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We consider compactness properties for strong logics in terms of strong Henkin
models and give characterisations of the notions of supercompact and C(n)-extendible
cardinals by these properties.

1 INTRODUCTION

The well-known large cardinal notions of weakly compact and strongly compact cardinals are characterised in terms of compactness
properties for infinitary languages. Other large cardinal notions can be characterised in terms of compactness properties for other
strong languages.

In [8], Boney characterised strong cardinals by a compactness principle providing the existence of Henkin models of second-
order theories. In [9], the authors introduced a notion we will call in this paper weak Henkin models of a general logic (cf.
Definition 2.2) and used it to characterise Woodin cardinals in a similar way.

Being a weak Henkin model of a theory T is an in some sense unnatural notion: it includes reference to a model of set theory that
includes a structure the model believes satisfies each sentence of T ; but it does not need to contain T itself and so it cannot express
this fact. This leads naturally to a strengthening of weak Henkin models that we will call strong Henkin models (cf. Definition 2.4).

In §§ 3 & 4, we will characterise the notions of supercompact cardinals and C(n)-extendible cardinals in terms of the strong
Henkin model version of compactness, respectively (Theorems 3.1 & 4.4). The latter characterisation allows us to characterise
Vopěnka’s Principle (Corollary 4.6). In §5, we use a compactness principle about weak Henkin models to characterise superstrong
cardinals (Theorem 5.1).

2 PRELIMINARIES

2.1 Large cardinals
We will give the definitions of the relevant large cardinal notions and some relevant background.

A cardinal � is �-strong if there is an elementary embedding j ∶ V → M such that crit(j) = �, j(�) > � and V� ⊆ M . It is
strong if it is � strong for every � > �.

The results of this article were also part of the first author’s Ph.D. thesis [17].
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A cardinal � is Πn-strong if for every class A which is Πn-definable without parameters and every � there is an elementary
embedding j ∶ V → M , crit(j) = �, V� ⊆ M and A ∩ V� ⊆ AM (cf. [5]).

A cardinal � is superstrong with target � if there is an elementary embedding j ∶ V → M such that crit(j) = �, j(�) = � and
Vj(�) ⊆ M .

A cardinal � is �-strongly compact if there is an elementary embedding j ∶ V → M such that crit(j) = � and such that there
is d ∈ M with M ⊧ |d| < j(�) and j“� ⊆ M . It is strongly compact if it is �-strongly compact for every � > �.

A cardinal � is �-supercompact if there is an elementary embedding j ∶ V → M such that crit(j) = �, j(�) > � and M� ⊆ M .
It is supercompact if it is �-supercompact for every � > �. That � is �-supercompact is equivalent to the existence of a fine,
normal, and �-complete ultrafilter on ℘�� (cf., e.g., [12, § 20]).

We write C (n) to denote the club class of ordinals � such that V� ≺Σn
V , i.e., such that V� is an elementary substructure of the

universe with respect to the Σn-formulas. Then, a cardinal � is called C(n)-extendible if for every � > � there is an elementary
embedding j ∶ V� → V� such that j(�) > � and j(�) ∈ C(n) (cf. [3]). Bagaria showed that extendible cardinals (cf. [13, p. 311])
are precisely the C(1)-extendible cardinals and that with growing n, the existence of a C(n)-extendible cardinal gains consistency
strength. These cardinal notions stratify the large cardinal principle known as Vopěnka’s Principle (VP; cf. [13, pp. 335–339]) in
the following sense.

Theorem 2.1 (Bagaria; [3, Corollary 4.15]). VP holds if and only if for every n, there is a C(n)-extendible cardinal.

2.2 Abstract model theory
We make some remarks about the notions from abstract model theory we will use. As in first-order model theory, a vocabulary �
consists of finitary relation, function and constant symbols. Moreover, we will work with many sorted vocabularies, i.e., � further
contains a set of sort symbols. A �-structure  has for every sort symbol s a domain As and furthermore interpretations of the
relation, function, and constant symbols. A bijective map f ∶ � → � is called a renaming iff it restricts to respective bijections
between the sets of sort, relation, function and constant symbols, all while respecting their respective arities. Notice that if  is a
�-structure and f ∶ � → � a renaming, then f induces a �-structure f () on the domain of .

Though we will mostly work with concretely given logics, some of our results contain statements that make reference to all
logics simultaneously. In this case we refer to common definitions of logics given in abstract model theory (cf., e.g., [7, Chapter
II]). We point out their in our context most important features. If � is a vocabulary and  a logic, we write [�] for the collection
of -sentences over �. We assume that [�] is always a set (as opposed to a proper class). If T ⊆ [�] we call T an -theory.
A logic further has a satisfaction relation ⊧, possibly holding between �-structures  and some ' ∈ [�]. Importantly, ⊧ is
defined by some formula in the language of set theory, possibly with parameters. If  ⊧ ' for all ' ∈ T ⊆ [�], then  is a
model of the -theory T . We further assume that if f ∶ � → � is a renaming, then f induces a bijection, also called a renaming,
f ∶ [�] → [�] such that for any �-structure :  ⊧ ' iff f () ⊧ f ('). If T ⊆ [�] is an -theory, we call f“T a copy of
T . We say that T is <�-satisfiable for some cardinal �, if every T0 ∈ �T has a model.

The concrete logics we will consider are second-order logic 2, as well as infinitary versions of second order logic 2
�� for

regular cardinals � ≥ �, which allows for conjunctions and disjunctions over sets of formulas of size < � and quantification
over strings of (first- or second-order) variables of length < �. Recall that there is a sentence Φ of second-order logic, known as
Magidor’s Φ, such that (M,E) ⊧ Φ iff M ≅ V� for some ordinal � (cf. [14]; the original construction requires that � is a limit
ordinal; the general case is an easy adaptation). For later purposes, fix a large finite fragment ZFC∗ of ZFC, which ZFC proves to
be satisfied in the V� for � any limit ordinal and which is, in particular, large enough to prove that the universe is the union of the
rank-initial segments V� and that Φ is true in precisely those structures isomorphic to some V� .

We fill further consider sort logics, an expansion of second-order logic introduced by Väänänen (cf. [18, 19] for details). The
main feature of sort logics are sort quantifiers written as ∃̃ and ∀̃. A formula ∃̃X'(X) involving a sort quantifier over some
relation variable X of arity n is true in a structure  iff  can be expanded by an additional domain B such that there is a
subset Y ⊆ Bn such that the expanded structure satisfies the formula '(B), i.e., the sort quantifiers search outside the structure
itself, ranging over the whole universe V , for sets that satisfy some relation described by '(X). Because we would run into
definability of truth issues otherwise, sort logics are graded into s,n by the natural numbers n. A sentence of s,n is only allowed
to include n-alternations of sort quantifiers ∃̃ and ∀̃. We will in particular consider infinitary sort logics s,n

�! which expand s,n by
conjunctions and disjunctions of size < �. We require that the syntax of vocabularies, 2

�� and, s,n
�! is coded in some reasonable

way. More precisely, if j ∶ V → M is some elementary embedding with crit(j) ≥ �, then we require that for any vocabuly �, j
restricts to a renaming j ∶ � → j“�, and if T ⊆ 2

��, then j“T⊆ 2
�� is a copy of T , and analogously for s,n

�!.
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2.3 Weak and strong Henkin models
Recall the Henkin semantics for second-order logic 2. If ' ∈ 2[�] is a second-order sentence, some pair (, P ) consisting of
a �-structure  and P ⊆ ℘(A) is a (classical) Henkin model of ', if  is seen to satisfy ' if we let the second-order quantifiers
appearing in ' run over P (as opposed to the full power set of A). Notice that if M is some transitive set such that , ' ∈ M ,
and further M ⊧ “ ⊧2 '”, then (,℘M (A)) is a Henkin model of ', i.e., being a Henkin model is similar to evaluating the
truth of “ ⊧2 '” in some model of set theory that does not have A’s full power set.

This served as motivation in [9] to generalise the notion of Henkin model to general logics in the following way. We present a
simplified version of the notion considered there.

Definition 2.2. Let  be a logic, � a vocabulary, T ⊆ [�], M a transitive set and  ∈ M . Then the pair (M,) is a called a
weak -Henkin model of T iff there is a copy T ∗ of T such that for any ' ∈ T ∗, we have (M,∈) ⊧ “ ⊧ '”.

The main difference to the definition given in [9] is, that there the authors demand that the transitive set appearing in their
corresponding definition of a Henkin model satisfies (some fragment of) ZFC. In practice, we also want weak Henkin models to
satisfy some amount of ZFC. However, it depends on the context which fragment of ZFC is the appropriate one. We therefore
decided to outsource fixing the “right" fragment of ZFC to the statement of our theorems. Further (minor) differences are that
we explicitly work with models of copies of theories, and that we demand the existence of a single structure  ∈ M such that
all ' ∈ T ∗ are satisfied by  when computing satisfaction in M , while they work with a coherent system of structures ', all
defined on the same set A, with M ⊧ “' ⊧ '”. Note however that we do not demand that  is a �∗-structure for �∗ a renamed
version of �. Instead,  may also be a �-structure for some � ⊇ �∗.

We give the notion the qualification “weak” Henkin model to distinguish it from the stronger notion we will introduce below.
In [9, Theorem 3.6], weak Henkin models were used to give a compactness characterisation of Woodin cardinals. Boney in [8,
Theorem 4.7] used classical Henkin models to give a characterisation of strong cardinals. Referring to weak Henkin models, his
result can be stated as follows:

Theorem 2.3 (Boney; [8, Theorem 4.7]). The following are equivalent for a cardinal �:

(1) � is strong.

(2) For any � > � and any theory T ⊆ 2
�! that can be written as an increasing union T =

⋃

�∈� T� of theories T� which each
have a model of size ≥ �, there is a weak Henkin model (M,) of T such that V� ⊆ M , M ⊧ ZFC∗ and |A| ≥ �.

The notion of weak Henkin model (M,) of a theory T has some unexpected features. The set M does not need to contain T ,
but it is from the outside that we see that M ⊧ “ ⊧ '” for every ' in (a copy of) T . If we require that M contains T , we get a
stronger notion.

Definition 2.4. Let  be a logic, � a vocabulary, T ⊆ [�], M a transitive set such that T ∈ M , and  ∈ M . Then the pair
(M,) is called a strong -Henkin model of T iff (M,∈) ⊧“ ⊧ T ”.‡

This notion will be used in §§ 3 and 4 to characterise supercompact and C(n)-extendible cardinals, respectively.

3 SUPERCOMPACT CARDINALS

For our characterisation, recall that �! can define all ordinals < �.

Theorem 3.1. The following are equivalent for a cardinal �:

(1) � is supercompact.

(2) For every �, if T ⊆ 2 ∪ �! is a <�-satisfiable theory, then there is a strong 2 ∪ �!-Henkin model (M,) of T such
that M ⊧ ZFC∗ and V� ⊆ M .

(3) For every �, if T ⊆ 2
�! is a <�-satisfiable theory, then there is a strong 2

�!-Henkin model (M,) of T such that
M ⊧ ZFC∗ and V� ⊆ M .

‡We would like to thank the anonymous referee for their questions about an earlier version of this article, which lead us to formulate this definition in its current form.



4 J. Osinski, A. Poveda

(4) For every �, if T ⊆ 2
�� is a <�-satisfiable theory, then there is a strong 2

��-Henkin model (M,) of T such that
M ⊧ ZFC∗ and V� ⊆ M and M� ⊆ M .

Proof. Clearly (4) implies (3), and (3) implies (2). We first show that (1) implies (4). So let T be a <�-satisfiable 2
��-theory.

Take a ℶ-fixed point � of cofinality at least � large enough such that T ∈ V� and V� has a model for every < �-sized subset
of T . By supercompactness, let j ∶ V → M be elementary with crit(j) = �, j(�) > � and M� ⊆ M . Note that the restriction
i = j ↾ V� ∶ V� → V M

j(�) is an elementary embedding, and this implies V M
j(�) ⊧ ZFC∗. Because V� believes that T is <�-satisfiable,

by elementarity V M
j(�) ⊧“i(T ) is < i(�) satisfiable”. By closure of M , we get that i“T ∈ M and thus that i“T ∈ V M

j(�). Further
|i“T |V

M
j(�) = |i“T |M < � < i(�). Thus, V M

j(�) believes that there is a model  ⊧ i“T . Because crit(i) = �, with the renaming
i ∶ � → i“� we have that i“T is a copy of T . Notice that by closure under �-sequences, M and hence V M

j(�) knows about the
renamings i ∶ � → i“� and i ∶ T → i“T . We can therefore also rename  in V M

j(�) to a �-structure , which V M
j(�) believes to

satisfy T . Notice that V� ⊆ V M
j(�). Further, cof(j(�))M ≥ j(�) > � > �. By closure of M , this implies that V M

j(�) is �-closed.
Summarising, (V M

j(�),) is a strong Henkin model as desired.

And now assume (2) and let us show (1). Take a cardinal � > � of cof(�) ≥ �. Consider the theory

T = ElDiag2∪�!
(V�+1,∈) ∪ {ci ∈ d ∧ |d| < c� ∶ i < �},

where d is a new constant and the ci are the constants used in the elementary diagram. If T0 ⊆ T is of size < �, there is X ⊆ �
such that |X| < � and the sentence “ci ∈ d ∧ |d| < c�” is contained in T0 iff i ∈ X. Then letting d be interpreted by X, we get
that (V�+1,∈, d) witnesses that T0 is satisfiable. So by (2), we get a transitive model M of ZFC∗ such that V� ⊆ M for some large
� > � and  ∈ M such that M ⊧“ ⊧ T ”. We may take � large enough such that T ∈ V� . Notice that T is a theory in a language
� ∈ {∈, cx, d ∶ x ∈ V�+1}. Because with T , also � ∈ V� , and thus also the structure N = (V�+1,∈, cNx )x∈V�+1

in which every cx is
interpreted by x itself, and which witnesses that (V�+1,∈) satisfies its own elementary diagram, is in V� and hence in M . Because
first-order satisfaction is absolute between M and V , M understands that T contains the elementary diagram of (V�+1,∈) and
therefore believes that there is an elementary embedding j ∶ V�+1 → . Again, by absoluteness of first-order satisfaction, this is
really an elementary embedding. Because M ⊧ ZFC∗ and T contains Magidor’s Φ, M believes  to be some rank-initial segment
and so we have to have A = V M

�+1 for some �. Because ci ∈ d for every i < �, we get that j(�) > |d| ≥ �. In particular,
crit(j) ≤ �. Because also �!-satisfaction is absolute for transitive models and �! can define all ordinals < �, those have to be
fixed by j. Thus crit(j) = �. Notice that j“� is definable from j and � and so j“� ∈ M and therefore in V M

�+1. Summarising, we
have an elementary embedding j ∶ V�+1 → V M

�+1 with crit(j) = �, j(�) > � and j“� ∈ V M
�+1. We can therefore let, for X ⊆ ℘��:

X ∈ U iff j“� ∈ j(X).

It is standard to check that this defines a fine, normal and �-complete ultrafilter U over ℘��. To check normality, for example,
if f is a regressive function on ℘�� and so {s ∈ ℘��∶ f (s) ∈ s} ∈ U . Then j“� ∈ {s ∈ ℘j(�)j(�)∶ j(f )(s) ∈ s} and hence
j(f )(j“�) = j() for some  < �. Therefore {s ∈ ℘��∶ f (s) = } ∈ U . Hence � is �-supercompact for arbitrarily large �.

Note that in (3), M is closed under �-sequences. In this context, the relevant closure is (the implied) closure under �-sequences,
as this makes M correct about ��-satisfaction.

We would like to make some remarks about related results. An argument by Dimopoulos shows that if � is strong and strongly
compact then � is also jointly strong and strongly compact, i.e., for every � there is an embedding simultaneously witnessing �
being �-strong and �-strongly compact (cf. [10, Proposition 2.3]). And Apter and Hamkins show that it is consistent to have a
cardinal which is both strong and strongly compact, but not supercompact (cf. [2, Theorem 1.2]). Boney points out, that in his
framework considering classical Henkin models for second-order logic, a compactness principle using full compactness instead
of the chain compactness property from Theorem 2.3 characterises cardinals which are jointly strong and strongly compact (cf. [8,
p. 159]), which by Dimopoulos’ result comes down to � being strong and strongly compact. This translates to the terminology of
weak Henkin models, i.e., considering weak Henkin models instead of strong ones in Theorem 3.1 characterises that � is strong
and strongly compact. By the result of Apter and Hamkins the latter is not equivalent to supercompactness of �. In particular,
this shows that usage of strong Henkin models is necessary for the result of Theorem 3.1 in the following way.

Theorem 3.2. It is consistent that � is not supercompact, but that for every �, if T ⊆ 2
�! is a <�-satisfiable theory, then there is

a weak 2
�!-Henkin model (M,) of T such that M ⊧ ZFC∗ and V� ⊆ M .
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4 VOPĚNKA’S PRINCIPLE

To provide some background, we mention that model theory of extensions of first-order logic has close connections to VP: a
cardinal � is called the compactness number of a logic , if it is the smallest cardinal such that any theory T ⊆  is satisfiable,
provided all T0 ∈ ℘�T are satisfiable.

Theorem 4.1 (Makowsky; [16, Theorem 2]). VP holds if and only if every logic has a compactness number.

Our result will be the analogue for strong Henkin compactness of all logics, making use of Bagaria’s stratification of VP in
terms of C(n)-extendible cardinals (Theorem 2.1). In our proof, we will use a number of results from the literature.

Theorem 4.2 (Bagaria & Goldberg; [6, Theorem 2.6]). The following are equivalent for every n ≥ 1 and every cardinal �:

(1) � is C(n)-extendible.

(2) For every � > �, � ∈ C(n+1), there is an elementary embedding j ∶ V → M such that crit(j) = �, j(�) > �, M� ⊆ M and
M ⊧“� ∈ C(n+1)”.

(3) For every � > �, � ∈ C(n+1), there is a fine, normal and �-complete ultrafilter U on ℘�� such that {s ∈ ℘��∶ ot(s) ∈
C(n+1)} ∈ U .

We remark that this theorem of Bagaria & Goldberg shows that extendibles and C(n)-extendibles are direct strengthenings of
supercompact cardinals.

Proposition 4.3 (Folklore; cf., e.g., [9, Proposition 2.2]). For every n, s,n has a sentence Φ(n) such that (M,E) ⊧ Φ(n) iff
(M,E) ≅ (V� ,∈) for some � ∈ C(n).

For any natural number n, let us fix a finite fragment ZFC∗
n of ZFC, expanding ZFC∗ and sufficiently large to prove that Φ(n)

axiomatizes the class of models isomorphic to some (V� ,∈) such that � ∈ C(n).

Theorem 4.4. The following are equivalent for every n ≥ 1 and every cardinal �:

(1) � is C(n)-extendible.

(2) For every � ∈ C(n+1), if T ⊆ s,n+1 ∪ �! is a <�-satisfiable theory, then there is a strong s,n+1 ∪ �!-Henkin model
(M,) of T such that M ⊧ ZFC∗

n+1 and V� ≺Σn+1
M .

(3) For every � ∈ C(n+1), if T ⊆ s,n+1
�! is a <�-satisfiable theory, then there is a strong s,n+1

�! -Henkin model (M,) of T
such that M ⊧ ZFC∗

n+1 and V� ≺Σn+1
M .

Proof. The proof proceeds similar to the supercompactness case. Clearly (3) implies (2). Assume (1) and let us show (3). Let T
be <�-satisfiable over the vocabulary �. By the reflection theorem, take � = ℶ� ∈ C(n+1) such that V� satisfies ZFC∗

n+1 and large
enough such that V� verifies that T is <�-satisfiable. Take j ∶ V → M with crit(j) = �, M� ⊆ M and M ⊧ “� ∈ C(n+1)”. Again
i = j ↾ V� ∶ V� → V M

j(�) is elementary. In particular, V M
j(�) ⊧ ZFC∗

n+1; further V M
j(�) ⊧“i(T ) is < i(�) satisfiable” and so V M

j(�) has a
model  for the copy i“T . As earlier, by closure of M , this can be renamed to a �-structure  ∈ V M

j(�) which V M
j(�) believes to

satisfy T . Again, V� ⊆ V M
j(�). Finally, because � ∈ C(n+1), by elementarity of j, we have M ⊧ j(�) ∈ C(n+1). Thus V M

j(�) ≺Σn+1
M .

Also by assumption M ⊧ “� ∈ C(n+1)” and so V� ≺Σn+1
M . Because V� ⊆ V M

j(�), this together implies V� ≺Σn+1
V M
j(�). Summarising,

(V M
j(�),) is a strong Henkin model as desired.

Now assume (2) and let us show (1). Let � > � be in C(n+1) and of cofinality cof(�) ≥ �. Consider

T = ElDiags,n+1∪�!
(V�+1,∈) ∪ {ci ∈ d ∧ |d| < c� ∶ i < �}.

Again, for < �-sized subsets of T , we can get a model by considering V�+1 itself. So for some � ∈ C (n+1) much greater than �
and such that T ∈ V� , by assumption we get an M ⊧ ZFC∗

n+1 such that V� ≺Σn+1
M and there is  ∈ M which M believes to be

a model of T . As before, M has a first-order elementary embedding j ∶ V�+1 → . By Magidor’s Φ, we have A = V M
�+1 for some

�. Further, because � ∈ C(n+1), T contains a sentence coding that Φ(n+1) (cf. Proposition 4.3) holds in V�, i.e., in the rank initial
segment cut off at the largest ordinal � of V�+1. Then M believes that this sentence holds in V M

�+1 and so that V M
� satisfies Φ(n+1).

Since M ⊧ ZFC∗
n+1, thus M ⊧ “� ∈ C(n+1)”. Again, our theory implies that j(�) > � and because j“� is definable in M , we have
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j“� ∈ V M
�+1. Summarising, we have an elementary embedding j ∶ V�+1 → V M

�+1 with j(�) > � and j“� ∈ V M
�+1. Define a fine,

normal and �-complete ultrafilter on ℘�� as usual, by letting X ∈ U iff j“� ∈ j(X). By Bagaria’s and Goldberg’s Theorem 4.2, it
suffices to verify that X = {s ∈ ℘��∶ ot(s) ∈ C(n+1)} ∈ U . Notice that because � ∈ C(n+1) and cof(�) ≥ �, for s ∈ ℘�� we have

V�+1 ⊧ ∀s ∈ ℘��(s ∈ X ↔ V� ⊧ “ot(s) ∈ C(n+1)”).

By elementarity,
V M
�+1 ⊧ ∀s ∈ ℘j(�)j(�)(s ∈ j(X) ↔ V M

� ⊧ “ot(s) ∈ C(n+1))”.
So we have to show that V M

� ⊧ “� = ot(j“�) ∈ C(n+1)”. Because M ⊧“� ∈ C(n+1)”, this is equivalent to M ⊧“� ∈ C(n+1)”.
As really � ∈ C(n+1), and � > � ∈ C(n+1), we have V� ⊧ “� ∈ C(n+1)”. Because V� ≺Σn+1

M by assumption, this implies
M ⊧ “� ∈ C(n+1)”, verifying X ∈ U .

An easy adaptation of the above proof further gives:

Theorem 4.5. The following are equivalent for every n ≥ 1 and every cardinal �:

(1) � is the smallest C(n)-extendible cardinal.

(2) � is the smallest cardinal such that for every � ∈ C(n+1), if T ⊆ s,n+1 is a <�-satisfiable theory, then there is a strong
s,n+1-Henkin model (M,) of T such that M ⊧ ZFC∗

n+1 and V� ≺Σn+1
M .

Because the strength of any logic is bounded by s,n
�! for some n and �, and because VP is equivalent to the existence of

C(n)-extendible cardinals for any n, our results imply the following Makoswky-like characterisation of VP:

Corollary 4.6. The following are equivalent:

(1) VP

(2) For any logic  and any natural number n, there is a cardinal � such that if � ∈ C(n) and T ⊆  is a <�-satisfiable theory,
then there is a strong -Henkin model (M,) of T such that V� ≺Σn

M .

We would like to state some remarks about closely related results.
Firstly, similar characterisations of VP have been obtained with other model-theoretic properties. E.g., Boney showed that

the existence of a compactness number of s,n is equivalent to the existence of a C(n)-extendible cardinal (cf. [8, §4.1]). Stavi
showed that VP is equivalent to the existence of Löwenheim-Skolem-Tarski numbers for every logic (cf. [15]). Gitman and the
first author showed that the existence of an upward Löwenheim-Skolem-Tarski number of s,n is equivalent to the existence of a
C(n)-extendible cardinal and that VP is equivalent to the existence of upward Löwenheim-Skolem-Tarski numbers for every logic
(cf. [11]).

Also, there is a weakening of Vopěnka’s Principle with a category theoretic motivation due to Adámek, Rosický, and Trnková
called Weak Vopěnka’s Principle WVP (cf. [1]) that has been stratified in a similar way by the notions of Πn-strong cardinals by
Bagaria and Wilson.

Theorem 4.7 (Bagaria & Wilson; [5, §5]). WVP holds if and only if for every n, there is a Πn-strong cardinal.

Boney and the first author provided the following characterisation of Πn-strong cardinals in terms of weak Henkin models of
s,n, published in the first author’s Ph.D. thesis.

Theorem 4.8 (Boney & O.; [17, Theorem 2.3.6]). The following are equivalent for every n ≥ 2 and every cardinal �:

(1) � is Πn-strong

(2) For every � which is a limit of C(n) and every theory T ⊆ s,n
�! that can be written as an increasing union T =

⋃

�<� T�
of theories T� that each have models of size ≥ �, there is a weak s,n

�!-Henkin model (M,) of T such that M ⊧ ZFC∗
n,

|A| ≥ � and V� ≺Σn
M .

Theorems 4.7 & 4.8 together yield a characterisation of WVP in terms of weak Henkin models. One can therefore jump
between the stratifications of VP by C(n)-extendible cardinals, and of its weakening WVP by Πn-strong cardinals, by switching
between assuming the compactness principle about strong Henkin models from Theorem 4.4, and the compactness principle
about weak Henkin models from Theorem 4.8.
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5 SUPERSTRONG CARDINALS

We would like to close by showing how superstrong cardinals can be characterised via compactness properties for weak Henkin
models. To our best knowledge, this is the first known model-theoretic characterisation of superstrong cardinals.

Theorem 5.1. The following are equivalent:

(1) � is superstrong with target �.

(2) For any theory T ⊆ 2
�! such that rk(T ) < � + ! and that can be written as an increasing union T =

⋃

�∈� T� of theories
T� which each have a model of rank < � + ! and of size ≥ �, there is a weak 2

�!-Henkin model (M,) of T such that
V� ⊆ M ⊆ V�+!, M ⊧ ZFC∗, |A| ≥ � and M ⊧ � = ℶM

� .

Proof. First assume (1) and suppose we have a setup as in (2). Then there is a function f with domain � such that f (�) ⊧ T� ,
rk(f (�)) < � + ! and |f (�)| ≥ �. Take an elementary embedding j ∶ V → N such that crit(j) = �, j(�) = � and Vj(�) ⊆ N .
Consider the sequence (T� ∶ � < �). Evaluating it via j leads to a sequence j((T� ∶ � < �)) = (T ∗

� ∶ � < j(�)) such that j“T ⊆ T ∗
� .

Notice that j“T is a copy of T . By elementarity, in N , we have that j(f )(�) ⊧ T ∗
� and so in particular, for every ' ∈ j“T ,

N ⊧“j(f )(�) ⊧ '”. Further, rk(j(f )(�)) < j(�) + ! = � + ! and thus j(f )(�) ∈ V N
�+!. Then (M,) = (V N

�+!, j(f )(�)) gives
our desired Henkin model: Because V� ⊆ N , we have V� ⊆ V N

�+! ⊆ V�+!. As ZFC proves that ZFC∗ holds in the limit stages of
the cumulative hierarchy, V N

�+! ⊧ ZFC∗. Because V N
�+! and N agree on second-order satisfaction, we have V N

�+! = M ⊧“ ⊧ '”
for every ' ∈ j“T . By elementarity, N , and hence M believes that j(�) = � is a ℶ-fixed point. Finally, note that � is actually a
(strong limit) cardinal as the target of a superstrong embedding, and so because by elementarity N ⊧ |j(f )(�)| ≥ j(�) = �, that
|j(f )(�)| ≥ � really holds in V .

And now assume (2). We show that � is superstrong with target �. By standard results (cf., e.g., [13, §26]), if j ∶ V�+1 → N is
an elementary embedding such that crit(j) = �, j(�) = � and Vj(�) ⊆ N , and we derive an extender by letting for a ∈ [�]<! and
X ⊆ [�]<!,

X ∈ Ea iff a ∈ j(X),
then the extender power of the universe witnesses that � is superstrong with target �. So it is sufficient to derive an embedding as
above. For this, consider the following theory:

T = ElDiag2
�!
(V�+1,∈) ∪ {ci < c < c� ∶ i < �},

where c is a new constant and the ci are the constants from the elementary diagram. Clearly, T can be considered to have rank
< � +! and can be written as an increasing union of length � of theories T� for � < � by considering in T� only those bits of the
second part of T such that i < �. Then (V�+1,∈) gives a model of T� of size ≥ � and of rank < � + !. By (2), we get a transitive
set M and  ∈ M such that M ⊧“ ⊧ '” for every ' from (a copy of) T and such that V� ⊆ M ⊆ V�+!, M ⊧ ZFC∗, |A| ≥ �
and M ⊧ � = ℶM

� . Because T contains Magidor’s Φ, we have that A = V M
� for some �. By size of A and � = ℶM

� , we get � ≥ �.
Further, by absoluteness of �!-satisfaction, in V we see that  ⊧ ElDiag�!

(V�+1,∈) and thus there is an elementary embedding
j ∶ V�+1 → A = V M

� such that crit(j) = �. Because A ∈ M ⊆ V�+!, this implies � = � + 1 and then clearly j(�) = �. Because
V� ⊆ M , finally Vj(�) = V� ⊆ V M

�+1 = A.
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