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Abstract. We investigate minimum vertex degree conditions for 3-uniform hypergraphs
which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning
cycle in which only consecutive edges intersect and these intersections consist of precisely
one vertex.

We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum ver-
tex degree δ1pHq ě

` 7
16 ` op1q

˘ `

n
2
˘

contains a loose Hamilton cycle. This bound is
asymptotically best possible.

§1. Introduction

We consider k-uniform hypergraphs H “ pV,Eq with vertex sets V “ V pHq and edge
sets E “ EpHq Ď

`

V
k

˘

, where
`

V
k

˘

denotes the family of all k-element subsets of the
set V . We often identify a hypergraph H with its edge set, i.e., H Ď

`

V
k

˘

, and for an
edge tv1, . . . , vku P H we often suppress the enclosing braces and write v1 . . . vk P H
instead. Given a k-uniform hypergraph H “ pV,Eq and a set S “ tv1, . . . , vsu P

`

V
s

˘

let degpSq “ degpv1, . . . , vsq denote the number of edges of H containing the set S and
let NpSq “ Npv1, . . . , vsq denote the set of those pk ´ sq-element sets T P

`

V
k´s

˘

such
that S Y T forms an edge in H. We denote by δspHq the minimum s-degree of H, i.e., the
minimum of degpSq over all s-element sets S Ď V . For s “ 1 the corresponding minimum
degree δ1pHq is referred to as minimum vertex degree whereas for s “ k ´ 1 we call the
corresponding minimum degree δk´1pHq the minimum collective degree of H.

We study sufficient minimum degree conditions which enforce the existence of spanning,
so-called Hamilton cycles. A k-uniform hypergraph C is called an `-cycle if there is a cyclic
ordering of the vertices of C such that every edge consists of k consecutive vertices, every
vertex is contained in an edge and two consecutive edges (where the ordering of the edges
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is inherited by the ordering of the vertices) intersect in exactly ` vertices. For ` “ 1 we
call the cycle loose whereas the cycle is called tight if ` “ k ´ 1. Naturally, we say that a
k-uniform, n-vertex hypergraph H contains a Hamilton `-cycle if there is a subhypergraph
of H which forms an `-cycle and which covers all vertices of H. Note that a Hamilton
`-cycle contains exactly n{pk ´ `q edges, implying that the number of vertices of H must
be divisible by pk ´ `q which we indicate by n P pk ´ `qN.

Minimum collective degree conditions which ensure the existence of tight Hamilton
cycles were first studied in [6] and in [12, 13]. In particular, in [12, 13] Rödl, Ruciński, and
Szemerédi found asymptotically sharp bounds for this problem.

Theorem 1. For every k ě 3 and γ ą 0 there exists an n0 such that every k-uniform
hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with δk´1pHq ě p1{2 ` γqn contains a
tight Hamilton cycle. �

The corresponding question for loose cycles was first studied by Kühn and Osthus.
In [10] they proved an asymptotically sharp bound on the minimum collective degree which
ensures the existence of loose Hamilton cycles in 3-uniform hypergraphs. This result was
generalised to higher uniformity by the last two authors [4] and independently by Keevash,
Kühn, Osthus and Mycroft in [7].

Theorem 2. For all integers k ě 3 and every γ ą 0 there exists an n0 such that every
k-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P pk ´ 1qN and
δk´1pHq ě p 1

2pk´1q ` γqn contains a loose Hamilton cycle. �

Indeed, in [4] asymptotically sharp bounds for Hamilton `-cycles for all ` ă k{2 were
obtained. Later this result was generalised to all 0 ă ` ă k by Kühn, Mycroft, and
Osthus [9]. These results are asymptotically best possible for all k and 0 ă ` ă k. Hence,
asymptotically, the problem of finding Hamilton `-cycles in uniform hypergraphs with large
minimum collective degree is solved.

We focus on minimum vertex degree conditions which ensures the existence of Hamilton
cycles. For δ1pHq very few results on spanning subhypergraphs are known (see e.g. [3, 11]).
In this paper we give an asymptotically sharp bound on the minimum vertex degree in
3-uniform hypergraphs which enforces the existence of loose Hamilton cycles.

Theorem 3 (Main result). For all γ ą 0 there exists an n0 such that the following holds.
Suppose H is a 3-uniform hypergraph on n ą n0 with n P 2N and

δ1pHq ą
ˆ

7
16 ` γ

˙ˆ

n

2

˙

.

Then H contains a loose Hamilton cycle.
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In the proof we apply the so-called absorbing technique. In [12] Rödl, Ruciński, and
Szemerédi introduced this elegant approach to tackle minimum degree problems for spanning
graphs and hypergraphs. In our case it reduces the problem of finding a loose Hamilton
cycle to the problem of finding a nearly spanning loose path and indeed, finding such a
path will be the main obstacle to Theorem 3.

As mentioned above, Theorem 3 is best possible up to the error constant γ as seen by
the following construction from [10].

Fact 4. For every n P 2N there exists a 3-uniform hypergraph H3 “ pV,Eq on |V | “ n

vertices with δ1pH3q ě
7
16
`

n
2
˘

´Opnq, which does not contain a loose Hamilton cycle.

Proof. Consider the following 3-uniform hypergraph H3 “ pV,Eq. Let A Ÿ B “ V be a
partition of V with |A| “ tn4 u´ 1 and let E be the set of all triplets from V with at least
one vertex in A. Clearly, δ1pH3q “

`|A|
2
˘

` |A|p|B| ´ 1q “ 7
16
`

n
2
˘

´ Opnq. Now consider
an arbitrary cycle in H3. Note that every vertex, in particular every vertex from A, is
contained in at most two edges of this cycle. Moreover, every edge of the cycle must
intersect A. Consequently, the cycle contains at most 2|A| ă n{2 edges and, hence, cannot
be a Hamilton cycle. �

We note that the construction H3 in Fact 4 satisfies δ2pH3q ě n{4´ 1 and indeed, the
same construction proves that the minimum collective degree condition given in Theorem 2
is asymptotically best possible for the case k “ 3.

This leads to the following conjecture for minimum vertex degree conditions enforcing
loose Hamilton cycles in k-uniform hypergraphs. Let k ě 3 and let Hk “ pV,Eq be the
k-uniform, n-vertex hypergraph on V “ A ŸB with |A| “ n

2pk´1q ´ 1. Let E consist of all
k-sets intersecting A in at least one vertex. Then Hk does not contain a loose Hamilton
cycle and we believe that any k-uniform, n-vertex hypergraph H which has minimum
vertex degree δ1pHq ě δ1pHkq ` opn

2q contains a loose Hamilton cycle. Indeed, Theorem 3
verifies this for the case k “ 3.

§2. Proof of the main result

The proof of Theorem 3 will be given in Section 2.3. It uses several auxiliary lemmas
which we introduce in Section 2.2. We start with an outline of the proof.

2.1. Outline of the proof. We will build a loose Hamilton cycle by connecting loose
paths. Formally, a 3-uniform hypergraph P is a loose path if there is an ordering pv1, . . . , vtq

of its vertices such that every edge consists of three consecutive vertices, every vertex
is contained in an edge and two consecutive edges intersect in exactly one vertex. The
elements v1 and vt are called the ends of P .
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The Absorbing Lemma (Lemma 7) asserts that every 3-uniform hypergraph H “ pV,Eq

with sufficiently large minimum vertex degree contains a so-called absorbing loose path P ,
which has the following property: For every set U Ă V rV pPq with |U | P 2N and |U | ď βn

(for some appropriate 0 ă β ă γ) there exists a loose path Q with the same ends as P,
which covers precisely the vertices V pPq Y U .

The Absorbing Lemma reduces the problem of finding a loose Hamilton cycle to the
simpler problem of finding an almost spanning loose cycle, which contains the absorbing
path P and covers at least p1 ´ βqn of the vertices. We approach this simpler problem
as follows. Let H1 be the induced subhypergraph H, which we obtain after removing the
vertices of the absorbing path P guaranteed by the Absorbing Lemma. We remove from H1

a “small” set R of vertices, called the reservoir (see Lemma 6), which has the property
that many loose paths can be connected to one loose cycle by using the vertices of R only.

Let H2 be the remaining hypergraph after removing the vertices from R. We will
choose P and R small enough, so that δ1pH2q ě p 7

16 ` op1qq|
`

V pH2q|
2

˘

. The third auxiliary
lemma, the Path-tiling Lemma (Lemma 10), asserts that all but opnq vertices of H2 can be
covered by a family of pairwise disjoint loose paths and, moreover, the number of those
paths will be constant (independent of n). Consequently, we can connect those paths
and P to form a loose cycle by using exclusively vertices from R. This way we obtain a
loose cycle in H, which covers all but the opnq left-over vertices from H2 and some left-over
vertices from R. We will ensure that the number of those yet uncovered vertices will be
smaller than βn and, hence, we can appeal to the absorption property of P and obtain a
Hamilton cycle.

As indicated earlier, among the auxiliary lemmas mentioned above the Path-tiling Lemma
is the only one for which the full strength of the condition p 7

16 ` op1qq
`

n
2
˘

is required and
indeed, we consider Lemma 10 to be the main obstacle to proving Theorem 3. For the
other lemmas we do not attempt to optimise the constants.

2.2. Auxiliary lemmas. In this section we introduce the technical lemmas needed for
the proof of the main theorem.

We start with the connecting lemma which is used to connect several “short” loose
paths to a long one. Let H be a 3-uniform hypergraph and pai, biqiPrks a set consisting
of k mutually disjoint pairs of vertices. We say that a set of triples pxi, yi, ziqiPrks connects
pai, biqiPrks if

‚
ˇ

ˇ

Ť

iPrkstai, bi, xi, yi, ziu
ˇ

ˇ “ 5k, i.e. the pairs and triples are all disjoint,
‚ for all i P rks we have tai, xi, yiu, tyi, zi, biu P H.
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Suppose that a and b are ends of two disjoint loose paths not intersecting tx, y, zu and
suppose that px, y, zq connects pa, bq. Then this connection would join the two paths to
one loose path. The following lemma states that several paths can be connected, provided
the minimum vertex degree is sufficiently large.

Lemma 5 (Connecting lemma). Let γ ą 0, let m ě 1 be an integer, and let H “ pV,Eq

be a 3-uniform hypergraph on n vertices with δ1pHq ě
`1

4 ` γ
˘ `

n
2
˘

and n ě γm{12.
For every set pai, biqiPrms of mutually disjoint pairs of distinct vertices, there exists a set

of triples pxi, yi, ziqiPrms connecting pai, biqiPrms.

Proof. We will find the triples pxi, yi, ziq to connect ai with bi for i P rms inductively as
follows. Suppose, for some j ă k the triples pxi, yi, ziq with i ă j are constructed so far
and for pa, bq “ paj, bjq we want to find a triple px, y, zq to connect a and b. Let

U “ V r
ˆ m
ď

i“1
tai, biu Y

j´1
ď

i“1
txi, yi, ziu

˙

and for a vertex u P V let Lu “ pV r tuu, Euq be the link graph of v defined by

Eu “ tvw : uvw P EpHqu .

We consider LarU s and LbrU s, the subgraphs of La and Lb induced on U . Owing to the
minimum degree condition of H and to the assumption m ď γn{12, we have

epLarU sq ě

ˆ

1
4 ` γ

˙ˆ

n

2

˙

´ 5mpn´ 1q ě
ˆ

1
4 `

γ

6

˙ˆ

n

2

˙

(1)

and the same lower bound also holds for epLbrU sqq. Note that any pair of edges xy P LarU s
and yz P LbrU s with x ‰ z leads to a connecting triple px, y, zq for pa, bq. Thus, if no
connecting triple exists, then for every vertex u P U one of the following must hold: either u
is isolated in LarU s or LbrU s or it is adjacent to exactly one vertex w in both graphs LarU s
and LbrU s. In other words, any vertex not isolated in LarU s has at most one neighbour
in LbrU s. Let Ia be the set of isolated vertices in LarU s. Since epLarU sq ą 1

4
`

n
2
˘

we have
|Ia| ă n{2. Consequently,

epLbrU sq ď

ˆ

|Ia|

2

˙

` |tuw P EpLbrU sq : u P U r Iau|

ď

ˆ

|Ia|

2

˙

` p|U | ´ |Ia|q ă

ˆ

tn{2u

2

˙

` n .

Using γ ď 3{4 and n ě γ{12 we see that this upper bound violates the lower bound
on epLbrU sq from (1). �
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When connecting several paths to a long one we want to make sure that the vertices
used for the connection all come from a small set, called reservoir, which is disjoint to the
paths. The existence of such a set is guaranteed by the following.

Lemma 6 (Reservoir lemma). For all 0 ă γ ă 1{4 there exists an n0 such that for
every 3-uniform hypergraph H “ pV,Eq on n ą n0 vertices with minimum vertex degree
δ1pHq ě

`1
4 ` γ

˘ `

n
2
˘

there is a set R of size at most γn with the following property: For
every system pai, biqiPrks consisting of k ď γ3n{12 mutually disjoint pairs of vertices from V

there is a triple system connecting pai, biqiPrks which, moreover, contains vertices from R

only.

Proof. We shall show that a random set R has the required properties with positive
probability. For this proof we use some exponential tail estimates. Here we will follow a
basic technique described in [5, Section 2.6]. Alternatively Lemma 6 could be deduced
more directly from Janson’s inequality.

For given 0 ă γ ă 1{4 let n0 be sufficiently large. Let H be as stated in the lemma and
v P V pHq. Let Lpvq be the link graph defined on the vertex set V pHqr tvu, having the
edges e P EpLpvqq if eY tvu P H. Note that Lpvq contains degHpvq edges. Since the edge
set of the omplete graph Kn can be decomposed into n ´ 1 edge disjoint matchings, we
can decompose the edge set of L into i0 “ i0pvq ă n pairwise edge disjoint matchings. We
denote these matchings by M1pvq, . . . ,Mi0pvq.

We randomly choose a vertex set Vp from V by including each vertex u P V into Vp with
probability p “ γ ´ γ3 independently. For every i P ri0s let

Xipvq “
ˇ

ˇ

ˇ
Mipvq X

ˆ

Vp
2

˙

ˇ

ˇ

ˇ

denote the number of edges e P Mipvq contained in Vp. This way Xipvq is a binomially
distributed random variable with parameters |Mipvq| and p2. Using the following Chernoff
bounds for t ą 0 (see, e.g., [5, Theorem 2.1])

P pBinpm, ζq ě mζ ` tq ă e´t
2{p2ζm`t{3q (2)

P pBinpm, ζq ď mζ ´ tq ă e´t
2{p2ζmq (3)

we see that

γ
n

2 ď |Vp| ď pn` p3n ln 20q1{2 ď γn´ 2k (4)

with probability at least 9{10.
Further, using (3) and |Mipvq| ď n{2 we see that with probability at most n´2 there exists

an index i P ri0s such that Xipvq ď |Mipvq|p
2´p3n lnnq1{2. Using

ř

iPri0s |Mipvq| “ degHpvq
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and recalling that degVp
pvq denotes the degree of v in HrVp Y tvus we obtain that

degVp
pvq “

ÿ

iPri0s
Xipvq ě p2 degHpvq ´ np3n lnnq1{2 , (5)

holds with probability at least 1´ n´2.
Repeating the same argument for every vertex v P V we infer from the union bound

that (5) holds for all vertices v P V simultaneously with probability at least 1´ 1{n. Hence,
with positive probability we obtain a set R satisfying (4) and (5) for all v P V .

Let pai, biqiPrks be given and let S “
Ť

iPrkstai, biu. Then we have |R Y S| ď γn and

degRYSpvq ě degRpvq ě
ˆ

1
4 ` γ

2
˙ˆ

γn

2

˙

ě

ˆ

1
4 ` γ

2
˙ˆ

|R Y S|

2

˙

for all v P V . Thus, we can appeal to the Connecting Lemma (Lemma 5) to obtain a triple
system which connects pai, biqiPrks and which consists of vertices from R only. �

Next, we introduce the Absorbing Lemma which asserts the existence of a “short” but
powerful loose path P which can absorb any small set U Ă V r V pPq. In the following
note that

`5
8
˘2
ă 7

16 .

Lemma 7 (Absorbing lemma). For all γ ą 0 there exist β ą 0 and n0 such that the
following holds. Let H “ pV,Eq be a 3-uniform hypergraph on n ą n0 vertices which
satisfies δ1pHq ě

`5
8 ` γ

˘2 `n
2
˘

. Then there is a loose path P with |V pPq| ď γ7n such
that for all subsets U Ă V r V pPq of size at most βn and |U | P 2N there exists a loose
path Q Ă H with V pQq “ V pPq Y U and P and Q have exactly the same ends.

The principle used in the proof of Lemma 7 goes back to Rödl, Ruciński, and Szemerédi.
They introduced the concept of absorption, which, roughly speaking, stands for a local
extension of a given structure, which preserves the global structure. In our context of loose
cycle we say that a 7-tuple pv1, . . . , v7q absorbs the two vertices x, y P V if

‚ v1v2v3, v3v4v5, v5v6v7 P H and
‚ v2xv4, v4yv6 P H

are guaranteed. In particular, pv1, . . . , v7q and pv1, v3, v2, x, v4, y, v6, v5, v7q both form loose
paths which, moreover, have the same ends. The proof of Lemma 7 relies on the following
result which states that for each pair of vertices there are many 7-tuples absorbing this
pair, provided the minimum vertex degree of H is sufficiently large.

Proposition 8. For every γ P p0, 3{8q there exists an n0 such that the following holds.
Suppose H “ pV,Eq is a 3-uniform hypergraph on n ą n0 vertices with δ1pHq ě

`5
8 ` γ

˘2 `n
2
˘

.
Then for every pair of vertices x, y P V the number of 7-tuples absorbing x and y is at
least pγnq7{8.
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Proof. For given γ ą 0 we choose n0 “ 168{γ7. First we show the following.

Claim 9. For every pair x, y P V pHq of vertices there exists a set D “ Dpx, yq Ă V of
size |D| “ γn such that one of the following holds:

‚ degpx, dq ě γn and degpy, dq ě 3
8n for all d P D or

‚ degpy, dq ě γn and degpx, dq ě 3
8n for all d P D.

Proof of Claim 9. By assuming the contrary there exist two vertices x and y such that no
set D “ Dpx, yq fulfills Claim 9.

Let Apzq “ td P V : degpz, dq ă γnu and let a “ |Apxq|{n and b “ |Apyq|{n. Without
loss of generality we assume a ď b. There are at most pa` γqn vertices v P V satisfying
degpy, vq ě 3

8n. Let Bpyq “ tv P V : degpy, vq ě 3n{8u and note that |Bpyq| ă pa ` γqn.
Hence, the number of ordered pairs pu, vq such that u P Bpyq and tu, v, yu P H is at most

|Bpyq|pn´ |Apyq|q ` |Apyq|γn ď pa` γqp1´ bqn2
` bγn2.

Consequently, with 2 degpyq being the number of ordered pairs pu, vq such that tu, v, yu P H
we have

˜

ˆ

5
8

˙2

`
9γ
8

¸

n2
ď 2 degpyq ď p1´ b´ a´ γq38n

2
` pa` γqp1´ bqn2

` 2bγn2

ď
n2

8 p5a´ 3b´ 8abq ` p3` 8γqn2

8 ,

Hence, we obtain
˜

ˆ

5
8

˙2

`
9γ
8

¸

n2
ď 2 degpyq ď 3n2

8 p1´ bq ` pa` γq
ˆ

5
8 ´ b

˙

n2
` 2bγn2

ď
n2

8 p5a´ 3b´ 8abq ` p3` 8γqn2

8 ,

where in the last inequality we use the fact that b ď 3{8 which is a direct consequence of
the condition on δ1pHq. It is easily seen that this maximum is attained by a “ b “ 1{8, for
which we would obtain

degpyq ď
˜

ˆ

5
8

˙2

` γ

¸

n2,

a contradiction. �

We continue the proof of Proposition 8. For a given pair x, y P V we will select the tuple
v1, . . . , v7 such that the edges

‚ v1v2v3, v3v4v5, v5v6v7 P H and
‚ v2xv4, v4yv6 P H
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are guaranteed. Note that pv1, . . . , v7q forms a loose path with the ends v1 and v7 and
pv1, v3, v2, x, v4, y, v6, v5, v7q also forms a loose path with the same ends, showing that
pv1, . . . , v7q is indeed an absorbing tuple for the pair a, b. Moreover, we will show that the
number of choices for each vi will give rise to the number of absorbing tuples stated in the
proposition.

First, we want to choose v4 and let Dpx, yq be a set with the properties stated in Claim 9.
Without loss of generality we may assume that |Npy, dq| ě 3

8n for all d P Dpx, yq. Fixing
some v4 P Dpx, yqWe choose v2 P Npx, v4q for which there are γn choices. This gives rise to
to hyperegde v2xv4 P H. and applying Claim 9 to v2 and v4 we obtain a set Dpv2, v4q with
the properties stated in Claim 9 and we choose v3 P Dpv2, v4q. We choose v1 P Npv2, v3q to
obtain the edge v1v2v3 P H. Note that |Npv2, v3q| ě γn. Next, we choose v5 from Npv3, v4q

which has size |Npv3, v4q| ě γn. This gives rise to the edge v3v4v5 P H. We choose v6

from the set Npy, v4q with the additional property that degpv5, v6q ě γn{2. Hence, we
obtain v4yv6 P H and we claim that there are at least γn{2 such choices. Otherwise at
least p|Npy, v4q| ´ γn{2q vertices v P V satisfy degpv5, vq ă γn{2, hence

degpv5q ă
3γ
16n

2
`

ˆ

p5
8 `

γ
2 qn

2

˙

ă δpHq,

which is a contradiction. Lastly we choose v7 P Npv5, v6q to obtain the edge v5v6v7 P H
which completes the absorbing tuple pv1, . . . , v7q.

The number of choices for v1, . . . , v7 is at least pγnq7{4 and there are at most
`7

2
˘

n6

choices such that vi “ vj for some i ‰ j. Hence, we obtain at least pγnq7{8 absorbing
7-tuples for the pair x, y. �

With Proposition 8 and the connecting lemma (Lemma 5) at hand the proof of the
absorbing lemma follows a scheme which can be found in [4, 12]. We choose a family F of
7-tuples by selecting each 7-tuples with probability p “ γ7n´6{448 independently. Then, it
is easily shown that with non-zero probability the family F satisfies

‚ |F | ď γ7n{12,
‚ for all pairs x, y P V there are at least pγ7n7{16 tuples in F which absorbs x, y
‚ the number of intersecting pairs of 7-tuples in F is at most pγ7n7{32

We eliminate intersecting pairs of 7-tuples by deleting one tuple for each such pair. By
definition each for the remaining 7-tuples pvi1, . . . , vi7qiPrks with k ď γ7n{12 forms a loose
path with ends vi1 and vi7 and appealing to Lemma 5 we can connect them to one loose
path which can absorb any pγ7n7{32 “ β pairs of vertices, proving the lemma. To avoid
unnecessary calculations we omit the details here. �
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The next lemma is the main obstacle when proving Theorem 3. It asserts that the vertex
set of a 3-uniform hypergraph H with minimum vertex degree δ1pHq ě

` 7
16 ` op1q

˘ `

n
2
˘

can
be almost perfectly covered by a constant number of vertex disjoint loose paths.

Lemma 10 (Path-tiling lemma). For all γ ą 0 and α ą 0 there exist integers p and n0

such that for n ą n0 the following holds. Suppose H is a 3-uniform hypergraph on n vertices
with minimum vertex degree

δ1pHq ě
ˆ

7
16 ` γ

˙ˆ

n

2

˙

.

Then there is a family of p disjoint loose paths in H which covers all but at most αn vertices
of H.

The proof of Lemma 10 uses the weak regularity lemma for hypergraphs and will be
given in Section 3.

2.3. Proof of the main theorem. In this section we give the proof of the main result,
Theorem 3. The proof is based on the three auxiliary lemmas introduced in Section 2.2
and follows the outline given in Section 2.1.

Proof of Theorem 3. For given γ ą 0 we apply the Absorbing Lemma (Lemma 7) with γ{8
to obtain β ą 0 and n7. We apply the Reservoir Lemma (Lemma 6) for γ1 “ mintβ{3, γ{8u
to obtain n6 which is n0 of Lemma 6. Finally, we apply the Path-tiling Lemma (Lemma 10)
with γ{2 and α “ β{3 to obtain p and n10. The n0 of Theorem 3 is chosen by

n0 “ maxtn7, 2n6, 2n10, 24pp` 1q{γ1 3u.

Now let n ě n0, n P 2N and let H “ pV,Eq be a 3-uniform hypergraph on n vertices
with

δ1pHq ě
ˆ

7
16 ` γ

˙ˆ

n

2

˙

.

Let P0 Ă H be the absorbing path guaranteed by Lemma 7. Let a0 and b0 be the ends
of P0 and note that

|V pP0q| ď γ1n ă γn{8 .

Moreover, the path P0 has the absorption property, i.e., for all U Ă V r V pP0q with
|U | ď βn and |U | P 2N there exists

a loose path Q Ă H s.t. V pQq “ V pP0q Y U and Q has the ends a0 and b0. (6)

Let V 1 “ pV r V pP0qq Y ta0, b0u and let H1 “ HrV 1s “ pV 1, EpHq X
`

V 1

3
˘

q be the induced
subhypergraph of H on V 1. Note that δ1pH1q ě p 7

16 `
3
4γq

`

n
2
˘

.
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Due to Lemma 6 we can choose a set R Ă V 1 of size at most γ1|V 1| ď γ1n such that for
every system consisting of at most pγ1q3|V 1|{12 mutually disjoint pairs of vertices from V

can be connected using vertices from R only.
Set V 2 “ V r pV pP0q Y Rq and let H2 “ HrV 2s be the induced subhypergraph of H

on V 2. Clearly,

δpH2
q ě

ˆ

7
16 `

γ

2

˙ˆ

n

2

˙

Consequently, Lemma 10 applied to H2 (with γ10 and α) yields a loose path tiling of H2

which covers all but at most α|V 2| ď αn vertices from V 2 and which consists of at most p
paths. We denote the set of the uncovered vertices in V 2 by T . Further, let P1,P2 . . . ,Pq

with q ď p denote the paths of the tiling. By applying the reservoir lemma appropriately
we connect the loose paths P0,P1, . . . ,Pq to one loose cycle C Ă H.

Let U “ V rV pCq be the set of vertices not covered by the cycle C. Since U Ď RYT we
have |U | ď pα`γ6qn ď βn. Moreover, since C is a loose cycle and n P 2N we have |U | P 2N.
Thus, using the absorption property of P0 (see (6)) we can replace the subpath P0 in C by
a path Q (since P0 and Q have the same ends) and since V pQq “ V pP0q Y U the resulting
cycle is a loose Hamilton cycle of H. �

§3. Proof of the Path-tiling Lemma

In this section we give the proof of the Path-tiling Lemma, Lemma 10. Lemma 10 will
be derived from the following lemma. Let M be the 3-uniform hypergraph defined on the
vertex set t1, . . . , 8u with the edges 123, 345, 456, 678 P M. We will show that the condition
δ1pHq ě

` 7
16 ` op1q

˘ `

n
2
˘

will ensure an almost perfect M-tiling of H, i.e., a family of vertex
disjoint copies of M, which covers almost all vertices.

Lemma 11. For all γ ą 0 and α ą 0 there exists n0 such that the following holds. Suppose
H is a 3-uniform hypergraph on n ą n0 vertices with minimum vertex degree

δ1pHq ě
ˆ

7
16 ` γ

˙ˆ

n

2

˙

.

Then there is an M-tiling of H which covers all but at most αn vertices of H.

The proof of Lemma 11 requires the regularity lemma which we introduce in Section 3.1.
Sections 3.2 and 3.3 are devoted to the proof of Lemma 11 and finally, in Section 3.4, we
deduce Lemma 10 from Lemma 11 by making use of the regularity lemma.

3.1. The weak regularity lemma and the cluster hypergraph. In this section we
introduce the weak hypergraph regularity lemma, a straightforward extension of Szemerédi’s
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regularity lemma for graphs [15]. Since we only apply the lemma to 3-uniform hypergraphs
we will restrict the introduction to this case.

Let H “ pV,Eq be a 3-uniform hypergraph and let A1, A2, A3 be mutually disjoint
non-empty subsets of V . We define epA1, A2, A3q to be the number of edges with one vertex
in each Ai, i P r3s, and the density of H with respect to pA1, A2, A3q as

dpA1, A2, A3q “
eHpA1, A2, A3q

|A1||A2||A3|
.

We say the triple pV1, V2, V3q of mutually disjoint subsets V1, V2, V3 Ď V is pε, dq-regular,
for constants ε ą 0 and d ě 0, if

|dpA1, A2, A3q ´ d| ď ε

for all triple of subsets Ai Ă Vi, i P r3s, satisfying |Ai| ě ε|Vi|. The triple pV1, V2, V3q is
called ε-regular if it is pε, dq-regular for some d ě 0. It is immediate from the definition
that an pε, dq-regular triple pV1, V2, V3q is pε1, dq-regular for all ε1 ą ε and if V 1i Ă Vi has
size |V 1i | ě c|Vi|, then pV 11 , V 12 , V 13q is pε{c, dq-regular.

Next we show that regular triples can be almost perfectly covered by copies of M
provided the sizes of the partition classes obey certain restrictions. First note that M is a
subhypergraph of a tight path. The latter is defined similarly to a loose path, i.e. there is
an ordering pv1, . . . , vtq of the vertices such that every edge consists of three consecutive
vertices, every vertex is contained in an edge and two consecutive edges intersect in exactly
two vertices.

Proposition 12. Suppose H is a 3-uniform hypergraph on m vertices with at least dm3

edges. Then there is a tight path in H which covers at least 2pdm`1q vertices. In particular,
if H is 3-partite with the partition classes V1, V2, V3 and 2dm ą 10 then for each i P r3s
there is a copy of M in H which intersects Vi in exactly two vertices and the other partition
classes in three vertices.

Proof. Starting from H we remove all edges containing u, v for each pair u, v P V of
vertices such that 0 ă degpu, vq ă 2dm. We keep doing this until every pair u, v satisfies
degpu, vq “ 0 or degpu, vq ě 2dm in the current hypergraph H1. Since less than

ˆ

m

2

˙

¨ 2dm ă dm3
ď epHq

edges were removed during the process we know that H1 is not empty. Hence we can pick
a maximal non-empty tight path pv1, v2, . . . , vtq in H1. Since the pair v1, v2 is contained in
an edge in H1 it is contained in 2dm edges and since the path was chosen to be maximal all
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these vertices must lie in the path. Hence, the chosen tight path contains at least 2pdm`1q
vertices. This completes the first part of the proof.

For the second part, note that there is only one way to embed a tight path into a 3-partite
3-uniform hypergraph once the two starting vertices are fixed. Since M is a subhypergraph
of the tight path on eight vertices we obtain the second part of the statement by possibly
deleting up to two starting vertices. �

Proposition 13. Suppose the triple pV1, V2, V3q is pε, dq-regular with d ě 2ε and suppose
the sizes of the partition classes satisfy

m “ |V1| ě |V2| ě |V3| with 5|V1| ď 3p|V2| ` |V3|q (7)

and 2ε2m ą 7. Then there is an M-tiling of pV1, V2, V3q leaving at most 3εm vertices
uncovered.

Proof. Note that if we take a copy of M intersecting Vi, i P r3s in exactly two vertices then
this copy intersects the other partition classes in exactly three vertices. We define

ti “ p1´ εq
1
8 p3|Vj| ` 3|Vk| ´ 5|Vi|q where i, j, k P r3s are distinct.

Due to our assumption all ti are non-negative and we choose ti copies of M intersecting Vi
in exactly two vertices. This would leave |Vi| ´ p2ti ` 3tj ` 3tkq “ ε|Vi| vertices in Vi

uncovered, hence at most 3εm in total.
To complete the proof we exhibit a copy of M in all three possible types in the remaining

hypergraph, hence showing that the choices of the copies above are indeed possible. To
this end, from the remaining vertices of each partition class Vi take a subset Ui, i P r3s of
size ε|Vi|. Due to the regularity of the triple pV1, V2, V3q we have epU1, U2, U3q ě pd´εqpεmq

3.
Hence, by Proposition 12 there is a copy of M (of each type) in pU1, U2, U3q. �

The connection of regular partitions and dense hypergraphs is established by regularity
lemmas. The version introduced here is a straightforward generalisation of the original
regularity lemma to hypergraphs (see, e.g., [1, 2, 14]).

Theorem 14. For all t0 ě 0 and ε ą 0, there exist T0 “ T0pt0, εq and n0 “ n0pt0, εq so
that for every 3-uniform hypergraph H “ pV,Eq on n ě n0 vertices, there exists a partition
V “ V0 Ÿ V1 Ÿ . . . Ÿ Vt such that

(i ) t0 ď t ď T0,
(ii ) |V1| “ |V2| “ ¨ ¨ ¨ “ |Vt| and |V0| ď εn,
(iii ) for all but at most ε

`

t
3
˘

sets ti1, i2, i3u P
`rts

3
˘

, the triple pVi1 , Vi2 , Vi3q is ε-regular. �
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A partition as given in Theorem 14 is called an pε, tq-regular partition of H. For an
pε, tq-regular partition of H and d ě 0 we refer to Q “ pViqiPrts as the family of clusters
(note that the exceptional vertex set V0 is excluded) and define the cluster hypergraph
K “ Kpε, d,Qq with vertex set rts and ti1, i2, i3u P

`rts
3
˘

being an edge if and only if
pVi1 , Vi2 , Vi3q is ε-regular and dpVi1 , Vi2 , Vi3q ě d.

In the following we show that the cluster hypergraph almost inherits the minimum vertex
degree of the original hypergraph. The proof which we give for completeness is standard
and can be found e.g. in [8] for the case of graphs.

Proposition 15. For all γ ą d ą ε ą 0 and all t0 there exist T0 and n0 P N such that the
following holds.
If H is a 3-uniform hypergraph on n ą n0 vertices with δ1pHq ě

` 7
16 ` γ

˘ `

n
2
˘

, then
there exists an pε, tq-regular partition Q with t0 ă t ă T0 such that the cluster hypergraph
K “ Kpε, d,Qq has minimum vertex degree δ1pKq ě

` 7
16 ` γ ´ ε´ d

˘ `

t
2
˘

.

Proof. Let γ ą d ą ε and t0 be given. We apply the regularity lemma with ε1 “ ε2{144
and t10 “ maxt2t0, 10{εu to obtain T 10 and n10. We set T0 “ T 10 and n0 “ n10. Let H be a
3-uniform hypergraph on n ą n0 vertices which satisfies δpHq ě p7{16`γq

`

n
2
˘

. By applying
the regularity lemma we obtain an pε1, t1q-regular partition V 10 Ÿ V1 Ÿ . . . Ÿ Vt1 of V and let
m “ |V1| “ p1´ ε1qn{t1 denote the size of the partition classes.

Let I “ ti P rt1s : Vi is contained in more than ε
`

t1

2
˘

{8 non ε1-regular triplesu and ob-
serve that |I| ă 8ε1t1{ε due to the property piiiq of Theorem 14. Set V0 “ V 10 Y

Ť

iPI Vi and
let J “ rt1sr I and t “ |J |. We now claim that V0 and Q “ pVjqjPJ is the desired partition.
Indeed, we have T0 ą t1 ě t ą t1p1 ´ 8ε1{εq ě t0 and |V0| ă ε1n ` 8ε1n{ε ď εn{16. The
property piiiq follows directly from Theorem 14. For a contradiction, assume now that
degKpVjq ă p

7
16 ` γ ´ ε´ dq

`

t
2
˘

for some j P J . Let xj denote the number of edges which
intersect Vj in exactly one vertex and each other Vi, i P J , in at most one vertex. Then,
the assumption yields

xj ď |Vj|

„ˆ

7
16 ` γ ´ ε´ d

˙ˆ

t

2

˙

m2
`
ε

8

ˆ

t1

2

˙

m2
`

ε

16n
2
` d

ˆ

t

2

˙

m2


ď |Vj|
n2

2

ˆ

7
16 ` γ ´

ε

2

˙

On the other hand, from the minimum degree of H we obtain

xj ě |Vj|

ˆ

7
16 ` γ

˙ˆ

n

2

˙

´ 2
ˆ

|Vj|

2

˙

n´ 3
ˆ

|Vj|

3

˙

ě |Vj|

ˆ

n

2

˙ˆ

7
16 ` γ ´

4
t1

˙

a contradiction. �
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3.2. Fractional hompMq-tiling. To obtain a large M-tiling in the hypergraph H, we
consider weighted homomorphisms from M into the cluster hypergraph K. To this purpose,
we define the following.

Definition 16. Let L be a 3-uniform hypergraph. A function h : V pLq ˆ EpLq Ñ r0, 1s is
called a fractional hompMq-tiling of L if

(a ) hpv, eq ‰ 0 ñ v P e,
(b ) hpvq “

ř

ePEpLq hpv, eq ď 1,
(c ) for every e P EpLq there exists a labeling of the vertices of e “ uvw such that

hpu, eq “ hpv, eq ě hpw, eq ě
2
3hpu, eq

By hmin we denote the smallest non-zero value of hpv, eq (and we set hmin “ 8 if h ” 0)
and the sum over all values is the weight wphq of h

wphq “
ÿ

pv,eqPV pLqˆEpLq
hpv, eq .

The allowed values of h are based on the homomorphisms from M to a single edge,
hence the term hompMq-tiling. Given one such homomorphism, assign each vertex in the
image the number of vertices from M mapped to it. In fact, for any such homomorphism
the preimage of one vertex has size two, while the preimages of the other two vertices has
size three. Consequently, for any family of homomorphisms of M into a single edge the
smallest and the largest class of preimages can differ by a factor of 2{3 at most and this
observation is the reason for condition (c ) in Definition 16. We also note the following.

Fact 17. There is a fractional hompMq-tiling h of the hypergraph M which has hmin ě 1{3
and weight wphq “ 8.

Proof. Let x1, x2, w1, y1, y2, w2, z1, and z2 be the vertices of M and let

x1x2w1 , w1y1y2 , y1y2w2 , and w2z1z2

be the edges of M. On the edges x1x2w1 and z1z2w2 we assign the vertex weights p1, 1, 2{3q,
where the weight 2{3 is assigned to w1 and w2. The vertex weights for edges y1y2w1 and
y1y2w2 are p1{2, 1{2, 1{3q, where w1 and w2 get the weight 1{3. It is easy to see that those
vertex weights give rise to a hompMq-tiling h on M with hmin “ 1{3 and wphq “ 8. �

The notion hompMq-tiling is also motivated by the following proposition which shows
that such a fractional hompMq-tiling in a cluster hypergraph can be “converted” to an
integer M-tiling in the original hypergraph.
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Proposition 18. Let Q be an pε, tq-regular partition of a 3-uniform, n-vertex hypergraph H
with n ą 21ε´2 and let K “ Kpε, 6ε,Qq be the corresponding cluster hypergraph. Further-
more, let h : V pKq ˆ EpKq Ñ r0, 1s be a fractional hompMq-tiling of K with hmin ě 1{3.
Then there exists an M-tiling of H which covers all but at most pwphq ´ 27tεq|V1| vertices.

Proof. We restrict our consideration to the subhypergraph K1 Ă K consisting of the
hyperedges with positive weight, i.e., e “ abc P K with hpaq, hpbq, hpcq ě hmin. For each
a P V pK1q let Va be the corresponding partition class in Q. Due to the property (b ) of
Definition 16 we can subdivide Va (arbitrarily) into a collection of pairwise disjoint sets
pU e

aqaPePK of size |U e
a | “ hpa, eq|Va|. Note that every edge e “ abc P K corresponds to

the pε, 6εq-regular triplet pVa, Vb, Vcq. Hence we obtain from the definition of regularity
and hmin ě 1{3 that the triplet pU e

a , U
e
b , U

e
c q is p3ε, 6εq-regular. From the property (c ) in

Definition 16 and Proposition 13 we obtain an M-tiling of pU e
a , U

e
b , U

e
c q incorporating at

least
`

hpa, eq ` hpb, eq ` hpc, eq ´ 9ε
˘

|Va| vertices. Applying this to all hyperedges of K1 we
obtain an M-tiling incorporating at least

˜

ÿ

abc“ePK1

hpa, eq ` hpb, eq ` hpc, eq ´ 9ε
¸

|Va| ě
`

wphq ´ 9|K1
|ε
˘

|Va|

vertices. Noting that |K1| ď 3t (because of hmin ě 1{3) and |Va| ě |V1| we obtain the
proposition. �

Owing to Proposition 18, we are given a connection between fractional hompMq-tilings
of the cluster hypergraph K of H and M-tilings in H. A vertex i P V pKq corresponds to a
class of vertices Vi in the regular partition of H. The total vertex weight hpiq essentially
translates to the proportion of vertices of Vi which can be covered by the corresponding
M-tilings in H. Consequently, wphq essentially translates to the proportion of vertices
covered by the corresponding M-tiling in H. This reduces our task to finding a fractional
hompMq-tiling with weight greater than the number of vertices previously covered in K.

The following lemma (Lemma 19), which is the main tool for the proof of Lemma 11,
follows the idea discussed above. In the proof of Lemma 11 we fix a maximal M-tiling
in the cluster hypergraph K of the given hypergraph H. Owing to the minimum degree
condition of H and Proposition 15, a typical vertex in the cluster hypergraph K will be
contained in at least p7{16 ` op1qq

`|V pKq|
2

˘

hyperedges of K. We will show that a typical
vertex u of K which is not covered by the maximal M-tiling of K, has the property that
p7{16` op1qq ¨ 64 ą 28 of the edges incident to u intersect some pair of copies of M from
the M-tiling of K. Lemma 19 asserts that two such vertices and the pair of copies of M
can be used to obtain a fractional hompMq-tiling with a weight significantly larger than 16,
the number of vertices of the two copies of M. This lemma will come in handy in the
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proof of Lemma 11, where it is used to show that one can cover a higher proportion of the
vertices of H than the proportion of vertices covered by the largest M-tiling in K.

We consider a set of hypergraphs L29 definied as follows: Every L P L29 consists of two
(vertex disjoint) copies of M, say M1 and M2, and two additional vertices u and v such
that all edges incident to u or v contain precisely one vertex from V pM1q and one vertex
from V pM2q. Moreover, L satisfies the following properties

‚ for every a P V pM1q and b P V pM2q we have uab P EpLq iff vab P EpLq
‚ degpuq “ degpvq ě 29.

Lemma 19. For every L P L29 there exists a fractional hompMq-tiling h with hmin ě 1{3
and wphq ě 16` 1

3 .

The following proof of Lemma 19 is based on straightforward, but somewhat tedious
case distinction.

Proof. For the proof we fix the following labeling of the vertices of the two disjoint copies
of M. Let

V pM1q “ tx1, x2, w1, y1, y2, w2, z1, z2u and EpM1q “
 

x1x2w1, w1y1y2, y1y2w2, w2z1z2
(

be the vertices and edges of the first copy of M. Analogously, let

V pM2q “ tx
1
1, x

1
2, w

1
1, y

1
1, y

1
2, w

1
2, z

1
1, z

1
2u and EpM2q “

 

x11x
1
2w

1
1, w

1
1y
1
1y
1
2, y

1
1y
1
2w

1
2, w

1
2z
1
1z
1
2
(

be the vertices and edges of the other copy of M (see Figure 1.a). Moreover, we set
X “ tx1, x2u, Y “ ty1, y2u, and Z “ tz1, z2u and, let X 1, Y 1, and Z 1 be defined analogously
for M2.

Figure 1. Labels and case: a1b1, a2b2 P L1 with tb1, b2u P tX
1, Y 1, Z 1u

x1

x2

w1

y1

y2

w2

z1

z2

x1
1

x1
2

w1
1

y1
1

y1
2

w1
2

z1
1

z1
2

X

Y

Z

X 1

Y 1

Z 1

1.a: Vertex labels of M1 and M2 in L

a1

a2

b1

b2

u

v

1.b: All edges are (a1)-edges
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The proof of Lemma 19 proceeds in two steps. First, we show that in any possible
counterexample L, the edges incident to u and v which do not contain any vertex from
tw1, w2, w

1
1, w

1
2u form a subgraph of K2,3,3 (see Claim 20). In the second step we show that

every edge contained in this subgraph of K2,3,3 forbids too many other edges incident to u
and v, which will yield a contradiction to the condition degpuq “ degpvq ě 29 of L (see
Claim 21).

We introduce the following notation to simplify later arguments. For a given L P L29

with M1 and M2 being the copies of M, let L be set of the pairs pa, bq P V pM1qˆV pM2q

such that uab P EpLq. We split L into L1 Ÿ L2 according to

pa, bq P

$

&

%

L1, if ta, bu X tw1, w2, w
1
1, w

1
2u “ ∅,

L2, otherwise.

It will be convenient to view L1 and L2 as bipartite graphs with vertex classes V pM1q

and V pM2q.
We split the proof of Lemma 19 into the following two claims.

Claim 20. For all L P L29 without a fractional hompMq-tiling with hmin ě 1{3 and
wphq ě 16 ` 1{3, we have L1 Ď K3,3, where each of the sets X, Y , Z and X 1, Y 1, Z 1

contains precisely one of the vertices of the K3,3.

Claim 20 will be used in the proof of the next claim, which clearly implies Lemma 19.

Claim 21. Let F “
 

a1b1 P V pM1q ˆ V pM2q : a1 P tw1, w2u or b1 P tw11, w12u
(

and for
every edge ab P L1 let Fpa, bq Ď F be the set of those e P F , whose appearance in L
(i.e. e P L2) implies the existence of a fractional hompMq-tiling h with hmin ě 1{3 and
wphq ě 16 ` 1{3. Then there is an injection f : L1 Ñ F such that fpa, bq P Fpa, bq for
every pair ab P L1.

Clearly, |F | “ 28 and L2 Ă F . Hence, from |L2| ` |fpL1q| “ |L2| ` |L1| ě 29 we
derive that L2 and fpL1q must intersect. By Claim 21 this yields the desired fractional
hompMq-tiling and Lemma 19 follows. �

In the proofs of Claim 20 and Claim 21 we will consider fractional hompMq-tilings h
which use vertex weights of special types. In fact, for an edge e “ a1a2a3, the weights
hpa1, eq, hpa2, eq, and hpa3, eq will be of the following forms

(a1) hpa1, eq “ hpa2, eq “ hpa3, eq “ 1
(a2) hpa1, eq “ hpa2, eq “ hpa3, eq “

1
2

(a3) hpa1, eq “ hpa2, eq “ hpa3, eq “
1
3

(b1) hpa1, eq “ hpa2, eq “ 1 and hpa3, eq “
2
3
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(b2) hpa1, eq “ hpa2, eq “
1
2 and hpa3, eq “

1
3

(b3) hpa1, eq “ hpa2, eq “
2
3 and hpa3, eq “

1
2

An edge that satisfies (a1) is called an (a1)-edge, etc. Note that all these types satisfy
condition (c ) of Definition 16.

Proof of Claim 20. Given L P L29 satisfying the assumptions of the claim and with the
labeling from Figure 1.a. Observe that for any A P tX, Y, Zu, the hypergraph M1 ´ A

contains two disjoint edges. Similarly, for every B P tX 1, Y 1, Z 1u, M2 ´ B contains two
disjoint edges.

Figure 2. Case: ab1, ab2 P L1 with tb1, b2u P tX
1, Y 1, Z 1u

1

1

1

1

11

1

1

1

1

1

2
3

1
3

1
3

1
3

1
2

2
3

2
31

2 2
3

2
3

2.a: (a1)-edges w1y1y2, w2z1z2, and w12z11z12,
(b3)-edges ax11u and ax12v, (b1)-edge w11y11y12,
and (a3)-edge x11x12w1.

1

1

1

1

11

1

1

1

1

1

2
3

1
3
1
3

1
3

1
2

2
3

2
3

1
2

2
3

2
3

2.b: (a1)-edges w1y1y2, w2z1z2, and w12z11z12,
(b3)-edges ay11u and ay12v, (b1)-edge x11x12w11,
and (a3)-edge w11y11y12.

First we exclude the case that there is a matching ta1b1, a2b2u of size two in L1 between
some ta1, a2u “ A P tX, Y, Zu and some tb1, b2u “ B P tX 1, Y 1, Z 1u. In this case we
can construct a fractional hompMq-tiling h as follows: Choose two edges ua1b1, va2b2.
Using these and the four disjoint edges in pM1 ´ Aq Ÿ pM2 ´Bq, we obtain six disjoint
edges (see Figure 1.b). Letting all these six edges be (a1)-edges, we obtain a fractional
hompMq-tiling h with hmin “ 1 and wphq “ 18.

We show that every a P A P tX, Y, Zu has at most one neighbour in each B P tX 1, Y 1, Z 1u.
Assuming the contrary, let a P A P tX, Y, Zu and tb1, b2u “ B P tX 1, Y 1, Z 1u, with ab1,
ab2 P L1. For symmetry reasons, we only have to consider the case B “ X 1 and B “ Y 1.
The case B “ Z 1 is symmetric to B “ X 1. In those cases, we choose h as shown in
Figure 2.a (B “ X 1) and Figure 2.b (B “ Y 1) and in either case we find a fractional
hompMq-tiling h satisfying hmin “ 1{3 and wphq “ 16` 1{3. Note that the cases A “ Y
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and A “ Z can be treated in the same manner since the only condition needed to define h
is that M1 ´ A contains two disjoint edges.

To show that L1 is indeed contained in aK3,3 it remains to verify that every a1b1, a2b2 with
ta1, a2u “ A P tX, Y, Zu, b1 P B1 P tX

1, Y 1, Z 1u, and b2 P B2 P tX
1, Y 1, Z 1urB1 guarantees

the existence of a fractional hompMq-tiling h with hmin ě 1{3 and wphq ě 16` 1{3. Again
owing to the symmetry, the only cases we need to consider are B1 “ X 1, B2 “ Y 1 (see
Figure 3.a) and B1 “ X 1, B2 “ Z 1 (see Figure 3.b). In fact, the fractional hompMq-tilings h
given in Figure 3.a and Figure 3.b satisfy hmin ě 1{3 and wphq “ 17. Again the cases
A “ Y and A “ Z can be treated in the same manner. This concludes the proof of
Claim 20. �

Figure 3. Case: a1b1, a2b2 P L1 with tb1, b2u R tX
1, Y 1, Z 1u
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3.a: (a1)-edges w1y1y2, w2z1z2, and w12z11z12,
(b1)-edges a1x11u and a2y11v, and (b2)-edges
x11x12w11 and w11y11y12.
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3.b: (a1)-edges w1y1y2 and w2z1z2, (b1)-
edges a1x11u and a2z11v, (b2)-edges x11x12w11 and
w12z11z12, and (a2)-edges w11y11y12 and y11y12w12.

To complete the proof of Lemma 19 it is left to prove Claim 21.

Proof of Claim 21. Before defining the injection f : L1 Ñ F we collect some information
about Fpa, bq with ab P L1. Owing to Claim 20, we may assume without loss of generality
that x1, y1, z1 and x11, y11, z11 are the vertices which span all edges of L1. First we consider
e “ y1y

1
1. As shown in Figure 4.a the appearance of w1y

1
2 P L1 would give rise to a fractional

hompMq-tiling h with hmin ě 1{3 and wphq “ 16.5. Consequently, we have

w1y
1
2 P Fpy1, y

1
1q.
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For the case e “ x1x
1
1 P L1, Figure 4.b, shows that x2w

1
1 P Fpx1, x

1
1q and by symmetry,

it follows that

tx2w
1
1, w1x

1
2u Ď Fpx1, x

1
1q .

By applying appropriate automorphisms to M1 and M2 we immediately obtain information
on Fpx1, z

1
1q, Fpz1, x

1
1q, and Fpz1, z

1
1q. Indeed, we have

tx2w
1
2, w1z

1
2u Ď Fpx1, z

1
1q , tw2x

1
2, z2w

1
1u Ď Fpz1, x

1
1q , tz2w

1
2, w2z

1
2u Ď Fpz1, z

1
1q .

Figure 4. Fpy1, y
1
1q and Fpx1, x
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4.a: (a1)-edge w12z11z12, (a2)-edge y1y11u, (b1)-
edges x1x2w1, w1z1z2, and x11x12w11, and (b2)-
edges w1y12v, y1y2w2, and w11y11y12.
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4.b: (a1)-edges x1x11u, w1y1y2, and w2z1z2,
(b1)-edges x2w11v and w12z11z12, and (b2)-edges
w11y11y12 and y11y12w12.

Next we consider e “ y1x
1
1. In this case Figure 5.a shows that y2w

1
1 P Fpy1, x

1
1q. Moreover,

as shown in Figure 5.b we also have w1x
1
2 P Fpy1, x

1
1q and, consequently, we obtain

ty2w
1
1, w1x

1
2u Ď Fpy1, x

1
1q .

Again applying appropriate automorphisms to M1 and M2 we immediately obtain infor-
mation on Fpx1, y

1
1q, Fpy1, z

1
1q, and Fpz1, y

1
1q. Indeed one can show

tw1y
1
2, x2w

1
1u Ď Fpx1, y

1
1q , ty2w

1
2, w1z

1
2u Ď Fpy1, z

1
1q , tw2y

1
2, z2w

1
1u Ď Fpz1, y

1
1q .

Finally, we define an injection f : L1 Ñ F Ě L2 such that fpa, bq P Fpa, bq for every
pair ab P L1. Recall that due to Claim 20 we have L1 Ď tx1, y1, z1u ˆ tx

1
1, y

1
1, z

1
1u and it
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Figure 5. Fpy1x
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5.a: (a1)-edges y1x1u, x1x2w1, and w2z1z2,
(b1)-edges y2w11v and w12z11z12, and (b2)-edges
w11y11y12 and y11y12w12.
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5.b: (a1)-edge w12z11z12, (a2)-edge y1x11u, (b1)-
edges x1x2w1, w2z1z2, and w11y11y12, and (b2)-
edges w1x12v, y1y2w2, and x11x12w11.

follows from the discussion above that we can fix f as follows

fpx1, x
1
1q “ w1x

1
2 , fpx1, y

1
1q “ x2w

1
1 , fpx1, z

1
1q “ x2w

1
2 ,

fpy1, x
1
1q “ y2w

1
1 , fpy1, y

1
1q “ w1y

1
2 , fpy1, z

1
1q “ w1z

1
2 ,

fpz1, x
1
1q “ w2x

1
2 , fpz1, y

1
1q “ w2y

1
2 , fpz1, z

1
1q “ z2w

1
2 .

Consequently, |L1| ď |F | ´ |L2| and Claim 21 follows from |L2| ` |L1| ď |F | ď 28. �

3.3. Proof of the M-tiling Lemma. In this section we prove Lemma 11. Let H be a
3-uniform hypergraph on n vertices. We say H has a β-deficient M-tiling if there exists a
family of pairwise disjoint copies of M in H leaving at most βn vertices uncovered.

Proposition 22. For all 1{2 ą d ą 0 and all β, δ ą 0 the following holds. Suppose there
exists an n0 such that every 3-uniform hypergraph H on n ą n0 vertices with minimum
vertex degree δ1pHq ě d

`

n
2
˘

has a β-deficient M-tiling. Then every 3-uniform hypergraph
H1 on n1 ą n0 vertices with δ1pH1q ě pd´ δq

`

n1

2
˘

has a pβ ` 25
?
δq-deficient M-tiling.

Proof. Given a 3-uniform hypergraph H1 on n1 ą n0 vertices with δ1pH1q ě pd´ δq
`

n1

2
˘

. By
adding a set A of 3

?
δn1 new vertices to H1 and adding all triplets to H1 which intersect A

we obtain a new hyperpgraph H on n “ n1 ` |A| vertices which satisfies δ1pHq ě d
`

n
2
˘

.
Consequently, H has a β-deficient M-tiling and by removing the M-copies intersecting A,
we obtain a pβ ` 25

?
δq-deficient M-tiling of H1. �
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Proof of Lemma 11. Let γ ą 0 be given and we assume that there is an α ą 0 such
that for all n10 there is a 3-uniform hypergraph H on n ą n10 vertices which satisfies
δ1pHq ě p 7

16 ` γq
`

n
2
˘

but which does not contain an α-deficient M-tiling. Let α0 be the
supremum of all such α and note that α0 is bounded away from one due to Proposition 12.

We choose ε “ pγα0{2100q2. By definition of α0, there is an n0 such that all 3-uniform
hypergraphs H on n ą n0 vertices satisfying δ1pHq ě p 7

16 ` γqn have an pα0 ` εq-deficient
M-tiling. Hence, by Proposition 22 all 3-uniform hypergraphs H on n ą n0 vertices
satisfying δ1pHq ě p 7

16`γ´εq
`

n
2
˘

have an pα0`ε`25
?
εq-deficient M-tiling. We will show

that there exists an n1 (to be chosen) such that all 3-uniform hypergraphs H on n ą n1

vertices satisfying δ1pHq ě p 7
16 ` γq

`

n
2
˘

have an pα0 ´ εq-deficient M-tiling, contradicting
the definition of α0.

We apply Proposition 15 with the constants γ, ε{12, d “ ε{2 and t15 “ maxtn0, pε{12q´3u

to obtain an n15 and T15. Let n1 ě maxtn15, n0u be sufficiently large and let H be an
arbitrary 3-uniform hypergraph on n ą n1 vertices which satisfies δ1pHq ě p 7

16 ` γq
`

n
2
˘

but
which does not contain an α0-deficient M-tiling. We apply Proposition 15 to H with the
constants chosen above and obtain a cluster hypergraph K “ Kpε{12, ε{2,Qq on t ą t15

vertices which satisfies δ1pKq ě p 7
16 ` γ ´ εq

`

t
2
˘

. Taking M to be the largest M-tiling in K
we know by the definition of α0 and by Proposition 22 that M is an α1-deficient M-tiling
of K, for some α1 ď α0 ` 26

?
ε.

We claim that M is not pα0{2q-deficient and for a contradiction, assume the contrary.
Then, from Fact 17, we know that for each Mj P M there is a fractional hompMq-tiling hj

of Mj with hjmin ě 1{3 and weight wphjq “ 8. Hence, the union of all these fractional
hompMq-tiling gives rise to a fractional hompMq-tiling h of K with hmin ě 1{3 and weight

wphq ě 8|M | ě tp1´ α0{2q.

By applying Proposition 18 to the fractional hompMq-tiling h (and recalling that the
vertex classes V1, . . . , Vt of the regular partition has the same size, which was at least
p1´ ε{12qn{t) we obtain an M-tiling of H which covers at least

`

wphq ´ 3tε
˘

´

1´ ε

12

¯ n

t
ě p1´ α0 ` εqn

vertices of H. This, however, yields a pα0 ´ εq deficient M-tiling of H contradicting the
choice of H. Hence, M is not pα0{2q-deficient from which we conclude that X, the set of
vertices in K not covered by M , has size

|X| ě
α0t

2 . (8)

For a pair MiMj P
`

M
2
˘

the edge e P K is ij-crossing if |eX V pMiq| “ |eX V pMjq| “ 1.
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Claim 23. Let C be the set of all triples xij such that x P X, MiMj P
`

M
2
˘

and there are
at least 29 ij-crossing edges containing x. Then we have |C| ě γ

`

t
2
˘

|X|{72.

Proof. Let A be the set of those hyperedges in K which are completely contained in X
and let B be the set of all the edges with exactly two vertices in X. Then it is sufficient to
show that

|A| ď 7
16

ˆ

|X|

3

˙

and |B| ď 7
2

ˆ

|X|

2

˙

|M |. (9)

Indeed, assuming (9) and |C| ď γ
`

t
2
˘

|X|{72 we obtain the following contradiction
ÿ

xPX
degpxq ď 3|A| ` 2|B| ` 28

ˆ

|X|

ˆ

|M |

2

˙

´ |C|
˙

` 64|C| `
ˆ

8
2

˙

|M ||X|

ď |X|

„

7
16

ˆ

|X|

2

˙

`
7
2 |X||M | ` 28

ˆ

|M |

2

˙

`
36
72γ

ˆ

t

2

˙

`

ˆ

8
2

˙

|M |



ď |X|

„ˆ

7
16 `

γ

2

˙ˆ

t

2

˙

`

ˆ

8
2

˙

|M |



ă |X| ¨ δ1pKq

where in the third inequality we used
`

t
2
˘

“
`|X|

2
˘

` 8|X||M | `
`8|M |

2
˘

.
Note that the first part of (9) trivially holds since in the opposite case, using the first

part of Proposition 12 we obtain a tight path in X of length at least eight. However,
this path contains a copy of M as a subhypergraph which yields a contradiction to the
maximality of M .

To complete the proof let us assume |B| ą 7
2
`|X|

2
˘

|M | from which we deduce that there
is an M1 P M such that V pM1q intersects at least 7

2
`|X|

2
˘

edges from B. From V pM1q we
remove the vertices which are contained in less than 13|X| edges from B. Note that there
are at least four vertices, say v1, . . . , v4, and at least p3` εq

`|X|
2
˘

edges from B left which
intersect these vertices. Hence, there exists a pair x1, x2 such that tx1, x2, viu P H for all
i “ 1, . . . , 4. Removing all edges intersecting x1, x2 we still have at least p3 ` ε{2q

`|X|
2
˘

edges intersecting v1, . . . , v4 and we can find another pair x3, x4 disjoint from x1, x2 with
tx3, x4, viu P H for i “ 1, . . . , 4. For each vi we can find another edge from B containing vi,
keeping them all mutually disjoint and also disjoint from tx1, x2u and tx3, x4u. This is
possible since each vi is contained in more than 13|X| edges from B. This, however, yields
two copies of M which contradicts the fact that M was a largest possible M-tiling. �

The set X will be used to show that there is an L P L29 such that K contains many
copies of L.

Claim 24. There is an element L P L29 and a family L of vertex disjoint copies of L in
the cluster hypergraph Kpε{12, ε{2,Qq such that |L | ě γα0t{275.
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Proof. We consider the 3-uniform hypergraph C (as given from Claim 23) on the vertex
set X YM . Note that for fixed ij a vertex x is contained in at most 64 ij-crossing edges,
thus there are at most 264 different hypergraphs with the property that x is contained
in at least 29 edges which are ij-crossing. We colour each edge xij by one of the 264

colours, depending on the 3-partite hypergraph induced on x, Mi, andMj. On the one
hand, we observe that a monochromatic tight path consisting of the two edges xij, x1ij P C
corresponds to a copy of L. On the other hand, Claim 23 implies that there is a colour
such that at least

|C|
264 ě

γ
`

t
2
˘

|X|

72 ¨ 264

(8)
ě
α0γt

3

273

edges in C are coloured by it. Hence, by Proposition 12 there is a tight path with α0γt{272

vertices using edges of this colour only. Note that in this tight path every three consecutive
vertices contain one vertex from X and the other two vertices are from M . Thus, this
path gives rise to at least α0γt{275 pairwise vertex disjoint tight paths on four vertices
such that the ends are vertices from X. �

For any Li P L we know from Lemma 19 that there is a fractional hompMq-tiling hi

of Li with himin ě 1{3 and weight wphiq ě 16 ` 1{3. Furthermore, for every Mj P M

which is not contained in any Li P L we know from Fact 17 that there is a fractional
hompMq-tiling of hj of Mj with hjmin ě 1{3 and weight wphjq “ 8. Hence, the union of
all these fractional hompMq-tiling gives rise to a fractional hompMq-tiling h of K with
hmin ě 1{3 and weight

wphq ě

ˆ

16` 1
3

˙

|L | ` 8p|M | ´ 2|L |q “ 8|M | `
|L |

3 .

By applying Proposition 18 to the fractional hompMq-tiling h (and recalling that the
vertex classes V1, . . . , Vt of the regular partition has the same size which was at least
p1´ ε{12qn{t) we obtain an M-tiling of H which covers at least

`

wphq ´ 3tε
˘

´

1´ ε

12

¯ n

t
ě

ˆ

8|M | `
|L |

3 ´ 3tε
˙

´

1´ ε

12

¯ n

t

vertices of H.
Since M was an pα0 ` 26

?
εq-deficient M-tiling of K, the tiling we obtained above is an

pα0 ´ εq-deficient M-tiling of H due to the choice of ε. This, however, is a contradiction
to the fact that H does not permit an pα0 ´ εq-deficient M-tiling. �

3.4. Proof of the path-tiling lemma. In this section we prove Lemma 10. The proof
will use the following proposition which has been proven in [4] (see Lemma 20) in an even
more general form, hence we omit the proof here.
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Proposition 25. For all d and β ą 0 there exist ε ą 0, integers p and m0 such that for
all m ą m0 the following holds. Suppose V “ pV1, V2, V3q is an pε, dq-regular triple with
|Vi| “ 3m for i “ 1, 2 and |V3| “ 2m. Then there there is a loose path tiling of V which
consists of at most p pairwise vertex disjoint paths and which covers all but at most βm
vertices of V.

With this result at hand one can easily derive the path-tiling lemma (Lemma 10) from
the M-tiling lemma (Lemma 11).

Proof of Lemma 10. Given γ ą 0 and α ą 0 we first apply Proposition 25 with d “ γ{3
and β “ α{4 to obtain ε1 ą 0, p1, and m0. Next, we apply Lemma 11 with γ{2 and α{2 to
obtain n11. Then we apply Proposition 15 with γ, d and ε “ 1

3 mintd{2, ε1, α{8u from above
and t0 “ n11 to obtain T0 and n15. Lastly we set n0 “ maxtn15, 2T0m0u and p “ p1T0.

Given a 3-uniform hypergraph H on n ą n0 vertices which satisfies δ1pHq ě
` 7

16 ` γ
˘ `

n
2
˘

.
By applying Proposition 15 with the constants chosen above we obtain an pε, tq-regular
partition Q. Furthermore, we know that the corresponding cluster hypergraph K “

Kpε, d,Qq satisfies δ1pKq ě p7{16 ` γ{2q
`

t
2
˘

. Hence, by Lemma 11 we know that there
is an M-tiling M of K which covers all but at most αt{2 vertices of K. Note that the
corresponding vertex classes in H contain all but at most αn{2` |V0| vertices.

We want to apply Proposition 25 to each copy M1 P M of M. To this end, let t1, . . . , 8u
denote the vertex set of such an copy M1 and let 123, 345, 456, 678 denote the edges of M1.
Further, for each a P V pM1q let Va denote the corresponding partition class in H. We split
Vi, i “ 3, 4, 5, 6, into two disjoint sets V 1

i and V 2
i of sizes |V 1

i | “ 2|Vi|{3 and |V 2
i | “ |Vi|{3

for i “ 3, 6 and |V 1
i | “ |V

2
i | “ |Vi|{2 for i “ 4, 5. Then the tuples pV1, V2, V

1
3 q, pV8, V7, V

1
6 q

and pV 2
3 , V

1
4 , V

1
5 q, pV 2

4 , V
2

5 , V
2

6 q all satisfy the condition of Proposition 25, hence, there
is a path tiling of these tuples consisting of at most 4p1 paths which covers all but at
most 12βn{t vertices of V1, . . . , V8.

Since M contains at most t{8 elements we obtain a path tiling which consists of at
most 4p1t{8 ď p1T0{2 ď p paths which covers all but at most 12βn{t ˆ t{8 vertices.
Consequently, the total number of vertices in H not covered by the path tiling is at
most 3βn{2` αn{2` |V0| ď αn. This completes the proof of Lemma 10. �
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