation we do not keep
track over the location in which H1, the hypergraph with the potentially higher mkp¨q-density
is higher, is placed. The equality mkpH,Hq “ mkpHq is easy to verify.

With the above notation in place, our main contribution can be stated; this can be viewed
as a hypergraph extension of the aforementioned results of Das and Treglown [20]. Below we
always tacitly assume that Hn and Hp3qpn, pq share the same vertex set.

Theorem 1.1 (Main result). For every d ą 0 and every even integer t ě 4, there exists a
constant C ą 0 such that for every sequence of 3-uniform n-vertex hypergraphs pHnqnPN with
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epHnq ě dn3 for every n P N we have

lim
nÝÑ8

P
`

Hn YHp3q
pn, pq ÝÑ p rK

p3q

t q
˘

“ 1,

whenever p “ ppnq ě Cn´ 1
M for M “ m3p rK

p3q

t , rK
p3q

t{2 q.

Our proof of Theorem 1.1 relies on two main technical results, which are related to the
regularity method for hypergraphs. We present these results in Section 1.3-1.4 below.

The proof of Theorem 1.1 presented here can be adapted for k-uniform hypergraphs and
the asymmetric Ramsey properties Hn YHpkqpn, pq ÝÑ p rKpkq

s , rK
pkq

t q with t ě s. For the sake
of brevity, we restrict ourselves to 3-uniform hypergraphs and the symmetric case for even t.
In particular, from here on, unless stated otherwise, we use the term hypergraph to mean
a 3-uniform hypergraph. We conjecture that Theorem 1.1 uncovers the threshold for the
Ramsey property in question.

Conjecture 1.2. For every even integer t ě 6 there exist constants d, c ą 0, and there exists
a sequence of 3-uniform n-vertex hypergraphs pHnqnPN with epHnq ě dn3 for every n P N

such that
lim

nÝÑ8
P
`

Hn YHp3q
pn, pq ÝÑ p rK

p3q

t q
˘

“ 0 ,

whenever p ď cn´1{M for M “ m3
`

rK
p3q

t , rK
p3q

t{2
˘

.

Conjecture 1.2 may hold for t “ 4 as well. However, this value is excluded due to the distinct
behaviour seen in the graph case [20,46]. The proof of Theorem 1.1 presented here extends
for the asymmetric Ramsey property H ÝÑ p rK

p3q

t , rKp3q
s q for sufficiently large integers t ě s

and M replaced by m3
`

rK
p3q

t , rK
p3q

rs{2s

˘

. It seems plausible that the corresponding generalisation
of Conjecture 1.2 may also hold.

1.3. A tuple lemma for link graphs. A key feature of the regularity method of graphs is
the control over joint neighbourhoods in the regular environment provided by Szemerédi’s
regularity lemma (see, e.g., Lemma 2.4 below). For the proof of Theorem 1.1, we establish a
similar lemma in the context of the regularity method for hypergraphs.

For a vertex v in a hypergraph H “ pV,Eq, define the link graph LHpvq of v to have vertex
set V ∖ tvu and edge set comprised of those pairs of vertices which together with v form
a hyperedge in H, i.e., EpLHpvqq “ tuw : uvw P Eu. In particular, epLHpvqq is the vertex
degree of v in H and is also denoted by degHpvq. Given a graph G with vertex set V pGq “ V

we define the link graph of v supported on G by

LHpv,Gq “ E
`

LHpvq
˘

X EpGq .

Link graphs are a natural hypergraph extension of vertex neighbourhoods in the context of
graphs. A tuple lemma for hypergraphs would have to control the sizes of the intersections of
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link graphs. In that, given a set of vertices U Ď V , we seek to control the sizes of the joint
link graph and the joint link graph supported by G given by

LHpUq “
č

uPU

LHpuq and LHpU,Gq “
č

uPU

LHpu,Gq ,

respectively. For a random hypergraph H “ pV,Eq with edge density d, one would expect
|LHpUq| „ d|U |

`

|V |

2

˘

to hold with high probability. Our tuple lemma asserts that in the regular
environment for hypergraphs this random intuition can be transferred to the deterministic
situation. (We defer the definitions concerning regular hypergraphs to Section 2.)

Proposition 1.3 (Tuple lemma for joint links). For every t ě 2 and ε, d3 ą 0, there exists a
δ3 ą 0 such that for every d2 ą 0 there exist δ2 ą 0 and r ě 1 such that the following holds.

Let H “ pX Ÿ Y Ÿ Z,EHq be a tripartite hypergraph which is pδ3, d3, rq-regular with respect
to a pδ2, d2q-triad P “ pX Ÿ Y Ÿ Z,EP q. Then, all but at most 2ε|X|t of the t-tuples of
vertices X 1 “ tx1, . . . , xtu Ď X satisfy

ˇ

ˇLHpX 1, P q ´ dt
3d

2t`1
2 |Y ||Z|

ˇ

ˇ ď εd2t`1
2 |Y ||Z| . (1.3)

Due to space limitations, our proof of Proposition 1.3 is omitted and can be found in [7] -
the full version of this extended abstract - the former extends to all hypergraph uniformities.
Alternatives to Proposition 1.3 exerting some control over the sizes of joint link graphs of
vertex tuples whilst relying on weaker versions of the hypergraph regularity do exist. Such
alternatives are established in the extended account [7].

1.4. A variant of the hypergraph regularity lemma. The second main technical lemma
is a new variant of the hypergraph regularity lemma established in [51]. The necessary
definitions are deferred to Section 2.

Proposition 1.4 (Variant of the regularity lemma for hypergraphs). For every δ3 ą 0 and
functions δ2 : N ÝÑ p0, 1s, r : N2 ÝÑ N, and constants ℓ0, t0, and s P N, there exist n0 and
T P N such that for every n ě n0 and every family pH1, . . . , Hsq of n-vertex hypergraphs
satisfying V “ V pH1q “ ¨ ¨ ¨ “ V pHsq, there are integers t and ℓ satisfying t ě t0 and ℓ ě ℓ0,
a vertex partition V with V1 Ÿ ¨ ¨ ¨ Ÿ Vt “ V and an ℓ-equitable partition B with respect to V
such that the following properties hold.
(R.1): |V1| ď |V2| ď ¨ ¨ ¨ ď |Vt| ď |V1| ` 1,
(R.2): for all 1 ď i ă j ď t and α P rℓs, the bipartite 2-graph Bij

α is pδ2pℓq, 1{ℓq-regular,
(R.3): Hi is δ2pℓq-weakly regular with respect to V for every i P rss, and
(R.4): Hi is pδ3, rpt, ℓqq-regular with respect to B for every i P rss.

Due to space limitations, our proof of Proposition 1.4 is omitted and can be found in [7] -
the full version of this extended abstract. In Proposition 1.4 there is a combination of the
environment of the hypergraph regularity lemma [51] (see Lemma 2.6) and the so-called weak
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hypergraph regularity lemma (see Lemma 2.5 below), which is the straightforward extension
of Szemerédi’s regularity for graphs. A lemma of similar spirit can be found in the work of
Allen, Parczyk, and Pfenninger [9].

In the sequel, these hypergraph regularity lemmata are distinguished by referring to these as
the Strong Lemma and Weak Lemma, respectively. The difference between the Strong Lemma
and Proposition 1.4 is Property (R.3). The former, when applied to dense hypergraphs,
provides access to triads P set over a vertex set, say, X Ÿ Y Ÿ Z with respect to which
the regularised hypergraphs is pδ3, d, rq-regular. This, in turn, provides ζ-weak regularity
control for ζ “ δ

1{3
3 , by which we mean the ability to control the hyperedge distribution of

the hypergraphs along sets X 1 Ď X, Y 1 Ď Y , and Z 1 Ď Z satisfying |X 1| ě ζ|X|, |Y 1| ě ζ|Y |,
and |Z 1| ě ζ|Z|.

The added Property (R.3), however, provides weak regularity control over vertex sets with
much smaller density. In fact, there the control δ2 is allowed to be a function of ℓ and the
quantification of the Strong Lemma leads to δ3 " ℓ´1.

Organisation. Theorem 1.1 is proved in Section 3. Various required preliminaries are
collected in Section 2. As mentioned above, the proofs of Propositions 1.3 and 1.4 are omitted
from this account due to space limitations and can be seen in [7] - the full version of this
account.

Notational remark. Throughout, we often write the enumeration of a result in the subscripts
of the constants that it presides over. For instance, the constant t0 in Proposition 1.4
becomes t1.4 and the constant δ3 in the same lemma is written δ

p3q

1.4 and so on. This aids in
keeping track of the various constants encountered throughout the proofs.

§2 Preliminaries

Let V be a finite set. A partition U of V given by V “ U1 Ÿ ¨ ¨ ¨ Ÿ Ur is said to be equitable
if |U1| ď |U2| ď ¨ ¨ ¨ ď |Ur| ď |U1| ` 1. Given an additional partition of V , namely V, of the
form V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vℓ, we say that V refines U , and write V ă U , if for every i P rℓs there
exists some j P rrs such that Vi Ď Uj holds. For k ě 2, write KpkqpUq to denote the complete
|U |-partite k-uniform hypergraph whose vertex set is V and whose edge set is given by all
sets of V pkq “ tK Ď V : |K| “ ku meeting every member of U (termed cluster hereafter) in
at most one vertex. If U “ tU,U 1u consists of only two clusters, then we abbreviate Kp2qpUq

to Kp2qpU,U 1q. We write Kp2qpV q to denote the complete graph whose vertex set is V .

2.1. Graph regularity. Let d, δ ą 0 be given. A bipartite 2-graph G “ pX Ÿ Y,Eq is said
to be pδ, dq-regular if

eGpX 1, Y 1
q “ d|X 1

||Y 1
| ˘ δ|X||Y |
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holds1 for every X 1 Ď X and Y 1 Ď Y . If d coincides with the edge density of G, i.e. d “
epGq

|X||Y |
,

then we abbreviate pδ, dq-regular to δ-regular. It follows directly from the definition that G is
a pδ, dq-regular bipartite graph if, and only if, its (bipartite) complement is pδ, 1 ´ dq-regular.

A tripartite 2-graph P with vertex set V pP q “ X Ÿ Y Ÿ Z is said to be a pδ, dq-triad, if
P rX, Y s, P rY, Zs, and P rX,Zs are all pδ, dq-regular. For a 2-graph G, let K3pGq denote the
family of members of V pGqp3q spanning a triangle in G. We shall employ the well known
triangle countling lemma (see, e.g., [25, Fact A]).

Lemma 2.1 (Triangle counting lemma). Let d ą 0, let 0 ă δ ă d{2, and let P be a pδ, dq-triad
with vertex set V pP q “ X Ÿ Y Ÿ Z. Then,

p1 ´ 2δqpd ´ δq3
|X||Y ||Z| ď |K3pP q| ď ppd ` δq3

` 2δq|X||Y ||Z|.

In particular, if d ď 1{2, then

|K3pP q| “ pd3
˘ 4δq|X||Y ||Z| (2.1)

holds. □

We shall also use the variant of the triangle counting lemma with only two of the bipartite
graphs being regular and its proof is included for completeness.

Lemma 2.2. Let P “ pX ŸY ŸZ,EP q be a tripartite 2-graph such that P rX, Y s and P rX,Zs

are both pδ, dq-regular. In addition, let X 1 Ď X be a set of size |X 1| ě δ|X|. Then,

pd ´ δqd|X 1
|epP rY, Zsq ´ 2δ|X||Y ||Z| ď |K3pP,X 1

q| ď pd ` δqd|X 1
|epP rY, Zsq ` 2δ|X||Y ||Z|

holds, where K3pP,X 1q denotes the set of triangles of P meeting X 1.

Proof. Let Y 1 Ď Y consist of all vertices y P Y satisfying degP py,X 1q ě pd´ δq|X 1|; note that
|Y 1| ě p1 ´ δq|Y | holds by Lemma 2.4. We may then write

|K3pP,X 1
q| ě

ÿ

yPY 1

´

dpd ´ δq|X 1
| degP py, Zq ´ δ|X||Z|

¯

“ dpd ´ δq|X 1
|

˜

ÿ

yPY

degP py, Zq ´
ÿ

yPY ∖Y 1

degP py, Zq

¸

´
ÿ

yPY 1

δ|X||Z|

ě dpd ´ δq|X 1
|epP rY, Zsq ´ dpd ´ δqδ|X||Y ||Z| ´ δ|X||Y ||Z|

ě dpd ´ δq|X 1
|epP rY, Zsq ´ 2δ|X||Y ||Z|.

Next, we prove the upper bound. Let Y 2 Ď Y consist of all vertices y P Y satisfying
degP py,X 1q ď pd ` δq|X 1|; note that |Y 2| ě p1 ´ δq|Y | holds by Lemma 2.4. We may then
write

|K3pP,X 1
q| ď

ÿ

yPY 2

´

dpd ` δq|X 1
| degP py, Zq ` δ|X||Z|

¯

`
ÿ

yPY ∖Y 2

|X 1
||Z|

1Given x, y, z P R, we write x “ y ˘ z if y ´ z ď x ď y ` z.
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ď dpd ` δq|X 1
|

˜

ÿ

yPY

degP py, Zq ´
ÿ

yPY ∖Y 2

degP py, Zq

¸

`
ÿ

yPY 2

δ|X||Z| `
ÿ

yPY ∖Y 2

|X||Z|

ď dpd ` δq|X 1
|epP rY, Zsq ` 2δ|X||Y ||Z| . □

The next lemma is commonly referred to as the Slicing Lemma (see, e.g., [33, Fact 1.5]).

Lemma 2.3 (Slicing lemma). Let d “ d2.3, let δ “ δ2.3 ą 0, and let G “ pA Ÿ B,Eq be a
pδ, dq-regular bipartite graph. Let δ ď α “ α2.3 ď 1, and let A1 Ď A and B1 Ď B be sets of
sizes |A1| ě α|A| and |B1| ě α|B|. Then, GrA1, B1s is pδ1, d1q-regular where δ1 “ maxtδ{α, 2δu
and d1 “ d ˘ δ. □

The tuple property of dense regular bipartite graphs, also referred to as the intersection
property, reads as follows (see [33, Fact 1.4]).

Lemma 2.4 (Tuple lemma for graphs). Let G “ pX Ÿ Y,Eq be a δ-regular bipartite graph of
edge density d ą 0. Then, all but at most 2δℓ|X|ℓ of the tuples tx1, . . . , xℓu Ď X satisfy

|NGpx1, . . . , xℓ, Y
1
q| “ |ty P Y 1 : xiy P EpGq for all i P rℓsu| “ pd ˘ δqℓ

|Y 1
|, (2.2)

whenever Y 1 Ď Y satisfies pd ´ δqℓ´1|Y 1| ě δ|Y |. □

2.2. Hypergraph regularity. A direct generalisation of the notion of δ-regularity, defined
in the previous section for 2-graphs, reads as follows. Let d, δ ą 0. A tripartite hypergraph
H “ pX Ÿ Y Ÿ Z,Eq is said to be pδ, dq-weakly regular if

eHpX 1, Y 1, Z 1
q “ d|X 1

||Y 1
||Z 1

| ˘ δ|X||Y ||Z|

holds whenever X 1 Ď X, Y 1 Ď Y , and Z 1 Ď Z. If d “
epHq

|X||Y ||Z|
, then we abbreviate pδ, dq-weakly

regular to δ-weakly regular.
Given a partition V of a finite set V defined by V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt, a hypergraph H with

V pHq “ V is said to be δ-weakly regular with respect to V if HrX, Y, Zs2 is δ-weakly regular
with respect to all but at most δ

`

t
3

˘

triples tX, Y, Zu P Vp3q. We state the straightforward
adaptation of Szemerédi’s graph regularity lemma [32,33,54].

Lemma 2.5 (Weak hypergraph regularity lemma). For every δ “ δ2.5 ą 0 and positive
integers s “ s2.5, t “ t2.5, and h “ h2.5 satisfying t ě h, there exist positive integers n0 and
T “ T2.5 such that the following holds whenever n ě n0. Let pH1, . . . , Hsq be a sequence of
n-vertex hypergraphs, all on the same vertex set, namely V , and let U “ U2.5 be a vertex
partition of V given by V “ U1 Ÿ . . . Ÿ Uh. Then, there exists an equitable vertex partition V,
given by V “ V1 Ÿ V2 Ÿ ¨ ¨ ¨ Ÿ Vt1, where t ď t1 ď T , such that V ă U and, moreover, Hi is
δ-weakly regular with respect to V for every i P rss. □

2HrX, Y, Zs is the subgraph of H over X Ÿ Y Ÿ Y whose edge set is ttx, y, zu P EpHq : x P X, y P Y, z P Zu.
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We proceed to the statement of the Strong hypergraph Regularity Lemma for hyper-
graphs following the formulation seen in [51]. Given a 2-graph G, the relative density of a
hypergraph H with vertex set V pHq “ V pGq, with respect to G is given by

dpH|Gq “
|EpHq X K3pGq|

|K3pGq|
. (2.3)

For δ, d ą 0 and a positive integer r, a tripartite hypergraph H “ pX Ÿ Y Ÿ Z,EHq is said to
be pδ, d, rq-regular with respect to a tripartite 2-graph P “ pX Ÿ Y Ÿ Z,EP q if

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r
ď

i“1
pEH X K3pQiqq

ˇ

ˇ

ˇ
´ d

ˇ

ˇ

ˇ

r
ď

i“1
K3pQiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δ
ˇ

ˇK3pP q
ˇ

ˇ (2.4)

holds for every family of, not necessarily disjoint, subgraphs Q1, . . . , Qr Ď P satisfying
ˇ

ˇ

ˇ

ˇ

r
ď

i“1
K3pQiq

ˇ

ˇ

ˇ

ˇ

ě δ
ˇ

ˇK3pP q
ˇ

ˇ ą 0 .

Let V be a finite set and let V be a partition V1 Ÿ . . . Ÿ Vh of V , where h is some positive
integer. Given an integer ℓ ě 1, a partition B of Kp2qpVq is said to be ℓ-equitable with respect
to V if it satisfies the following conditions:
(B.1): every B P B satisfies B Ď Kp2qpVi, Vjq for some distinct i, j P rhs; and
(B.2): for any distinct i, j P rhs, precisely ℓ members of B partition Kp2qpVi, Vjq.
We view partitions of Kp2qpVq as partitions of V p2q under the agreement3 that the set
tKp2qpViq : i P rhsu of complete graphs is added to the former; such an addition of cliques
does not hinder the equitability notion defined in (B.2); it does violate (B.1), but this will
not harm our arguments. Moreover, it is under this agreement that we say that a partition
of V p2q refines a partition of Kp2qpVq.

For distinct indices i, j P rhs, the partition of Kp2qpVi, Vjq induced by B is denoted by

Bij
“ tBij

α “ pVi Ÿ Vj, E
ij
α q : α P rℓsu .

The triads of B are the tripartite 2-graphs having the form

Bijk
αβγ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ Eik

β Ÿ Ejk
γ q,

where i, j, k P rhs are distinct and α, β, γ P rℓs. Recall that a triad is called a pδ, dq-triad if
each of the three bipartite graphs comprising it is pδ, dq-regular. A hypergraph H with vertex
set V pHq “ V is said to be pδ, rq-regular with respect to B if

ˇ

ˇ

ˇ

ˇ

ˇ

#

ď

1ďiăjăkďh
α,β,γPrℓs

K3pBijk
αβγq : Hijk is not

`

δ, dpH|Bijk
αβγq, r

˘

-regular w.r.t. Bijk
αβγ

+
ˇ

ˇ

ˇ

ˇ

ˇ

ď δ|V |
3 ,

3We appeal to this agreement in our proof of Proposition 1.4 omitted from this account and which can be
found in [7].
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where Hijk “ HrVi Ÿ Vj Ÿ Vks. A formulation of the Strong Lemma [51, Theorem 17] for
hypergraphs, reads as follows.

Lemma 2.6 (Strong hypergraph regularity lemma). For all 0 ă δ3 P R, δ2 : N ÝÑ p0, 1s,
r : N2 ÝÑ N, and s, t, ℓ P N, there exist n0, T P N such that for every n ě n0 and every
sequence of n-vertex hypergraphs pH1, . . . , Hsq, satisfying V “ V pH1q “ ¨ ¨ ¨ “ V pHsq, there
are t1, ℓ1 P N satisfying t ď t1 ď T and ℓ ď ℓ1 ď T , a vertex partition V “ V1 Ÿ ¨ ¨ ¨ Ÿ Vt1,
namely V, and an ℓ1-equitable partition B with respect to V such that the following properties
hold.
(S.1): |V1| ď |V2| ď ¨ ¨ ¨ ď |Vt1 | ď |V1| ` 1;
(S.2): for all 1 ď i ă j ď t1 and α P rℓ1s, the bipartite 2-graph Bij

α is pδ2pℓ1q, 1{ℓ1q-regular; and
(S.3): Hi is pδ3, rpt

1, ℓ1qq-regular with respect to B for every i P rss. □

§3 Monochromatic expanded cliques

In this section, we prove Theorem 1.1. The required Ramsey properties of Hp3qpn, pq are
collected in Section 3.1; a proof of Theorem 1.1 can be found in Section 3.2. For an integer
t ě 3, the t vertices of rK

pkq

t having their 1-degree strictly larger than one are called the
branch-vertices of rK

pkq

t . Set

vptq “ vp rK
p3q

t q and eptq “ ep rK
p3q

t q.

3.1. Properties of random hypergraphs. The main goal of this section is to state
Proposition 3.1 which is an adaptation of [20, Theorem 2.10]. This proposition collects the
Ramsey properties of Hp3qpn, pq that will be utilised throughout our proof of Theorem 1.1.

A k-graph H is said to be balanced if mkpHq “ dkpHq holds; if all proper subgraphs F of
H satisfy mkpF q ă mkpHq, then H is said to be strictly balanced. It is not hard to verify that
expanded cliques are strictly balanced. In particular,

mk

´

rK
pkq

t

¯

“

`

t
2

˘

´ 1
t ` pk ´ 2q

`

t
2

˘

´ k

holds for any k ě 2 and t ě 3. In the special case k “ 3 we obtain

m3
`

rK
pkq

t

˘

“
t2 ´ t ´ 2
t2 ` t ´ 6 “ 1 ´

2t ´ 4
t2 ` t ´ 6 ă 1, (3.1)

that is, 3-uniformly expanded cliques are sparse. Note that this is in contrast to graph cliques
(on at least 3 vertices) whose 2-density is larger than one. For a simpler notation we set an
integer t ě 2

mptq “ mp rK
p3q

t q and Mt “ m3p rK
p3q

t q .

Similarly for integers t1, t2 ě 2 we set

Mt1,t2 “ Mt2,t1 “ m3
`

rK
p3q

t1 ,
rK

p3q

t2

˘

.
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Let H1 and H2 be two k-graphs, each with at least one edge and such that mkpH1q ě mkpH2q.
If mkpH1q “ mkpH2q, then mkpH1, H2q “ mkpH1q; otherwise mkpH2q ă mkpH1, H2q ă

mkpH1q holds. The k-graph H1 is said to be strictly balanced with respect to mkp¨, H2q if no
proper subgraph F Ĺ H1 maximises (1.2). For instance, it is not hard to verify that rK

p3q

t is
strictly balanced with respect to m3p¨, rK

p3q

t{2 q, assuming t ě 4 is even.
Let F and F 1 be k-graphs and let µ “ µpnq be given. An n-vertex k-graph H is said to be

pF, µq-Ramsey if HrU s ÝÑ pF q2 holds for every U Ď V pHq is of size |U | ě µn. Similarly, H is
said to be pF, F 1, µq-Ramsey if HrU s ÝÑ pF, F 1q holds for every U Ď V pHq of size |U | ě µn.
Given F Ď

`

rns

vpF q

˘

and F 1 Ď
`

rns

vpF 1q

˘

, we say that H is pF, F 1q-Ramsey with respect to pF ,F 1q

if any 2-colouring of EpHq yields a monochromatic copy K of F (in the first colour) with
V pKq R F or a monochromatic copy K 1 of F 1 (in the second colour) with V pK 1q R F 1.

Proposition 3.1. Let t ě 4 be an even integer. The binomial random hypergraph H „

Hp3qpn, pq a.a.s. satisfies the following properties.
(P.1) There are constants γ3.1 “ γ3.1ptq and C

p1q

3.1 “ C
p1q

3.1 ptq such that if F1 Ď
`

rns

vptq

˘

and
F2 Ď

`

rns

vpt{2q

˘

satisfy |F1| ď γ3.1n
vptq and |F2| ď γ3.1n

vpt{2q, then H is p rK
p3q

t , rK
p3q

t{2 q-
Ramsey with respect to pF1,F2q, whenever p “ ppnq ě C

p1q

3.1n
´1{Mt,t{2.

(P.2) For every fixed µ ą 0, there exists a constant Cp2q

3.1 “ C
p2q

3.1 pµ, tq such that H is p rK
p3q

t´1, µq-
Ramsey, whenever p “ ppnq ě C

p2q

3.1n
´1{Mt´1.

(P.3) For every fixed µ ą 0, there exists a constant Cp3q

3.1 “ C
p3q

3.1 pµ, tq such that H is
p rK

p3q

t , rK
p3q

t{2 , µq-Ramsey, whenever p “ ppnq ě C
p3q

3.1n
´1{Mt,t{2.

Remark 3.2. A straightforward albeit somewhat tedious calculation shows that Mt,t{2 ě Mt´1

holds for every even integer t ě 4. It thus follows that Properties (P.1) and (P.3) are the most
stringent in terms of the bound these impose on p. Hence, if p “ ppnq ě max

!

C
p1q

3.1 , C
p3q

3.1

)

¨

n´1{Mt,t{2, then a.a.s. H satisfies Properties (P.1), (P.2), and (P.3) simultaneously.

Property (P.1) is modelled after [20, Theorem 2.10(i)]; Properties (P.2) and (P.3) are both
specific instantiations of [20, Theorem 2.10(ii)]. The aforementioned results of [20] handle
2-graphs only. Nevertheless, proofs of Properties (P.1-3) can be attained by straightforwardly
adjusting the proofs of their aforementioned counterparts in [20, Theorem 2.10] so as to
accommodate the transition from 2-graphs to hypergraphs. Theorem 2.10 in [20] requires that
the maximal 2-densities of the two (fixed) configurations would both be at least one; this can
be omitted in our setting. Indeed, this condition is imposed in [20, Theorem 2.10] in order to
handle setting (a) in that theorem where the maximal 2-densities of the two configurations
coincide; by (3.1), this is not an issue in our case. The fact that rK

p3q

t is strictly balanced with
respect to m3p¨, rK

p3q

t{2 q is required by setting (b) appearing in [20, Theorem 2.10].

3.2. Proof of Theorem 1.1. We commence our proof of Theorem 1.1 with a few observations
facilitating our arguments; proofs of these observations are included for completeness.
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Observation 3.3. Let d P p0, 1s, let G “ pA ŸB,Eq be a bipartite graph satisfying epGq ě

d|A||B|, and let k ď d|B|{2 be a positive integer. Then, |tv P A : degGpvq ě ku| ě d|A|{2.

Proof. Let Ak “ tv P A : degGpvq ě ku and suppose for a contradiction that |Ak| ă d|A|{2.
Then,

epGq ă k|A| ` |Ak||B| ă d|A||B|{2 ` d|A||B|{2 ď epGq

which is clearly a contradiction. □

The next lemma captures the phenomenon of supersaturation (first 4 recorded in [22–24])
for bipartite graphs; to facilitate future references, we phrase this lemma with the host graph
being bipartite as well.

Lemma 3.4. For every bipartite graph K and every d P p0, 1q, there exists a constant
ζ “ ζ3.4 ą 0 and a positive integer n0 such that every n-vertex bipartite graph G “ pA ŸB,Eq

satisfying n ě n0, |A| ď |B| ď |A| ` 1, and epGq ě d|A||B| contains at least ζnvpKq distinct
copies of K.

Observation 3.5. For every graph K and every d P p0, 1q, there exists a constant ξ “ ξ3.5 ą 0
and an integer n0 such that the following holds whenever n ě n0. If an n-vertex graph G

contains dnvpKq distinct copies of K, then it contains at least ξn pairwise vertex-disjoint copies
of K.

Proof. Any given copy of K meets O
`

nvpKq´1˘ copies of K. □

Proof of Theorem 1.1. Given d, t, and H as in the premise of Theorem 1.1, set

0 ă d3 ! d and 0 ă ε ! min
!

d
vpt{2q

3 , γ3.1ptq
)

. (3.2)

The Tuple Property (Theorem 1.3) applied with t1.3 “ vpt{2q, ε1.3 “ ε, and d
p3q

1.3 “ d3, yields
the existence of a constant

0 ă δ3 “ δ
p3q

1.3pvpt{2q, ε, d3q ! d3 (3.3)

as well as the functions

rδ2pxq “ δ
p2q

1.3px, t1.3, ε, d3, δ3q and rpxq “ r1.3px, t1.3, ε, d3, δ3q,

where rδ2 : R ÝÑ p0, 1s and r : N ÝÑ N. Define δ2 : N ÝÑ p0, 1s such that

0 ă δ2pxq ! min
#

rδ2pxq,
d

2vpt{2q

3
vpt{2q ¨ x6¨p2vpt{2q`1q

+

(3.4)

4Rademacher (1941, unpublished) was first to prove that every n-vertex graph with tn2{4u ` 1 edges
contains at least tn{2u triangles
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holds for every x P N. Lemma 1.4, applied with

H1 “ ¨ ¨ ¨ “ Hs “ H, δ
p3q

1.4 “ δ3, δ
p2q

1.4 “ δ2, r1.4 “ r5, ℓ1.4 " d´1
3 , and t1.4 " d´1, (3.5)

yields the existence of constants T1.4,rt, ℓ P N satisfying t1.4 ď rt ď T1.4 and ℓ1.4 ď ℓ ď T1.4,
along with partitions V “ V1 Ÿ ¨ ¨ ¨ ŸV

rt “ V pHq and (P ijq1ďiăjďrt satisfying Properties (R.1-4).
Set auxiliary constants

d2 “ 1{ℓ and η “
d

vpt{2q

3 d
2vpt{2q`1
2
2 (3.6)

and fix

0 ă µ !
ξ3.5pζ3.4pη{2qq ¨ d

3`2vpt{2q

3 ¨ d
10`4vpt{2q

2
vpt{2q2 ¨ T1.4

. (3.7)

We claim that there exist three distinct clusters X, Y, Z P V along with a pδ2pℓq, d2q-triad
P “ P ijk

αβγ, with i, j, k, α, β, γ appropriately defined, satisfying V pP q “ X Ÿ Y Ÿ Z such that
HrX ŸY ŸZs is δ2pℓq-weakly-regular and, moreover, HrX ŸY ŸZs is pδ3, d3, rq-regular with
respect to P . To see this, note first that at most rt

`

rn{rts

3

˘

ď n3

rt2 ! dn3 edges of H reside within
the members of V, where the last inequality relies on rt ě t1.4 " d´1, supported by (3.5).
Second, by Property (R.3), the number of edges of H captured within δ2pℓq-weakly-irregular
triples pVi, Vj, Vkq, where i, j, k P rrts, is at most δ2pℓq ¨ rt3 ¨

`

n
rt

` 1
˘3

ď 2δ2pℓqn3 ! dn3, where
the last inequality holds by (3.2) and (3.4). Third, by Property (R.4), the number of edges of
H residing6 in pδ3, dpH|P ijk

αβγq, rq-irregular triads P ijk
αβγ is at most δ3n

3 ! dn3, where the last
inequality holds by (3.2) and (3.3). Fourth and lastly, it follows by the Triangle Counting
Lemma (Lemma 2.1) and by (2.3), that the number of edges of H found in pδ2pℓq, d2q-triads
P ijk

αβγ, where i, j, k P rrts and α, β, γ P rℓs, satisfying dpH|P ijk
αβγq ă d3 is at most

rt3ℓ3d3
`

d3
2 ` 4δ2pℓq

˘

ˆ

n

rt
` 1

˙3

ď 2d3
`

ℓ3d3
2 ` 4ℓ3δ2pℓq

˘

n3 (3.6)
“ p2 ` 8ℓ3δ2pℓqqd3n

3
! dn3,

where the last inequality holds by (3.2) and (3.4).
It follows that at least dn3{2 edges of H are captured in pδ2pℓq, d2q-triads with respect to

which H is pδ3, d3, rq-regular and such that H is δ2pℓq-weakly-regular with respect to the three
members of V defining the vertex-sets of these triads. The existence of X, Y, Z P V and P as
defined above is then established. Throughout the remainder of the proof, we identify H

with HrX Ÿ Y Ÿ Zs.
Let F Ď

`

X
vpt{2q

˘

be the family of all sets tx1, . . . , xvpt{2qu Ď X satisfying
ˇ

ˇ

ˇ

ˇ

ˇ

č

jPrvpt{2qs

LHpxj, P q

ˇ

ˇ

ˇ

ˇ

ˇ

ă

´

d
vpt{2q

3 ´ ε
¯

d
2vpt{2q`1
2 |Y ||Z|. (3.8)

5Formally, r is a function of one integer whereas r1.4 is a function of two. However, this “loss of information”
is a technicality that will not hinder our proof.

6 Supported by triangles of such triads.
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Then,

|F | ď ε|X|
vpt{2q

(3.2)
! γ3.1ptq|X|

vpt{2q

holds by (1.3). This application of the Tuple Lemma is supported by our choice ℓ1.4 " d´1
3 ,

seen in (3.5), ensuring that d2 ! d3 holds and thus fitting the quantification of the Tuple
Lemma. With foresight (see (C.1) and (C.2) below), let

C “ max
!

C
p1q

3.1 ptq, C
p2q

3.1 pµ, tq, C
p3q

3.1 pµ, tq
)

¨ rt1{Mt,t{2

and put
p “ ppnq “ C max

␣

n´1{Mt,t{2 , n´1{Mt´1
(

“ Cn´1{Mt,t{2 ;

for the last equality consult Remark 3.2. Proposition 3.1 then asserts that the following
properties are all satisfied simultaneously a.a.s. whenever R „ Hp3qpn, pq; in the following list
of properties, whenever an asymmetric Ramsey property is stated, the first colour is assumed
to be red and the second colour is assumed to be blue.
(C.1): RrXs is p rK

p3q

t , rK
p3q

t{2 q-Ramsey with respect to p∅,Fq;
(C.2): RrXs is p rK

p3q

t{2 ,
rK

p3q

t q-Ramsey with respect to pF ,∅q;
(C.3): R is p rK

p3q

t´1, µq-Ramsey;
(C.4): R is p rK

p3q

t , rK
p3q

t{2 , µq-Ramsey;
(C.5): R is p rK

p3q

t{2 ,
rK

p3q

t , µq-Ramsey.
Fix R „ Hp3qpn, pq satisfying Properties (C.1-5) and set Γ “ H Y R.

Let ψ be a red/blue colouring of EpΓq and suppose for a contradiction that ψ does not
yield any monochromatic copy of rK

p3q

t . For every v P V pHq, let Lprq

H pvq denote the red link
graph of v in H under ψ, that is, Lprq

H pvq is a spanning subgraph of LHpvq consisting of the
edges of LHpvq that together with v yield a red edge of H under ψ. Similarly, let Lpbq

H pvq

denote the blue link graph of v in H under ψ. Note that, for any fixed vertex v, these two
link subgraphs are edge-disjoint.

We say that blue (respectively, red) is a majority colour of ψ in H if |te P EpHq :
ψpeq is blueu| ě |te P EpHq : ψpeq is redu| (respectively, |te P EpHq : ψpeq is redu| ě |te P

EpHq : ψpeq is blueu|).

Claim 3.6. If blue is a majority colour of ψ in H, then e
´

L
prq

H pvq

¯

ď
η

2vpt{2q
¨ |Y ||Z| holds

for every v P X.

Proof. Suppose for a contradiction that there exists a vertex v P X which violates the assertion
of the claim. The Triangle Counting Lemma (Lemma 2.1) coupled with the assumption of
H being pδ3, d3, rq-regular with respect to the pδ2pℓq, d2q-triad P (take Q1 “ ¨ ¨ ¨ “ Qr “ P

in (2.4)) collectively yield

epHq ě pd3 ´ δ3q|K3pP q|
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(2.1)
ě pd3 ´ δ3q

`

d3
2 ´ 4δ2pℓq

˘

|X||Y ||Z|

ě
`

d3d
3
2 ´ δ3d

3
2 ´ 4d3δ2pℓq

˘

|X||Y ||Z|

ě
d3d

3
2

2 |X||Y ||Z|, (3.9)

where the last inequality is owing to δ3 ! d3 and δ2pℓq ! d3
2 supported by (3.3) and (3.4),

respectively. Blue being the majority colour implies that at least d3d3
2

4 |X||Y ||Z| of the edges
of H are blue and thus there exists a vertex u P Z satisfying e

´

L
pbq

H puq

¯

ě
d3d3

2
4 |X||Y |; note

that Lpbq

H puq Ď X ˆ Y . Set

Av “

!

z P Z : deg
L

prq

H pvq
pzq ě t

)

Ď Z and Au “

!

x P X : deg
L

pbq

H puq
pxq ě t

)

Ď X.

Then,

|Av| ě
η

4vpt{2q
|Z|

(3.4)
ě δ2pℓq|Z| and |Au| ě

d3d
3
2

8 |X|
(3.4)
ě δ2pℓq|X| (3.10)

both hold by Observation 3.3. Since H is δ2pℓq-weakly-regular, it follows that

eHpAu, Y, Avq
(3.9)
ě

ˆ

d3d
3
2

2

˙

¨ |Au||Y ||Av| ´ δ2pℓq|X||Y |Z|

(3.10)
ě

ˆ

d3d
3
2

2

˙

¨

ˆ

η

4vpt{2q

˙

¨

ˆ

d3d
3
2

8

˙

|X||Y ||Z| ´ δ2pℓq|X||Y |Z|

“

ˆ

d2
3d

6
2η

64vpt{2q
´ δ2pℓq

˙

¨ |X||Y ||Z|

(3.4)
ě

ˆ

d2
3d

6
2η

65vpt{2q

˙

¨ |X||Y ||Z|. (3.11)

If red is a majority colour seen along EHpAu, Y, Avq, then there exists a vertex v1 P Av Ď Z

satisfying
ˇ

ˇ

ˇ
E
´

L
prq

H pv1
q

¯

X pAu ˆ Y q

ˇ

ˇ

ˇ

(3.11)
ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|X||Y | ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Au||Y |.

Consequently, the set

Au,v1 “

!

x P Au : deg
L

prq

H pv1q
pxq ě t

)

Ď Au Ď X

satisfies

|Au,v1 | ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

|Au|

(3.10)
ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

¨

ˆ

d3d
3
2

8

˙

|X|

ě

ˆ

d3
3d

9
2η

2100vpt{2q

˙

¨

Z

n

rt

^

(3.7)
ě µn,
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where the first inequality holds by Observation 3.3. We may then write that ΓrAu,v1s ÝÑ

p rK
p3q

t´1q2 owing to R being p rK
p3q

t´1, µq-Ramsey, by Property (C.3). Let K be a copy of rK
p3q

t´1

appearing monochromatically under ψ within ΓrAu,v1s. Let x1, . . . , xt´1 denote the branch
vertices of K. It follows by the definition of Au,v1 that there are distinct vertices y1, . . . , yt´1 P Y

such that txi, yi, v
1u is a red edge of H for every i P rt ´ 1s. Similarly, since Au,v1 Ď Au,

there are distinct vertices y1
1, . . . , y

1
t´1 P Y such that txi, y

1
i, uu is a blue edge of H for every

i P rt´ 1s. Therefore, if K is red, then it can be extended into a red copy of rK
p3q

t including v1;
if, on the other hand, K is blue, then it can be extended into a blue copy of rK

p3q

t including u.
In either case, a contradiction to the assumption that ψ admits no monochromatic copies of
rK

p3q

t is reached.
It remains to consider the complementary case where blue is a majority colour inEHpAu, Y, Avq.

The argument in this case parallels that seen in the previous one with the sole cardinal differ-
ence being that instead of finding a monochromatic copy of rK

p3q

t´1 in a subset of Au Ď X, such
a copy is found in a subset of Av Ď Z. An argument for this case is provided for completeness.
If blue is a majority colour seen along EHpAu, Y, Avq, then there exists a vertex u1 P Au Ď X

satisfying
ˇ

ˇ

ˇ
E
´

L
pbq

H pu1
q

¯

X pY ˆ Avq

ˇ

ˇ

ˇ

(3.11)
ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Y ||Z| ě

ˆ

d2
3d

6
2η

130vpt{2q

˙

|Y ||Av|.

Consequently, the set

Av,u1 “

!

z P Av : deg
L

pbq

H pu1q
pzq ě t

)

Ď Av Ď Z

satisfies

|Av,u1 | ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

|Av|

(3.10)
ě

ˆ

d2
3d

6
2η

260vpt{2q

˙

¨

ˆ

η

4vpt{2q

˙

|Z|

ě

ˆ

d2
3d

6
2η

2

1100vpt{2q2

˙

¨

Z

n

rt

^

(3.7)
ě µn,

where the first inequality holds by Observation 3.3. Then, ΓrAv,u1s ÝÑ p rK
p3q

t´1q2 owing to R
being p rK

p3q

t´1, µq-Ramsey, by Property (C.3). A monochromatic copy of rK
p3q

t´1 appearing in
ΓrAv,u1s can be either extended into a red copy of rK

p3q

t including the vertex v or into a blue
such copy including u1. In either case, a contradiction to the assumption that ψ admits no
monochromatic copy of rK

p3q

t is reached. □

The following counterpart of Claim 3.6 holds as well.
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Claim 3.7. If red is a majority colour of ψ in H, then e
´

L
pbq

H pvq

¯

ď
η

2vpt{2q
¨ |Y ||Z| holds for

every v P X.

Proceeding with the proof of Theorem 1.1, assume first that blue is a majority colour
of ψ in H. By Property (C.1), either there is a red copy of rK

p3q

t (within X) or there is
a blue copy of rK

p3q

t{2 within X not supported on F . If the former occurs, then the proof
concludes. Assume then that K Ď ΓrXs is a blue copy of rK

p3q

t{2 such that V pKq R F , and
write LHpK,P q “

Ş

xPV pKq
LHpx, P q to denote the joint link graph of the members of V pKq

supported on P . Then,

epLHpK,P qq ě

´

d
vpt{2q

3 ´ ε
¯

d
2vpt{2q`1
2 |Y ||Z|,

holds by (3.8). Remove EpL
prq

H pxqq from EpLHpK,P qq for every x P V pKq; that is, remove
any edge in LHpK,P q that together with a vertex of K gives rise to a red edge of H with
respect to ψ. By Claim 3.6, at most

ÿ

xPV pKq

e
´

L
prq

H pxq

¯

ď vpt{2q ¨
η

2vpt{2q
|Y ||Z| “

η

2 |Y ||Z|

edges are thus discarded from LHpK,P q, leaving at least
”´

d
vpt{2q

3 ´ ε
¯

d
2vpt{2q`1
2 ´

η

2

ı

|Y ||Z|
(3.2)
ě

˜

d
vpt{2q

3 d
2vpt{2q`1
2
2 ´

η

2

¸

|Y ||Z|

(3.6)
“

´

η ´
η

2

¯

|Y ||Z|

“
η

2 |Y ||Z|

edges in the residual joint link graph of K, denoted L1
HpK,P q. It follows by Lemma 3.4 and

Observation 3.5 that L1
HpK,P q contains at least

ξ3.5pζ3.4pη{2qq
2n
T1.4

(3.7)
ě µn

vertex-disjoint copies of the bipartite graph K1,t{2. Let S Ď V pL1
HpK,P qq consist of the centre-

vertices of all said copies of K1,t{2. Property (C.4) coupled with |S| ě µn collectively assert that
ΓrSs ÝÑ p rK

p3q

t , rK
p3q

t{2 q. If the first alternative occurs, then there is a red copy of rK
p3q

t and thus
the proof concludes. Suppose then that the second alternative takes place so that a blue copy
K 1 of rK

p3q

t{2 arises in ΓrSs. Let u1, . . . , ut{2 denote the branch-vertices of K 1 and let x1, . . . , xt{2

denote the branch-vertices of K. It follows by the definitions of L1
HpK,P q and S that there

are t2{4 distinct vertices twij : i, j P rt{2su Ď V pL1
HpK,P qq ∖ tu1, . . . , ut{2, x1, . . . , xt{2u such

that tui, xj, wiju forms a blue edge of H for every i, j P rt{2s. We conclude that Γ admits a
copy of rK

p3q

t which is blue under ψ.
Next, assume that red is a majority colour seen for ψ in H. Replacing the appeals to

Claim 3.6, Properties (C.1) and (C.4) in the argument above with appeals to Claim 3.7 and
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Properties (C.2), and (C.5), respectively, leads to the rise of a monochromatic copy of rK
p3q

t in
Γ under ψ in this case as well. □
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[33] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph theory. In
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[47] V. Rödl and A. Ruciński. Lower bounds on probability thresholds for ramsey properties. In Combinatorics,
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