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Abstract. We investigate extremal problems for hypergraphs satisfying the following
density condition. A 3-uniform hypergraph H “ pV,Eq is pd, η, q-dense if for any two
subsets of pairs P , Q Ď V ˆV the number of pairs ppx, yq, px, zqq P PˆQ with tx, y, zu P E
is at least d |K pP,Qq| ´ η |V |3, where K pP,Qq denotes the set of pairs in P ˆQ of the
form ppx, yq, px, zqq. For a given 3-uniform hypergraph F we are interested in the infimum
d ě 0 such that for sufficiently small η every sufficiently large pd, η, q-dense hypergraph H
contains a copy of F and this infimum will be denoted by π pF q. We present a few results
for the case when F “ K

p3q
k is a complete three uniform hypergraph on k vertices. It

will be shown that π pKp3q2r q ď
r´2
r´1 , which is sharp for r “ 2, 3, 4, where the lower bound

for r “ 4 is based on a result of Chung and Graham [Edge-colored complete graphs with
precisely colored subgraphs, Combinatorica 3 (3-4), 315–324].

§1. Introduction

1.1. Extremal problems for uniformly dense hypergraphs. We study extremal
problems for 3-uniform hypergraphs and if not stated otherwise by a hypergraph we always
mean a 3-uniform hypergraph. Recall that for a given 3-uniform hypergraph F the extremal
number expn, F q denotes the maximal number of hyperedges a hypergraph H “ pV,Eq

on n vertices can have without containing a copy of F . Since the sequence expn, F q{
`

n
3

˘

is
decreasing, the Turán density

πpF q “ lim
nÑ8

expn, F q
`

n
3

˘

is well defined. The study of these extremal parameters was already initiated by Turán [12]
more than 70 years ago, but despite a lot of effort still only very few results are known and
several variations were considered. In particular, Erdős and Sós (see, e.g., [2, 3]) suggested
a variant, where one restricts to F -free hypergraphs H, that are uniformly dense on large
subsets of the vertices. For reals d P r0, 1s and η ą 0 we say a 3-uniform hypergraph
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H “ pV,Eq is pd, η, q-dense, if all subsets X, Y , Z Ď V induce at least d|X||Y ||Z|´ η|V |3

triples px, y, zq P XˆY ˆZ such that tx, y, zu is a hyperedge of H. Restricting to -dense
hypergraphs, the appropriate Turán density π pF q for a given hypergraph F can be defined
as

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

a 3-uniform, F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

.

For F “ K
p3q´
4 , i.e., the 3-uniform hypergraph with three hyperedges on four vertices, it

was shown by Glebov, Kráľ, and Volec [5] that π pKp3q´
4 q “ 1{4 (see also [8]). However,

when F “ K
p3q
4 is the clique on four vertices, the interesting conjecture asking if

π pK
p3q
4 q “

1
2

remains still open.
In [9] we considered the following stronger density notion. We say a 3-uniform hypergraph

H “ pV,Eq is pd, η, q-dense, if all subsets X Ď V and sets of pairs P Ď V ˆ V induce
at least d|X||P | ´ η|V |3 pairs px, py, zqq P X ˆ P such that tx, y, zu is a hyperedge of H.
Similarly as above, for this concept one defines the Turán density π pF q for a given
hypergraph F by

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

a 3-uniform, F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

and the main result in [9] asserts π pKp3q
4 q “ 1{2. Strictly speaking, in [8, 9] quasirandom

hypergraphs H were considered, i.e., a matching upper bound on the number of hyperedges
induced on X ˆ Y ˆ Z (resp. X ˆ P ) was formally required. However, in the proofs
only the density condition (i.e., the lower bound on the number of induced hyperedges) is
utilised. Moreover, for extremal problems involving embeddings of fixed hypergraphs it
seems natural to restrict only to a lower bound on the density and here this path will be
followed.

1.2. Main result. Here we investigate the following density condition, which further
strengthens the notion of -dense hypergraphs and is in some sense the strongest non-
trivial density condition for extremal problems in 3-uniform hypergraphs (see, e.g., [9] for
a more detailed discussion of the different conditions).

Definition 1.1. A 3-uniform hypergraph H “ pV,Eq on n “ |V | vertices is pd, η, q-dense
if for any two subsets of pairs P , Q Ď V ˆ V the number e pP,Qq of pairs of pairs
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ppx, yq, px, zqq P P ˆQ with tx, y, zu P E satisfies

e pP,Qq ě d |K pP,Qq| ´ η n3 , (1)

where K pP,Qq denotes the set of pairs in P ˆQ of the form ppx, yq, px, zqq. The class of
pd, η, q-dense 3-uniform hypergraphs will be denoted by Dpd, η, q.

The corresponding Turán density for a given 3-uniform hypergraph F is then defined by

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

a 3-uniform, F -free hypergraph H P Dpd, η, q with |V pHq| ě n
(

.

Our main result establishes an upper bound on π pF q, when F is a complete 3-uniform
hypergraph.

Theorem 1.2. For every integer r ě 2 and ε ą 0 there exists an η ą 0 and an integer n0

such that every 3-uniform p r´2
r´1 ` ε, η, q-dense hypergraph H with at least n0 vertices

contains a copy of the complete 3-uniform hypergraph on 2r vertices Kp3q
2r , i.e., we have

π pK
p3q
2r q ď

r ´ 2
r ´ 1 .

In particular, for r “ 2 the theorem yields π pKp3q
4 q “ 0 and below we discuss lower

bound constructions, which show that Theorem 1.2 is sharp for r “ 3 and 4 as well. For
a summary of our results for small cliques see (3) below. Moreover, a simple general
construction given in the next section yields limkÑ8 π pK

p3q
k q “ 1.

The upper bound in Theorem 1.2 shows that the Turán densities for cliques for -dense
hypergraphs grow much slower than those for -dense hypergraphs. In fact, combined
with a lower bound construction from [9] we have

π pK
p3q
2r q ď

r ´ 2
r ´ 1 ď π pK

p3q
r`1q .

We also remark that the proof of Theorem 1.2 extends to k-colourable hypergraphs.
Recall that a hypergraph F is k-colourable, if there exists a partition V pF q “ V1 Ÿ . . . Ÿ Vk

such that no hyperedge of F is contained in some Vi for i P rks. For example, splitting
the vertex set of Kp3q

2r into 2r´1 sets of size two shows that Kp3q
2r is 2r´1-colourable and

the proof of Theorem 1.2 presented here yields the same upper bound on π pF q for any
2r´1-colourable hypergraph, i.e., if F is 2r´1-colourable for some r ě 2 then

π pF q ď
r ´ 2
r ´ 1

(see also Remark 4.6).
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1.3. Lower bound constructions. In this section we consider constructions yielding
lower bounds for π pKp3q

k q where k “ 5, 6, and 11. All constructions given here will be
probabilistic, which will ensure the required -denseness (see Proposition 1.3 below). For
the exclusion of the cliques of given order we shall utilise Ramsey-type arguments.

The following terminology will be useful. For a given finite set C of colours, by a colour
pattern we mean a multiset containing three (counting with repetition) elements from C
and a set P of such patterns is called a palette over C. For example,

P “
 

t1, 1, 2u , t1, 1, 3u , t2, 2, 3u , t2, 2, 1u , t3, 3, 1u , t3, 3, 2u
(

(2)

is a palette over C “ t1, 2, 3u, which consists of all patterns using exactly two colours.
For d P r0, 1s we say a palette P over C is pd, q-dense, if any pair of (not necessarily

distinct) colours of C appears in at least d |C| patterns of P. For example, it is easy to
check that the palette given in (2) is p2{3, q-dense.

Next we describe the connection between pd, q-dense palettes and pd, η, q-dense hyper-
graphs. For a vertex set V and a colouring ϕ : V p2q Ñ C of the (unordered) pairs of V let
HP
ϕ “ pV,Eq be the 3-uniform hypergraph defined by

E “
 

tx, y, zu P V p3q : tϕpx, yq, ϕpx, zq, ϕpy, zqu P P
(

,

where tϕpx, yq, ϕpx, zq, ϕpy, zqu is regarded as a multiset. Considering random colourings ϕ
and a pd, q-dense palette P results for any given η ą 0 with high probability for a
sufficiently large set V in a pd, η, q-dense hypergraph HP

ϕ “ pV,Eq.

Proposition 1.3. Suppose P is a pd, q-dense palette over some finite set of colours C.
For every η ą 0 and all sufficiently large sets V there exists a colouring ϕ : V p2q Ñ C of the
unordered pairs of V such that the 3-uniform hypergraph HP

ϕ “ pV,Eq is pd, η, q-dense.
Moreover, if any colouring of the edges of the complete graph Kk with colours from C

yields a triangle with a pattern not from P, then HP
ϕ contains no copy of Kp3q

k and,
consequently, π pKp3q

k q ě d.

Before we prove the proposition we deduce some lower bounds for π pKp3q
5 q, π pKp3q

6 q,
and π pKp3q

11 q from it.
‚ We first show π pK

p3q
5 q ě 1{3. For that we consider the p1{3, q-dense palette

P “
 

t1, 1, 2u , t2, 2, 3u , t3, 3, 1u
(

over t1, 2, 3u and we have to show that the edges of the complete graph K5 cannot
be coloured in such a way that all triangles get a pattern from P. We consider
three cases. If there is a vertex of K5 incident with edges of each colour, those
three neighbours would have to span a triangle using all three colours, which is
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not a pattern in P. Similarly, if there is a vertex incident with three edges of the
same colour, then the triangle in that neighbourhood is monochromatic, which
is also not contained in P. Hence, every vertex has degree two or zero in the
three monochromatic subgraphs of K5 given by the edge colouring. Therefore, the
colouring induces a decomposition of K5 into monochromatic cycles. But since
monochromatic triangles are not allowed, this decomposition must consist of two
cycles of length five. However, this leads to two triangles with the patterns ta, a, bu
and tb, b, au for some a ‰ b, but only one of these patterns is in the palette.

‚ Next we verify π pK
p3q
6 q ě 1{2. Indeed, since every two-colouring of the edges

of K6 yields a monochromatic triangle, the assertion follows from the p1{2, q-
dense palette tt1, 1, 2u , t2, 2, 1uu over t1, 2u. Combining this lower bound with the
obvious monotonicity and with Theorem 1.2 for r “ 3 leads to

1
2 ď π pK

p3q
6 q ď π pK

p3q
7 q ď π pK

p3q
8 q ď

1
2 .

We also remark that this construction can be generalised for multicolour Ramsey
numbers. For every integer ` let k “ Rp3; `q be the `-colour Ramsey number for
the triangle. Then the palette consisting of all but the monochromatic patterns
over r`s “ t1, . . . , `u yields π pKp3q

k q ě p` ´ 1q{`, which shows that π pKp3q
k q Ñ 1

as k tends to infinity.
‚ The last construction establishes π pKp3q

11 q ě 2{3. For this we appeal to the palette
given in (2), which is p2{3, q-dense over t1, 2, 3u. It follows from the result of
Chung and Graham from [1] that every three-colouring of the edges of K11 yields
either a monochromatic triangle or a rainbow triangle. Since these patterns are not
in the palette in (2), it follows that π pKp3q

11 q ě 2{3. Together with the case r “ 4
of Theorem 1.2 this yields

2
3 ď π pK

p3q
11 q ď ¨ ¨ ¨ ď π pK

p3q
16 q ď

2
3 .

Summarising the discussion above for cliques of small size we established

π pK
p3q
4 q “ 0

1
3 ď π pK

p3q
5 q

π pK
p3q
6 q “ π pK

p3q
7 q “ π pK

p3q
8 q “ 1

2 ď π pK
p3q
9 q ď π pK

p3q
10 q (3)

π pK
p3q
11 q “ ¨ ¨ ¨ “ π pK

p3q
16 q “

2
3

which leaves gaps for the values of π pKp3q
k q for k “ 5, 9, 10 and it would be very interesting

to close these. We conclude this introduction with the short proof of Proposition 1.3.
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Proof of Proposition 1.3. For a given pd, q-dense palette P over some finite set of colours C
and η ą 0 we consider a random colouring ϕ : V p2q Ñ C of the unordered pairs of some
sufficiently large set V , where each pair is coloured independently and uniformly with one
of the colours from C. We shall show that with probability tending to one as |V | Ñ 8 the
hypergraph HP

ϕ is pd, η, q-dense.
We begin with the following observation. For any two subsets Y , Z Ď V and any selection

C 1 Ď C of at least d |C| colours we expect at least dp|Y ||Z| ´ |Y X Z|q pairs py, zq P Y ˆ Z
with y ‰ z such that ϕpy, zq P C 1. Chernoff’s inequality in the form

PpX ă EX ´ tq ď expp´ t2

2EX q

applied with t “ η|V |2{|C|2 ´ |Y X Z| shows that at least

d|Y ||Z| ´ η|V |2{|C|2 (4)

such pairs will be present with probability at least 1´expp´η2|V |2

3|C|4 q. Consequently, applying
the union bound over all choices of Y , Z Ď V and C 1 Ď C we infer that with probability
tending to 1 as |V | Ñ 8 that the bound in (4) holds for all these choices and for the rest
of the proof we assume that ϕ satisfies this property.

Let P , Q Ď V ˆ V . For a colour c P C and a vertex x P V set

N c
P pxq “

 

y P V : px, yq P P and ϕpx, yq “ c
(

and, similarly, define N c
Qpxq. Clearly, we have

|K pP,Qq| “
ÿ

xPV

ÿ

c,c1PC
|N c

P pxq||N
c1

Qpxq| .

Since the palette P is pd, q-dense, for any (not necessarily distinct) colours c, c1 P C the
set C 1 “ tc2 P C : tc, c1, c2u P Pu has size at least d|C|. Hence, using the lower bound given
in (4) for Y “ N c

P pxq and Z “ N c1

Qpxq yields that there are at least

d|N c
P pxq||N

c1

Qpxq| ´ η|V |
2
{|C|2

triples px, y, zq with px, yq P P , ϕpx, yq “ c, px, zq P Q, ϕpx, zq “ c1, and tx, y, zu P EpHP
ϕ q.

Summing this estimate over all vertices x P V and colours c, c1 P C leads to

e pP,Qq ě
ÿ

xPV

ÿ

c,c1PC

´

d|N c
P pxq||N

c1

Qpxq| ´ η|V |
2
{|C|2

¯

“ d
ÿ

xPV

ÿ

c,c1PC
|N c

P pxq||N
c1

Qpxq| ´ η|V |
3

“ d|K pP,Qq| ´ η|V |3 ,

which shows that HP
ϕ is pd, η, q-dense.
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The moreover-part follows directly from the assumed Ramsey-type property of Kk and
the definitions of HP

ϕ and π p¨q. �

§2. Hypergraph regularity method

A key tool in the proof of Theorem 1.2 is the regularity lemma for 3-uniform hypergraphs.
We follow the approach from [10,11] combined with the results from [6] and [7] and below
we introduce the necessary notation.

For two disjoint sets X and Y we denote by KpX, Y q the complete bipartite graph with
that vertex partition. We say a bipartite graph P “ pX Ÿ Y,Eq is pδ2, d2q-regular if for all
subsets X 1 Ď X and Y 1 Ď Y we have

ˇ

ˇepX 1, Y 1q ´ d2|X
1
||Y 1|

ˇ

ˇ ď δ2|X||Y | ,

where epX 1, Y 1q denotes the number of edges of P with one vertex in X 1 and one vertex in Y 1.
Moreover, for k ě 2 we say a k-partite graph P “ pX1 Ÿ . . . ŸXk, Eq is pδ2, d2q-regular, if
all of its

`

k
2

˘

naturally induced bipartite subgraphs P rXi, Xjs are pδ2, d2q-regular. For a
tripartite graph P “ pX Ÿ Y Ÿ Z,Eq we denote by K3pP q the triples of vertices spanning
a triangle in P , i.e.,

K3pP q “ ttx, y, zu Ď X Y Y Y Z : xy, xz, yz P Eu .

If the tripartite graph P is pδ2, d2q-regular, then the so-called triangle counting lemma
implies

|K3pP q| ď d3
2|X||Y ||Z| ` 3δ2|X||Y ||Z| . (5)

We say a 3-uniform hypergraph H “ pV,EHq is regular with respect to a tripartite
graph P if it matches approximately the same proportion of triangles for every subgraph
Q Ď P . This we make precise in the following definition.

Definition 2.1. A 3-uniform hypergraph H “ pV,EHq is pδ3, d3q-regular with respect to a
tripartite graph P “ pX Ÿ Y ŸZ,EP q with V Ě X Y Y YZ if for every tripartite subgraph
Q Ď P we have

ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .

Moreover, we simply say H is δ3-regular with respect to P , if it is pδ3, d3q-regular for some
d3 ě 0. We also define the relative density of H with respect to P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where we use the convention dpH|P q “ 0 if K3pP q “ ∅. If H is not δ3-regular with respect
to P , then we simply refer to it as δ3-irregular.
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The regularity lemma for 3-uniform hypergraphs, introduced by Frankl and Rödl in [4],
provides for every hypergraph H a partition of its vertex set and a partition of the edge sets
of the complete bipartite graphs induced by the vertex partition such that for appropriate
constants δ3, δ2, and d2

(1 ) the bipartite graphs given by the partitions are pδ2, d2q-regular and
(2 ) H is δ3-regular with respect to “most” tripartite graphs P given by the partition.

In many proofs based on the regularity method it is convenient to “clean” the regular
partition provided by the regularity lemma. In particular, we shall disregard hyperedges
of H that belong to K3pP q when H is not δ3-regular or when dpH|P q is very small. These
properties are rendered in the following somewhat standard corollary of the regularity
lemma.

Theorem 2.2. For every d3 ą 0, δ3 ą 0 and m P N, and every function δ2 : N Ñ p0, 1s,
there exist integers T0 and n0 such that for every n ě n0 and every n-vertex 3-uniform
hypergraph H “ pV,Eq the following holds.

There exists a subhypergraph Ĥ “ pV̂ , Êq Ď H, an integer ` ď T0, a vertex partition
V1 Ÿ . . . Ÿ Vm “ V̂ , and for all 1 ď i ă j ď m there exists a partition

P ij
“ tP ij

α “ pVi Ÿ Vj, E
ij
α q : 1 ď α ď `u

of KpVi, Vjq satisfying the following properties

(i ) |V1| “ ¨ ¨ ¨ “ |Vm| ě p1´ δ3qn{T0,
(ii ) for every 1 ď i ă j ď m and α P r`s the bipartite graph P ij

α is pδ2p`q, 1{`q-regular,
(iii ) Ĥ is δ3-regular with respect to P ijk

αβγ for all tripartite graphs (which will be later
referred to as triads)

P ijk
αβγ “ P ij

α Ÿ P
ik
β Ÿ P

jk
γ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ E

ik
β Ÿ E

jk
γ q , (6)

with 1 ď i ă j ă k ď m and α, β, γ P r`s, where the density dpĤ|P ijk
αβγq is either 0

or at least d3, and
(iv ) for every 1 ď i ă j ă k ď m there are at most δ3 `

3 triples pα, β, γq P r`s3 such that
dpĤ|P ijk

αβγq ă dpH|P ijk
αβγq ´ d3.

The standard proof of Theorem 2.2 based on a refined version of the regularity lemma
from [10, Theorem 2.3] can be found in [8, Corollary 3.3]. Actually the statement there
differs from the one given here in the final clause, but the proof from [8] shows the present
version as well. In fact, the new version of (iv ) is a consequence of clause (a) in the
definition of the hypergraph R in [8, Proof of Corollary 3.3], as we only remove more
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than d3|KpP ijk
αβγq| hyperedges from H to obtain Ĥ, when H is δ3-irregular with respect

to P ijk
αβγ.

We shall use a so-called counting/embedding lemma, which allows us to embed hyper-
graphs of fixed isomorphism type into appropriate and sufficiently regular and dense triads
of the partition provided by Theorem 2.2. The following statement is a direct consequence
of [7, Corollary 2.3].

Theorem 2.3 (Embedding Lemma). For every 3-uniform hypergraph F “ pVF , EF q with
vertex set VF “ rf s and every d3 ą 0 there exists δ3 ą 0, and functions δ2 : NÑ p0, 1s and
N : NÑ N such that the following holds for every ` P N.

Suppose P “ pV1 Ÿ . . . ŸVf , EP q is a pδ2p`q,
1
`
q-regular, f -partite graph with vertex classes

satisfying |V1| “ ¨ ¨ ¨ “ |Vf | ě Np`q and suppose H is an f-partite, 3-uniform hypergraph
such that for every edge ijk P EF we have

(a ) H is δ3-regular with respect to to the tripartite subgraph P rVi Ÿ Vj Ÿ Vks and
(b ) dpH|P rVi Ÿ Vj Ÿ Vksq ě d3

then H contains a copy of F , where for every i P rf s “ VF the image of i is contained
in Vi.

In an application of Theorem 2.3 the tripartite graphs P rVi Ÿ Vj Ÿ Vks in (a ) and (b )
will be given by triads P ijk

αβγ from the partition given by Theorem 2.2.
For the proof of Theorem 1.2 we consider a -dense hypergraph H of density r´2

r´1 ` ε.
We will apply the regularity lemma in the form of Theorem 2.2 to H. The main part of the
proof concerns the appropriate selection of dense and regular triads, that are ready for an
application of the embedding lemma with F “ K

p3q
2r . This will be the focus in Sections 3

and 4.

§3. Reduced hypergraphs

Like many other proofs based on the regularity method, the proof of Theorem 1.2
will factor naturally through an auxiliary statement speaking about certain “reduced
hypergraphs” that we would like to describe next.

Consider any finite set of indices I, suppose that associated with any two distinct indices
i, j P I we have a finite nonempty set of vertices P ij “ Pji, and that for distinct pairs of
indices the corresponding vertex classes are disjoint. Assume further that for any three
distinct indices i, j, k P I we are given a tripartite 3-uniform hypergraph Aijk with vertex
classes P ij, P ik, and Pjk. Under such circumstances we call the

`

|I|
2

˘

-partite 3-uniform
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hypergraph A defined by

V pAq “
ď

¨

ti,juPIp2q

P ij and EpAq “
ď

¨

ti,j,kuPIp3q

EpAijk
q

a reduced hypergraph. We also refer to I as the index set of A, to the sets P ij as the vertex
classes of A, and to the hypergraphs Aijk as the constituents of A.

This concept of a reduced hypergraph might look a bit artificial at first, especially
since only

`

|I|
3

˘

out of the
`

p|I|2 q
3

˘

naturally induced tripartite subhypergraphs are inhabited.
However, as it turns out these reduced hypergraphs are well suited for analyzing the
structure of the partition provided by Theorem 2.2 applied to a given hypergraph H.

Now, whenH happens to be pd, η, q-dense, then the corresponding reduced hypergraph A
inherits a property reflecting this. We are thus led to the notion of a reduced hypergraph A
being pd, δ, q-dense. Roughly speaking, this means that all constituents of A are required
to satisfy a δ-approximate pair-degree condition with proportion d, which is rendered in
the following definition.

Definition 3.1. A reduced hypergraph A with index set I is pd, δ, q-dense for some
d P r0, 1s and δ ą 0, if for any three distinct i, j, k P I the following is true:

There are at most δ |P ij| |P ik| pairs of vertices pP ij, P ikq P P ij ˆ P ik with the property
that there are fewer than d |Pjk| vertices P jk P Pjk for which tP ij, P ik, P jku P EpAijkq

holds.

For an integer t ě 3 we say that a reduced hypergraph A contains a clique of order t if
there are

‚ a set J Ď I with |J | “ t

‚ and for any two distinct indices i, j P J a vertex P ij P P ij

such that we have tP ij, P ik, P jku P EpAijkq for any three distinct i, j, k P J .
Now the statement to which we may reduce Theorem 1.2 via the regularity method is

the following.

Proposition 3.2. Given an integer r ě 2 and a real ε ą 0, there exists a real δ ą 0 and
an integer m such that every

`

r´2
r´1 ` ε, δ,

˘

-dense reduced hypergraph whose index set has
size at least m contains a clique of order 2r.

Proof of Theorem 1.2 assuming Proposition 3.2. Roughly speaking, this reduction consists
of two parts. Given a

`

r´2
r´1 ` ε, η,

˘

-dense hypergraph H we will apply the regularity
lemma in the form of Theorem 2.2 and obtain a reduced hypergraph A for Ĥ Ď H. In
the first part we then verify that for an appropriate choice of the involved constants the
reduced hypergraph A is indeed

`

r´2
r´1 ` ε{4, δ,

˘

-dense. This allows for an application of
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Proposition 3.2 yielding a clique of order 2r in A. In the second part it remains to check
that this clique of order 2r in A defines an appropriate collection of triads ready for an
application of the embedding lemma (Theorem 2.3) yielding a copy of Kp3q

2r in Ĥ Ď H.
Below we give the details of this proof.

Given r ě 2 and ε ą 0 we fix auxiliary constants and functions to satisfy the hierarchy

1
r
, ε " δ " 1

m
, d3 " δ3 "

1
`
" δ2p`q ,

1
Np`q

" 1
T0
" η (7)

where δ and m are given by Proposition 3.2 applied with r and ε{4; and δ3, and the
functions δ2p¨q, and Np¨q are given by Theorem 2.3 applied for F “ K

p3q
2r and d3; and T0 is

given by Theorem 2.2.
For a p r´2

r´1 `ε, η, q-dense hypergraph H “ pV,Eq on sufficiently many vertices, we apply
the regularity lemma in the form of Theorem 2.2 and obtain a subhypergraph

Ĥ “ pV̂ , Êq Ď H ,

some integer ` ď T0, a vertex partition V1 Ÿ . . . ŸVm “ V̂ , and bipartite graphs P ij
α for all i

and j with 1 ď i ă j ď m and every α P r`s satisfying properties (i )–(iv ) of Theorem 2.2.
For the index set I “ rms we consider the naturally given reduced hypergraph A for the
regular partition of Ĥ with vertex classes

P ij
“ tP ij

α : α P r`su

for all distinct i, j P I and with constituents Aijk for distinct i, j, k P I with

EpAijk
q “

 

tP ij
α , P

ik
β , P

jk
γ u : pα, β, γq P r`s3 and dpĤ|P ijk

αβγq ě d3
(

.

Next we check that the reduced hypergraph A is
`

r´2
r´1 `

ε
4 , δ,

˘

-dense. Given distinct
indices i, j, k P I and P ij P P ij and P ik P P ik it follows from the so-called graph counting
lemma for graphs that for the pδ2p`q, 1{`q-regular bipartite graphs P ij and P ik we have

ˇ

ˇ

ˇ

ˇ

ˇK pP ij, P ik
q
ˇ

ˇ´
1
`2 |Vi||Vj||Vk|

ˇ

ˇ

ˇ
ď 2δ2p`q|Vi||Vj||Vk| . (8)

Consequently, the p r´2
r´1 ` ε, η, q-denseness of H implies that the number eHpP ij, P ikq of

hyperedges in H matching P2’s from K pP ij, P ikq satisfies

eHpP ij, P ik
q ě

ˆ

r ´ 2
r ´ 1 ` ε

˙

1
`2 |Vi||Vj||Vk| ´ 2δ2p`q|Vi||Vj||Vk| ´ ηn

3

ě

ˆ

r ´ 2
r ´ 1 `

ε

2

˙

1
`2 |Vi||Vj||Vk| .
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Owing to (5) we have |K3pP
ij Y P ik Y P jkq| ď |Vi||Vj||Vk|{`

3 ` 3δ2p`q|Vi||Vj||Vk| for every
P jk P Pjk and combined with the upper bound in (8) and δ2p`q ! 1{` ! ε we obtain

ˇ

ˇ

 

P jk
P Pjk : dpH|P ij

Y P ik
Y P jk

q ě d3
(
ˇ

ˇ ě

ˆ

r ´ 2
r ´ 1 `

ε

3 ´ d3

˙

` (9)

for any given pair pP ij, P ikq P P ij ˆ P ik.
Property (iv ) of Theorem 2.2 implies that for all but up to at most

?
δ3`

2 pairs pP ij, P ikq P

P ij ˆ P ik there are at most
?
δ3` graphs P jk P Pjk such that

dpĤ|P ij
Y P ik

Y P jk
q “ 0 , while dpH|P ij

Y P ik
Y P jk

q ě d3 .

Consequently, from (9) it follows that for all but at most
?
δ3`

2 pairs pP ij, P ikq P P ij ˆP ik

there are at least
ˆ

r ´ 2
r ´ 1 `

ε

3 ´ d3 ´
a

δ3

˙

` ě

ˆ

r ´ 2
r ´ 1 `

ε

4

˙

|Pjk
|

graphs P jk P Pjk such that tP ij, P ik, P jku P EpAq. In other words, since
?
δ3 ď δ the

reduced hypergraph A for Ĥ is
`

r´2
r´1 `

ε
4 , δ,

˘

-dense.
Proposition 3.2 then shows that A contains a clique of oder 2r, i.e., there exists J Ď rms

of size 2r and bipartite graphs P ij P P ij for any distinct i, j P J such that tP ij, P ik, P jku

is a hyperdge of A for all distinct i, j, k P J . By the definition of A this shows that
dpĤ|P ij YP ik YP jkq ě d3 and, hence, we may apply the embedding lemma (Theorem 2.3)
to Ĥr

Ť

jPJ Vjs and P “
Ť

ti,juPJp2q P
ij to obtain the desired clique Kp3q

2r in Ĥ Ď H. �

It is left to verify Proposition 3.2, which will be the content of the next section.

§4. Embedding cliques in the reduced hypergraph

In this section we shall provide a proof of Proposition 3.2. This will involve several
inductions, which will require to prove a more general and somewhat technical statement
(see Proposition 4.7). Instead of proving it directly it appears preferable to state and prove
an even more general Proposition 4.10. We will show that

Proposition 4.10 ùñ Proposition 4.7 ùñ Proposition 3.2 ,

and thus the proof of Theorem 1.2 will be complete with the proof of Propostion 4.10.
To facilitate the wording of these generalisations, we introduce some further concepts.

We will frequently deal with finite sequences of the form a “ pa1, . . . , akq, where k is a
nonnegative integer. If k “ 0, then a is the empty sequence denoted by ∅. Generally, k
is called the length of a and we express this by writing k “ |a|. For an integer ` P r0, ks
the restriction a|` is defined to be the initial segment pa1, . . . , a`q of a and for ` P rks
we denote the `-th element of a by ap`q, i.e., ap`q “ a`. A direct continuation of a is a
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finite sequence b obtainable from a by appending an arbitrary further term to it, so that b
satisfies |b| “ k` 1 and b|k “ a. The concatenation of two finite sequences a “ pa1, . . . , akq

and b “ pb1, . . . , b`q is defined to be pa1, . . . , ak, b1, . . . , b`q and denoted by a ˝ b. Moreover,
the longest common initial segment of a and b is denoted by a^ b. The following notion of
regular trees will be useful.

Definition 4.1 (rk,M s-system). For integers k,M ě 1 an M-ary tree of height k is a
set T of finite sequences whose length is at most k, such that

‚ ∅ P T , sometimes called the root of T , and
‚ every a P T with |a| ă k has precisely M direct continuations in T .

The set of elements σ that extend some a “ pa1, . . . , a`q P T to a direct continuation
a ˝ pσq P T are the successors of a denoted by

ST paq “ tσ : pa1, . . . , a`, σq P T u .

The leaves of T are its elements of length k and the set of these leaves is denoted by rT s.
We say a set S is a rk,M s-system if S “ rT s holds for some M -ary tree T of height k.

Giving two examples, we would like to mention that any set consisting ofM elements can
be viewed as a r1,M s-system, whilst the boolean cube t0, 1uk is a rk, 2s-system. Moreover,
we notice that we have |S| “Mk for any rk,M s-system S.

In the iterated Ramsey-type arguments that we use in the proofs of this section we
will move from rk,M s-systems to rk,ms-systems for some m ! M . However, while we
can preserve the tree structure, we have no control about the subtree of the original
rk,M s-system that will be kept after a Ramsey argument. In fact, this is the reason why
we prefer to work with trees and rk,M s-systems, instead of sets S of the form S “ Mk for
some M -element set M.

For the proof of Proposition 3.2 we are given a
`

r´2
r´1`ε, δ,

˘

-dense reduced hypergraph A
with index set I and we may assume that δ ! |I|´1 ! ε. We then need to obtain some
J Ď I with |J | “ 2r that spans a clique in A. For that we will view I as an rr,M s-system
for some large integer M and use Ramsey-type arguments for shrinking I down to an
appropriate rr, 2s-system J , such that the required vertices and edges of A exist (see
Definition 4.3 and Fact 4.5 below). We begin with the following observation, which follows
by a simple averaging argument, and which will be utilised in the proof of Proposition 4.10.

Lemma 4.2. Given two integers k,M ě 1, let S be a rk,M s-system and let X be a subset
of S satisfying |X| ě εMk for some ε ą 0. Then for some integer m ě εM{k there exists
a rk,ms-system S 1 Ď X.
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Proof. We argue by induction on k. The base case k “ 1 is clear because X is automatically
going to be a r1, |X|s-system. Now suppose that k ě 2 and that the lemma holds for k ´ 1
in place of k. Let S and X be as above and denote the underlying tree of S by T . Clearly
the set A “ ta P T : |a| “ 1u has size M and for every a P A the set Sa “ tb : a ˝ b P Su is
a rk ´ 1,M s-system. Consider for every a P A the set

Xa “ tb P Sa : a ˝ b P Xu

and let
A1 “

!

a P A : |Xa| ě
pk´1qε
k

¨Mk´1
)

.

Due to
εMk

ď |X| “
ÿ

aPA

|Xa| ď
pk´1qε
k

¨Mk
` |A1| ¨Mk´1 ,

we have |A1| ě εM{k and we can select a subset A2 Ď A1 with |A2| “ rεM{ks “: m.
Moreover, for every a P A2 we may apply the induction hypothesis to Xa Ď Sa with
ε1 “ pk ´ 1qε{k, thus obtaining a rk ´ 1,ms-system S 1a Ď Xa. Consequently,

S 1 “ ta ˝ b : a P A2 and b P S 1au

is a rk,ms-system contained in X. �

Next we introduce the somewhat technical notion of a fortress (see Definition 4.3 below),
in a reduced hypergraph A. The additional structural requirements for rk,M s-systems to
support a fortress serve two purposes: firstly a rr, 2s-system that supports a fortress will
give rise to a clique of order 2r in A and secondly rr,M s-systems for M ě 2 that support
fortresses will be “rich enough” for the intended inductive arguments.

Consider an M -ary tree T of height k and the associated rk,M s-system rT s. For every
sequence c “ pc1, . . . , c`q P T we set

Qpcq “
 

pd1, . . . , d`q : di P ST pc|pi´ 1qqr tciu for every i P r`s
(

.

Since T is an M -ary tree, there are M ´ 1 successors of c|pi´ 1q different from ci for every
i P r`s and thus we have |Qpcq| “ pM ´ 1q|c| for each c P T . Moreover, it follows from the
definition that for the empty sequence ∅ we have Qp∅q “ t∅u. We also remark that Qpcq is
not necessarily a subset of T . For example, if pa, α1q, pa, α2q, pa, α3q, pb, β1q, . . . , pc, γ3q are
the leaves of a ternary tree of height two, then Qppb, β2qq consists of pa, β1q, pa, β3q, pc, β1q,
and pc, β3q. In the next definition we will make use of the fact, that if d P Qpcq, then
d|s P Qpc|sq for any s “ 0, . . . , |c|.

Definition 4.3 (fortress). Let T be an M -ary tree of height k and let A be a reduced
hypergraph whose index set I contains the rk,M s-system S “ rT s. We say S supports a
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fortress in A if for every a, b P S with a ‰ b and for every d P Qpa^ bq there exists some
vertex P ab

d P Pab Ď V pAq1 such that

(F ) for all distinct a, b, c P S satisfying

s :“ |a^ b| “ |a^ c| ă |b^ c| , (10)

and for every d P Qpb^ cq with dps` 1q “ aps` 1q we have
 

P ab
d|s, P

ac
d|s, P

bc
d

(

P EpAabc
q .

We refer to the set of vertices F “ tP ab
d : a, b P S, a ‰ b, and d P Qpa^bqu as a fortress and

we say that A contains a rk,M s-fortress if some subset of I is a rk,M s-system supporting
a fortress.

Remark 4.4. Note that property (F ) is void for any r1,M s-fortress, since for a r1,M s-
system S we have a^ b “ ∅ for any two distinct a, b P S. Therefore, (10) will never hold
for distinct a, b, c P S and we can select P ab

∅ P Pab arbitrarily.

As mentioned above we now show that for r ě 2 a rr, 2s-fortress yields a clique of order 2r

in A.

Fact 4.5. For every integer r ě 2 a reduced hypergraph A contains a rr, 2s-fortress if and
only if it contains a clique of order 2r.

Proof. For a binary tree T of height r we have |Qpcq| “ 1 for any c P T . Consequently,
an rr, 2s-fortress contained in A corresponds to a subset J of the index set of A of size
|J | “ 2r and a selection tP ab P Pab : a, b P J and a ‰ bu such that tP ab, P ac, P bcu P EpAq,
whenever (10) holds. In fact, the condition dps` 1q “ aps` 1q for the unique d P Qpb^ cq
follows for binary trees directly from (10). Moreover, any three distinct leaves of a binary
tree can be labeled a, b, c in such a way that (10) holds and, consequently, an rr, 2s-fortress
corresponds to a clique of order 2r in A.

On the other hand, if A with index set I contains a clique of order 2r, then there
exists a subset J Ď I of size 2r and vertices P ij P P ij for all distinct i, j P J such that
tP ij, P ik, P jku is a hyperedge of A for all distinct i, j, k P J . Relabelling all elements of J
by binary sequences of length r gives rise to a binary tree of height r that carries a fortress
in A. �

1To be consistent with the notation in Section 2 we should maybe write something like P abαabpdq
where

1 ď αabpdq ď |Pab|. However, for a simpler notation we will suppress such functions αab : Qpa^bq Ñ r|Pab|s

and simply write P abd .
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Remark 4.6. It is not hard to show that a r2,ms-fortress in A gives rise to a situation
where the embedding lemma (Theorem 2.3) can be applied for any hypergraph F on at
most m vertices with the property that one can colour the vertices and the pairs of vertices
of F with m colours such that every hyperedge tx, y, zu of F contains exactly two vertices,
say x and y, which are coloured by the same colour, say red, and the pair tx, yu and the
vertex z have the same colour different from red.

Note that this includes for example all 2-colourable hypergraphs F and in view of
Proposition 4.7 for r “ 2 this can be used to show that π pF q “ 0 holds for any 2-colourable
3-uniform hypergraph F . In fact, for general r one can show that rr,ms-fortresses allow
the embedding of 2r´1-partite 3-uniform hypergraphs F with m vertices and, as a result,
one can deduce π pF q “ r´2

r´1 for such F . We omit the details here.

Proposition 3.2 follows by Fact 4.5 from the case m “ 2 of Proposition 4.7.

Proposition 4.7. Suppose that integers r,m ě 2 and a real ε ą 0 are given. Then there
are a real δ ą 0 and an integer M with the property that every

`

r´2
r´1 ` ε, δ,

˘

-dense reduced
hypergraph whose index set is an rr,M s-system contains an rr,ms-fortress.

The proof of Proposition 4.7 in turn proceeds in r steps. The first idea of this kind one
might come up with is to wish proving by induction on k that for k P rrs and m !M ! δ´1

every
`

r´2
r´1 ` ε, δ,

˘

-dense reduced hypergraph, whose index set I is a rk,M s-system,
contains a rk,ms-fortress. However, for k ă r we have k´2

k´1 ă
r´2
r´1 and Proposition 4.7

asserts, that a rk,ms-fortress already appear in
`

k´2
k´1 ` ε, δ,

˘

-dense reduced hypergraphs.
This seems to indicate that for k ă r we can insist on additional side-conditions, which
will be utilised in the inductive step and that become weaker for larger k.

The condition that turned out to work for us says roughly the following: Suppose that
the index set I contains, besides the rk,M s-system X0 under discussion, also some further
sets X1, . . . , Xr´k that we know to be “well-attached” to X0 in the sense that we are given
for every x P X0 and every y P

Ť

jPrr´ksXj a vertex P xy P Pxy such that for all choices
x, x1 P X0 and y P

Ť

jPrr´ksXj the vertices P xy and P x1y have high pair-degree in Pxx1 (see
Definition 4.8 below). Note that this property would be given automatically for any choice
of P xy, if there would be no exceptional pairs in A in the sense of Definition 3.1.

This “well-attachedness” allows us to shrink the sets X1, . . . , Xr´k down to linearly-sized
subsets Y1, . . . , Yr´k of themselves, such that later on one can find the vertices P xx1

d of the
desired rk,ms-fortress in the neighbourhood of P xy and P x1y for all y P

Ť

jPrr´ks Yj. This
additional property will be crucial for the inductive construction of the fortress in the proof
of Proposition 4.10.
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Definition 4.8. Let X and Y be two disjoint subsets of the index set of a reduced
hypergraph A and suppose that d P r0, 1s. A d-admissible pX, Y q-selection is a collection

C “ tP xy
P Pxy : x P X and y P Y u

of vertices of A such that

‚ if x, x1 P X are distinct and y P Y , then the pair-degree of P xy and P x1y in Pxx1 is
at least d |Pxx1 |.

We remark that this notion of an admissible selection is not symmetric in X and Y , i.e.,
a d-admissible pX, Y q-selection C is not necessarily also a d-admissible pY,Xq-selection.

Our next immediate objective is to formulate and prove the first step of the induction
for k “ 1 (see Lemma 4.9 below) of the upcoming Proposition 4.10. As it turns out the
case k “ 1 is a bit simpler than the case of general k, because (i) the arising constants can
be calculated rather easily, (ii) one of the assumptions and consequently of the variables
turn out to be unnecessary when k “ 1, and (iii) the notion of a r1,ms-fortress is especially
simple. However, for later purposes it is better to prove a probabilistic strengthening of
the statement for k “ 1. For all these reasons, we deal with this case separately.

Lemma 4.9. Let integers r,m ě 2 and a real ε ą 0 be given. Assume further

‚ that X0, X1, . . . , Xr´1 are disjoint subsets of the index set of a reduced hypergraph A
with |X0| “ m,

‚ and that Cj “ tP xy : x P X0 and y P Xju is an
`

r´2
r´1 ` ε

˘

-admissible pX0, Xjq-
selection for every j P rr ´ 1s.

For a collection of vertices

C “
 

P xx1
P Pxx1 : x, x1 P X0 and x ‰ x1

(

and j P rr ´ 1s set

YjpC q “
 

y P Xj : tP xx1 , P xy, P x1y
u P EpAxx1y

q holds for all distinct x, x1 P X0
(

.

Then for a selection C chosen uniformly at random from
ś

x‰x1PX0
Pxx1 the events

|YjpC q| ě p
ε
2q
pm

2 q |Xj|

hold simultaneously for all j P rr ´ 1s with probability at least p ε2q
pm

2 q.

Proof. We commence by treating the case m “ 2 and X0 “ tx, x
1u, say. For each vertex

P xx1 P Pxx1 and each j P rr ´ 1s we set

YjpP
xx1
q “

 

y P Xj : tP xx1 , P xy, P x1y
u P EpAxx1y

q
(

.
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Notice that for every fixed j P rr ´ 1s we have
ÿ

Pxx1PPxx1

|YjpP
xx1
q| ě

`

r´2
r´1 ` ε

˘

|Pxx1
| |Xj|

owing to our admissibility assumption, and thus the set

Aj “ tP
xx1
P Pxx1 : |YjpP xx1

q| ě ε
2 |Xj|u

satisfies |Aj| ě
`

r´2
r´1 `

ε
2

˘

¨ |Pxx1 |. Consequently for their intersection A “
Ş

jPrr´1sAj we
obtain |A| ě pr´1qε

2 ¨ |Pxx1 | ě ε
2 |P

xx1 |. Hence, when P xx1 P Pxx1 gets chosen uniformly at
random, the event P xx1 P A happens with probability at least ε

2 . Thereby the case m “ 2
of our lemma is proved.

To obtain the general case we iterate this argument
`

m
2

˘

many times. This means that
we make a list e1, . . . , epm

2 q
of the two-element subsets of X0, say ei “ txi, x1iu. Now imagine

that rather than picking the vertices
 

P xix
1
i P Pxix

1
i : i P

`

m
2

˘(

simultaneously we would
pick them one by one, each choice being uniformly at random and independent from all
previous choices. For h “ 0, . . . ,

`

m
2

˘

let C h “ tP x1x11 , . . . , P xhx
1
hu and set

YjpC
h
q “

 

y P Xj : tP xix
1
i , P xiy, P x1iyu P EpAxix

1
iyq holds for all i P rhs

(

.

Thereby we get for every j P rr ´ 1s a sequence of sets

Xj “ YjpC
0
q Ě YjpC

1
q Ě . . . Ě YjpC p

m
2 qq “ Yj .

By the case m “ 2 of our lemma, for every h P
“`

m
2

˘‰

the event

Eh “
 

for every j P rr ´ 1s we have |YjpC h
q| ě ε

2 |YjpC
h´1
q|
(

has the property that

P
`

Eh |C h´1˘
ě ε

2

holds for every fixed choice of P x1,x11 , . . . , P xh´1,x
1
h´1 . It follows that the event E that all the

events E1, . . . , Ep
m
2 q happen has at least the probability p ε2q

pm
2 q. Moreover, since E implies

for every j P rr ´ 1s

|Yj| ě p
ε
2q
pm

2 q |Xj| ,

we are thereby done. �

The next and final Proposition tells what we can achieve in the k-th step of the proof
of Proposition 4.7. In particular, for the special case k “ r the second items in the
assumption and in the conclusion of Proposition 4.10 are void and the statement coincides
with Proposition 4.7.
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Proposition 4.10. Given any integers r,m ě 2, some k P rrs, and a real ε ą 0, there
exists an integer M and reals δ, η ą 0 such that the following holds:

Suppose

‚ that X0, X1, . . . , Xr´k are disjoint subsets of the index set of some
`

r´2
r´1 ` ε, δ,

˘

-
dense reduced hypergraph A, where X0 is a rk,M s-system,

‚ and that Cj “ tP xy : x P X0 and y P Xju is an
`

r´2
r´1 ` ε

˘

-admissible pX0, Xjq-
selection for j P rr ´ ks.

Then there are

‚ a rk,ms-subsystem Z0 Ď X0 carrying a rk,ms-fortress

F “
 

P zz1

d : z, z1 P Z0, z ‰ z1, and d P Qpz ^ z1q
(

‚ and sets Yj Ď Xj with |Yj| ě η |Xj| for j P rr ´ ks

such that for every distinct z, z1 P Z0, d P Qpz ^ z1q, and j P rr ´ ks we have

tP zz1

d , P zy, P z1y
u P EpAzz1y

q for every y P Yj, (11)

where P zy and P z1y are given by Cj.

Proof. We consider r and ε to be fixed and proceed by induction on k.
To deal with the base case k “ 1 let m ě 2 be given and set M “ m. Moreover, set

η “ p ε2q
pm

2 q. In this case the density assumption of A will not be utilised and, hence, δ ą 0
can be chosen arbitrarily. Then we are given disjoint subsets X0, X1, . . . , Xr´1 of the index
set of A, where X0 forms a r1,M s-system, and

`

r´2
r´1 ` ε

˘

-admissible pX0, Xjq-selections Cj

for j P rr ´ 1s.
Set Z0 “ X0 and by Lemma 4.9 applied with r, m, ε, X0, X1, . . . , Xr´1, and C1, . . . ,Cr´1

there exists a collection C of vertices P zz1

∅ P Pzz1 for distinct z, z1 P X0 and subsets Yj Ď Xj

with |Yj| ě η |Xj| for j P rr ´ 1s such that for every j P rr ´ 1s we have

tP zz1

∅ , P zy, P z1y
u P EpAzz1y

q

for all distinct z, z1 P X0, y P Yj, and P zy, P z1y P Cj.
Owing to k “ 1, the collection

F “
 

P zz1

∅ : z, z1 P X0 and z ‰ z1
(

is a r1,ms-fortress on X0 for trivial reasons (see Remark 4.4). As stated before, F has the
required property and this establishes the induction start.

For the induction step we suppose that 2 ď k ď r, and that the proposition is valid for
k´ 1 in place of k. Whenever we apply this case of Proposition 4.10 to some integer m ě 2
it returns an integer Mpmq and two positive reals called δpmq and ηpmq.
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From now on, we fix an integer m ě 2 for which we would like to complete the induction
step. We divide the argument into five parts.

Part I. Choice of the constants. To begin with, we define a decreasing sequence of
integers M0, . . . ,Mmpm´1q by backwards induction as follows:

Mmpm´1q “ m and Mh´1 “MpMhq `

S

pk ´ 1qMh

ηpMhq

W

for h P rmpm´ 1qs . (12)

We set M “M0 and define

η0 “ p
ε
2q
m2M2pk´1q and ηh “ ηh´1 ¨ ηpMhq for h P rmpm´ 1qs . (13)

Finally, let

δ “ min
` 

m´2M´3pk´1qη0
(

Y
 

δpMhq : h P rmpm´ 1qs
(˘

and η “ ηmpm´1q . (14)

We shall prove the proposition for this choice of the constants M , δ, and η.

Part II. The first level of the rk,ms-tree underlying Z0. Now let A, X0, . . . , Xr´k as
well as the

`

r´2
r´1 ` ε

˘

-admissible pX0, Xjq-selections Cj “ tP
xy P Pxy : x P X0 and y P Xju

for j P rr´ks be as described in the statement of the proposition. We denote the underlying
tree of the rk,M s-system X0 by T . Let

A Ď
 

a P T : |a| “ 1
(

of size |A| “ m

be an arbitrary subset. We intend to construct the rk,ms-tree underlying Z0 in such a way
that the direct continuations of its root is A.

For every a P A we set

Xa
0 “ tz : a ˝ z P X0u

and note that these sets are rk ´ 1,M s-systems. In Part IV we shall apply the induction
hypothesis (several times) to Xa

0 for every a P A, which then will lead to the desired
rk,ms-system Z0.

Strictly speaking, Xa
0 is not a subset of the index set I of A, which would be required

for the application of the induction hypothesis. However, in such situations we can simply
identify Xa

0 with tx̃ P X0 : x̃|1 “ au Ď I to circumvent this technicality and below we will
suppress this identification.

Part III. The selection of some vertices P a˝z,a1˝z1

∅ . Our next objective is to select the
elements P a˝z,a1˝z1

∅ , i.e., those labeled with ∅, of the desired fortress F . In view of the
conclusion of Proposition 4.10 we shall choose
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(i ) for any distinct a, a1 P A, z P Xa
0 , and z1 P Xa1

0 a vertex P a˝z,a1˝z1

∅ P Pa˝z,a1˝z1 such
that for all distinct a, a1 P A the set

 

P a˝z,a1˝z1

∅ : z P Xa
0 and z1 P Xa1

0
(

is a
`

r´2
r´1 ` ε

˘

-admissible pXa
0 , X

a1

0 q-selection.
(ii ) and subsets Y 0

j Ď Xj with |Y 0
j | ě η0 |Xj| for j P rr ´ ks

such that for all distinct a, a1 P A, z P Xa
0 , z1 P Xa1

0 and j P rr ´ ks we have
 

P a˝z,a1˝z1

∅ , P a˝z,y, P a1˝z1,y
(

P EpAa˝z,a1˝z1,y
q for every y P Y 0

j , (15)

where P a˝z,y and P a1˝z1,y are given by Cj.
We choose P a˝z,a1˝z1

∅ P Pa˝z,a1˝z1 independently and uniformly at random and below we
show that property (i ) holds with probability bigger than 1 ´ η0 and property (ii ) is
satisfied with probability at least η0.

Dealing with property (i ) first, we consider the set

K “
 

pta ˝ z, a ˝ z1u, b ˝ yq : a, b P A, a ‰ b, z, z1 P Xa
0 , z ‰ z1, and y P Xb

0
(

consisting of those combinations of indices for which property (i ) has to be checked. Since
|Xa

0 | “Mk´1 for all a P A and |A| “ m, we have

|K| “ mpm´ 1q
ˆ

Mk´1

2

˙

Mk´1
ă m2M3pk´1q . (16)

Moreover, in view of the
`

r´2
r´1 ` ε, δ,

˘

-denseness of A for each pta ˝ z, a ˝ z1u, b ˝ yq P K
the “bad event” Eabzz1y that the pair-degree of P a˝z,b˝y

∅ and P a˝z1,b˝y
∅ in Pa˝z,a˝z1 is smaller

than
`

r´2
r´1 ` ε

˘

|Pa˝z,a˝z1 | has probability at most δ. So the union bound together with (16)
and (14) yields

P
`

Eabzz1y occurs for some pta ˝ z, a ˝ z1u, b ˝ yq P K
˘

ď |K|δ ă η0 , (17)

which shows that with probability greater than 1 ´ η0 the random selection satisfies
property (i ).

Next we turn to property (ii ). For this it is convenient to introduce the set

L “
 

ta ˝ z, a1 ˝ z1u : a, a1 P A, a ‰ a1, z P Xa
0 , and z1 P Xa1

0
(

.

For j P rr ´ ks we consider the random subsets

Y 0
j “

 

y P Xj : tP a˝z,a1˝z1

∅ , P a˝z,y, P a1˝z1,y
u P EpAzz1y

q holds for all ta ˝ z, a1 ˝ z1u P L
(

,

where the randomness is induced by the random choice of P a˝z,a1˝z1

∅ P Pa˝z,a1˝z1 above.
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Now we apply Lemma 4.9 with r ´ k ` 1, mMk´1 and
Ť

aPAX
a
0 in place of r, m, and

X0 and with Xj and C 1
j “ tP

a˝x,y P Cj : a P A , x P Xa
0 , and y P Xju for j P rr ´ ks. It

follows from our choice of η0 in (13) that the event

E “
 

|Y 0
j | ě η0 |Xj| for every j P rr ´ ks

(

holds with probability at least η0. In fact, Lemma 4.9 is more general, but at this point we
only need it in this simpler form.

Now PpEq ě η0 combined with (17) implies that there are the vertices P a˝z,a1˝z1

∅ P Pa˝z,a1˝z1

satisfying both properties (i ) and (ii ) promised above.

Part IV. Inductive construction of subfortresses. Let ei “ pai, biq for i P rmpm´ 1qs
enumerate all ordered pairs of distinct elements from A. We will show that for every
nonnegative integer h ď mpm´ 1q the following statement is true:

p˚qh: There are
‚ for each a P A a sequence of sets

Za,h
Ď Za,h´1

Ď . . . Ď Za,0
“ Xa

0

with Za,i being a rk ´ 1,Mis-system for every nonnegative i ď h,
‚ and for each j P rr ´ ks a subset Y h

j Ď Y 0
j with |Y h

j | ě ηh |Xj|,
such that for each i P rhs the rk ´ 1,Mhs-system Zai,h carries a rk ´ 1,Mhs-fortress

F i,h
“
 

P ai˝z, ai˝z
1

bi˝d
: z, z1 P Zai,h, z ‰ z1, and d P Qpz ^ z1q

(

such that for every distinct z, z1 P Zai,h and d P Qpz ^ z1q we have
 

P ai˝z, ai˝z
1

bi˝d
, P ai˝z, bi˝w

∅ , P ai˝z
1, bi˝w

∅
(

P E
`

Aai˝z, ai˝z
1, bi˝w

˘

for every w P Zbi,h (18)

and for every j P rr ´ ks we have
 

P ai˝z, ai˝z
1

bi˝d
, P ai˝z, y, P ai˝z

1, y
(

P E
`

Aai˝z, ai˝z
1, y
˘

for every y P Y h
j . (19)

To show this we argue by induction on h. In the base case h “ 0 we have to take
Za,0 “ Xa

0 for all a P A and the sets Y 0
j obtained in Part III. The assertion about the

existence of fortresses holds vacuously.
Now suppose that some h P rmpm ´ 1qs is such that p˚qh´1 holds with Za,h´1 Ď Xa

0

for a P A, with Y h´1
j Ď Y 0

j for j P rr ´ ks, and with the rk ´ 1,Mis-fortresses F i,h´1 for
i P rh´1s. Now we apply the outer induction hypothesis from the proof of Proposition 4.10
with Mh in place of m

‚ to the rk ´ 1,Mh´1s-system Zah,h´1 (in place of X0) and the r ´ pk ´ 1q further
subsets Zbh,h´1, Y h´1

1 , . . . , Y h´1
r´k of I (in place of X1, . . . , Xr´pk´1q),
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‚ to the
`

r´2
r´1 ` ε

˘

-admissible pZah,h´1, Zbh,h´1q-selection
 

P ah˝z,bh˝z
1

∅ : z P Zah,h´1 and z1 P Zbh,h´1(

obtained in Part III, and for j P rr´ ks to the
`

r´2
r´1 ` ε

˘

-admissible pZah,h´1, Y h´1
j q-

selections
 

P ah˝z,y : z P Zah,h´1 and y P Y h´1
j

(

Ď Cj

provided by the assumption.

Since Mh´1 ěMpMhq holds by (12), this yields in particular

‚ a rk ´ 1,Mhs-system Zah,h Ď Zah,h´1 carrying a rk ´ 1,Mhs-fortress

F h,h
“
 

P ah˝z, ah˝z
1

bh˝d
: z, z1 P Zah,h, z ‰ z1, and d P Qpz ^ z1q

(

,

‚ a subset W Ď Zbh,h´1 and subsets Y h
j Ď Y h´1

j for j P rr ´ ks with

|W | ě ηpMhq |Mh´1|
k´1 and |Y h

j | ě ηpMhq |Y
h´1
j | , (20)

such that for every distinct z, z1 P Zah,h and d P Qpz ^ z1q we have
 

P ah˝z, ah˝z
1

bh˝d
, P ah˝z, bh˝w

∅ , P ah˝z
1, bh˝w

∅
(

P E
`

Aah˝z, ah˝z
1, bh˝w

˘

for every w P W (21)

and for every j P rr ´ ks we have
 

P ah˝z, ah˝z
1

bh˝d
, P ah˝z,y, P ah˝z

1,y
(

P E
`

Aah˝z, ah˝z
1, y
˘

for every y P Y h
j . (22)

Now we are ready to define the remaining entities verifying p˚qh. Recall that we have
already obtained the rk ´ 1,Mhs-system Zah,h, the sets Y h

j for j P rr ´ ks, and the
fortress F h,h. Note that (12) yields ηpMhqMh´1{pk ´ 1q ěMh.

Thus Lemma 4.2 applied with k ´ 1 and Mh´1 to the rk ´ 1,Mh´1s-system Zbh,h´1

and W Ď Zbh,h´1 which has size ηpMhq|Mh´1|
k´1 (see (20)) tells us that there exists a

rk ´ 1,Mhs-system Zbh,h Ď W .
Finally, for definiteness (somewhat wastefully) for any c P A r tah, bhu we let Zc,h be

an arbitrary rk ´ 1,Mhs-subsystem of Zc,h´1 and for i P rh ´ 1s we let F i,h denote the
“restriction” of F i,h´1 to Zai,h.

It remains to check that we have indeed met all conditions mentioned in p˚qh. That
Za,h Ď Za,h´1 holds for every a P A follows from our construction. Due to the choice of Y h

j ,
the description of Y h´1

j in p˚qh´1, and (13) we have

|Y h
j |

(20)
ě ηpMhq |Y

h´1
j | ě ηpMhqηh´1 |Xj| “ ηh |Xj|

for every j P rr ´ ks. The statements (18) and (19) hold for i ‰ h by p˚qh´1 and for i “ h

by (21) and (22) respectively. This concludes the proof of p˚qh.
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Part V. Conclusion of the argument. We will show that the statement p˚qmpm´1q from
Part IV yields the conclusion of the proposition. For that set Za “ Za,mpm´1q for a P A, and
Yj “ Y

mpm´1q
j for j P rr ´ ks. It follows from Mmpm´1q “ m that Za is a rk ´ 1,ms-system

for each a P A and consequently the set

Z0 “
 

a ˝ z : a P A and z P Za
(

is a rk,ms-system. Moreover, a quick thought reveals that the collection of vertices

F “
 

P a˝z,a1˝z1

∅ : a, a1 P A, a ‰ a1, z P Za and z1 P Za1
(

Y
 

P a˝z,a˝z1

b˝d : a, b P A, a ‰ b, z, z1 P Za, z ‰ z1, and d P Qpz ^ z1q
(

has the correct index structure for being a fortress on Z0. To see that F actually is a
fortress we need to verify the axiom (F ); if s “ 0 it follows from (18) and for s ą 0 it
follows from all the F i,mpm´1q with i P rmpm´ 1qs being fortresses.

We contend that the system Z0, the fortress F , and the sets Yj with j P rr ´ ks are as
desired. The latter are large enough because of η “ ηmpm´1q and p˚qmpm´1q. Finally (11)
was obtained in (15) for z|1 ‰ z1|1 and otherwise in (19). This completes the induction
step and thus the proof of Proposition 4.10. �
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