KLEINBERG SEQUENCES AND PARTITION
CARDINALS BELOW 4.

BENEDIKT LOWE

ABSTRACT. The author computes the Kleinberg sequences derived
from the three different normal ultrafilters on 5%.

1. INTRODUCTION

Eugene Kleinberg linked the theory of partition cardinals with the
Axiom of Determinacy AD by showing that the first w 4+ 1 infinite
cardinals satisfy certain large cardinal properties defined via partition
relations. Indeed, his proof didn’t actually use the Axiom of Determi-
nacy but some of its consequences.

More generally, Kleinberg showed (for a proof, cf. [K177] or (for a
more thorough presentation) [Sch99]):

Theorem 1.1. Let x be a cardinal with the strong partition property
and g be a normal ultrafilter on k. Let k1 := & and K41 = &,"/p.

Then

(i) k1 and K are measurable,
(ii) for all n > 2, cf(k,) = Ka,
(iii) K, is a Jénsson cardinal, and
(iv) sup{kn;n € w} is a Rowbottom cardinal.

Moreover, if k% /p = k%, then £, = (/{n)+ for all n € w.

Corollary 1.2. Assume AD. Then for all positive natural numbers n,
N, 1s a Jonsson cardinal and R, is a Rowbottom cardinal.
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Proof : After a brief look at Theorem 1.1 we realize that nothing
is to show if Ry has the strong partition property and lel/,u =N,
for some (the only) normal ultrafilter ¢ on R;. But the first assertion
is a theorem of Martin (cf. [Ka94, Theorem 28.12]), the second is a
theorem of Solovay (cf. [K177, Theorem 2.9]). q.ed.

At that time, it was unknown whether there are any natural assump-
tions (e.g., the Axiom of Determinacy) under which the conditions of
Kleinberg’s Theorem 1.1 are met except for the case mentioned in the
proof of Corollary 1.2.

The deep structural results of Jackson’s computation of 8} immedi-
ately provided additional examples for Kleinberg’s theorem under AD:
All odd projective ordinals 5én+1 are starting points for sequences of
successive Jonsson cardinals derived from the w—cofinal normal ultra-

filter (cf. Theorem 2.5 and Fact 2.4 (vii)).

But Kleinberg’s Theorem 1.1 provides us with even more sequences
of Jénsson cardinals starting from 5%n+1 since we have as many normal
measures on 5§n+1 as we have regular cardinals below it. Where exactly
are these Jonsson and Rowbottom cardinals? Can we compute the
cardinality of the members of these additional Kleinberg sequences?

In this note we shall answer these questions and compute the Klein-
berg sequences derived from the w;—cofinal and the wy—cofinal measures
on §5. An important ingredient here is the exact knowledge of cofinal-
ities of successor cardinals between &3 and &} provided by [JaKhoo].

2. PREREQUISITES AND THE SHIFTING LEMMA

To compute the Kleinberg sequences, we will use a substantial amount
of knowledge about the behaviour of the projective ordinals and of the
combinatorial theory below 8. under AD. Nevertheless we try to keep
the paper understandable for readers with a basic understanding of
Determinacy and Large Cardinals by listing all theorems that we shall
use later on in this section.

Any readers interested in the basic theory (and definitions) of Jénsson
and Rowbottom cardinals are referred to [Ka94, §7 & §8].

Definition 2.1. Let & be a cardinal. We shall say that x has the
strong partition property if K — (k)* holds, i.e. if for every par-
tition of [£]* into two blocks there is a homogeneous set of order type
K.

Note that the strong partition property cannot hold for any cardinal
if we assume the Axiom of Choice AC: by a result of Erdos and Rado
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(cf. [Ka94, Proposition 7.1]) no partition relation can have infinite
exponents if the Axiom of Choice holds.

That the strong partition property of & really is a property with
astonishing consequences for the combinatorial theory of k£ (or, to put
it in Jim Henle’s words, that it is “one of the most powerful partition
properties known to man [He79, p. 151]”), can be seen in the next
result of Kleinberg, a proof of which can be found in [Ka94, Theorem
28.10 & Exercise 28.11]:

Theorem 2.2. Let k be a cardinal with the strong partition property
and A < k a regular cardinal. Then C), the filter generated by the
A—closed unbounded sets in &, is a normal ultrafilter on x. We call C}
the A—cofinal filter or measure.

In addition, if k is not weakly Mahlo, then these are the only normal
ultrafilters on k.

The reader was already informally introduced to Kleinberg sequences
in Theorem 1.1. Now we fix our notation:

Definition 2.3. Let  be a cardinal with the strong partition property
and g a normal measure on k. We then define a sequence of well-
ordered structures (k#;n < w) as follows:

o kY 1=k,

o iy, = (), and

o kM= sup{kr;n € w}.

This sequence is called the Kleinberg sequence derived from .

As we already mentioned in Theorem 1.1, all elements of a Kleinberg
sequence are Jonsson cardinals, and k, is a Rowbottom cardinal.

We define the projective ordinals by
0! :=sup{¢; € is the length of a prewellordering of w* in A!}.

Even before Jackson’s results, a couple of things were known about
the projective ordinals under AD:

Fact 2.4. Let n be a natural number. Assume AD. Then:
(i) (Kunen, Martin 1971) 5én+2 = (5%n+1)+,
(ii) (Kechris 1974) d3,,,; is the cardinal successor of a cardinal of
cofinality w,
(iii) (Martin, Kunen 1971) all §! are measurable,
(iv) (Martin, Kunen 1971) d, =Ny, 85 = Rypq, and 85 = Nypp,
(v) (Martin, Paris 1971) &; — (5})5%, and for all o < 4}, the relation
d5 — (83)* holds,
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(vi) (Martin 1971) for all @ < w; the partition relation 5%”"‘1 -
(J;H_H)“ holds,

(vii) (Kunen 1971) the w—cofinal measure C;ﬂ
2n41

1
1 . 1 52n+1 w g1
on &y, with 4,4 /C5§n+1 = 03,9, and

1s a normal measure

(viii) (Martin 1980) 5;5%’ /C;’f = N,.041 and 5;5%’ /C;”f = Nyey1, and these

two cardinals are measurable.

Proof : A proof of all parts except for the last can be found in
[Ke78]. Fact 2.4 comprises of Theorem 3.12, Theorem 3.10, Theorem
5.1, §6, Theorem 12.1, Corollary 13.4, Theorem 11.2, and Theorem
14.3 of [Ke78]. The last is part of [Jacc, Chapter 7]. q.e.d.

Since the values of 8}, 83, 83, and &) were known, the next open
question was the value of §;. This was the content of the First Victoria
Delfino Problem (cf. [KeMo78]) and was solved by Steve Jackson who
computed &5 to be R uw; (cf. [Ja88] and [Jaoc]):

Theorem 2.5. Assume AD. Let E be the function recursively defined
by E(0) =1 and E(n + 1) = wP™. Then for every n € w,

5%n+1 = NE(Zn-I—l)-}-l;
and all odd projective ordinals have the strong partition property.

This computation gave rise to a detailed analysis of the cardinals
between 83 and 5 that will be used in this note.

The main tool of our computation will be the following theorem
which is an elaboration of the proof of the “moreover” part in Theorem
1.1:

Ultrapower Shifting Lemma 2.6. Let k = X, < A = R, 43, and let
@ be a k—complete ultrafilter on . Let 4 be such that x*/p = N,

Suppose that for all cardinals v such that k < v < X the following
holds:

(i) Either v is a successor and cf(v) > &,
(ii) or v is a limit and cf(v) < k.

Then A*/p < N,y5.

Proof : The proof proceeds by induction on 3. The case 5 = 0 is
just the definition of ~.

For the successor step suppose that A = N,1541 and that R,15%/p <
Ryps.
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Pick any n € A*/u. Let f: k — X be a function representing 7, so
n = [f]u Since cf(X) > &, we know that ran(f) is bounded in A, say
by n* < A. Hence n = {v;v <n} C (n7)"/p.

But Card((n*)*/u) = Card((Card(n*)*/p) < R,15 by the induction
hypothesis. Thus every ordinal in A*/y has cardinality < N\,;3, conse-
quently */p <Ry g1,

Now we look at the limit step, where y is a limit ordinal and for all
f < x we have Roi5%/p < Noys.

We show that oy "/p = U<, Rats”/p. This shows the claim, since

Card(| J Rays®/u) < sup{Card(Rays"/p); B < x}
B<x
< sup{Ry485 8 < x} = Rygy

As the backwards inclusion is clear, we proceed to the other direction.
Take n € Noqy"/p and a function f : xk — Voyy with [f], = 1. Let
(Bs; 0 < cf(x)) be a disjoint familiy of sets of cardinality Card(Bs) <
Naty none of which is cofinal in R,4, (e.g., the intervals determined by
a cofinal sequence of length cf(y)).

Now define Fs := (f~')”"Bs. Then (Fs;é < cf(x)) is a disjoint par-
tition of k into less than k sets (by assumption on cf(x)), hence by
k—completeness there is a dg such that Fs, € p.

But Bjs, was not cofinal in Ny, so we can set g := sup(Bs,) + 1 <
Roty, and define fo(¢) := min(f(£),80). Let 81 < x be the unique
ordinal such that Card(5y) = Naqtp, -

Then fo: K — Rayp 41 and [fo], = [f]u, hencen € R, 5 /p. q.ed.

3. COMPUTATIONS OF THE KLEINBERG SEQUENCES

By Theorem 2.2, we have exactly three normal ultrafilters yo := C}),
3
1

si» and po := CF on &, corresponding to the three regular
3

5
cardinals Ry, ®;, and X, below 5. Using the fact that &3 has the
strong partition property by Theorem 2.5 and Kleinberg’s Theorem
1.1, we receive three Kleinberg sequences (k2°;n < w), (k¥;n < w),
and (k42;n < w).

The first of these is completely known — it is derived from the w—
cofinal filter on §3 and thus satisfies the “moreover” part of Theorem
1.1 by Fact 2.4 (vii). Therefore we have s#° = R, ,, for all n < w.

By Fact 2.4 (viii), we know the values of &' = R,241 and &5? =
R wt1. So we are left with computing the higher values of k4" and x#2.
This is made possible by the exact computations of cofinalities below

8. by Jackson and Khafizov in [JaKhoo]:

pr = C
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Theorem 3.1. Suppose 85 < Nopq < 6i. Let a = w + -+ 4 WP,
where w* > 1 > -+ > 3, be the normal form for . Then:

o If 3, = 0, then cf(Nop1) = 8; = Nyyo,
e if 3, > 0, and is a successor ordinal, then cf(N,11) = Ry.241, and
e if 8, > 0 and is a limit ordinal, then cf(Naq1) = Rywg.

We come now to the main result of this note:

Theorem 3.2. Assume AD and the above notation. Let n > 1. Then
wht = Nypnqr and k52 = R 4w (no1)41

Proof : Both cases proceed by induction. The case n = 1 is Fact
2.4 (viil) as mentioned above.

We start with the wy sequence. By definition &}, = (k4! )5%’ /Cst, and
3

by induction hypothesis we know that x! = R, 11 = Vo pipu(no1)41-
Looking at the Ultrapower Shifting Lemma 2.6 with o = w + 1,
f=w-(n—1)+1,and y =w-2+ 1, we get
8) /ow
/fZiH = (/‘fﬁl) B/Cag < Nw~2+1+w~(n—1)+1 = Nw-(n-}-l)-}—l-
By Theorem 1.1, we know that cf(s}},) = Nu.a41. But between i

and R,.(n41)41, there is according to Theorem 3.1 exactly one cardinal
with cofinality R,.241, and this is ¥, (,41)41 itself. So Kphy = Ny (1) +1-

The case wy works exactly the same way: We apply the Ultrapower
Shifting Lemma 2.6, this time with a = w+ 1, 8 = w¥ - n + 1, and
v = w* + 1, and then check using Theorem 3.1 that there is only one
possibility left. q.e.d.

Note that Theorem 3.2 together with the proof of Lemma 2.6 also
gives some information about the lengths of several other ultrapowers:

E.g., suppose that Nw.z's%’/cgf < N,.3. In this case, by the proof of
3

Lemma 2.6, ' cannot be ¥, 3., contradicting Theorem 3.2. Hence

1 w
R2% /Col = Rus.
Now we are prepared to harvest the fruits of our work:

Corollary 3.3. Assume AD. Then the cardinals R,.,11 and N, e.,11
are Jonsson for every n € w. Furthermore, the cardinals N » and N .,
are Rowbottom.

Proof : Immediate from Theorem 3.2 and Theorem 1.1. q.e.d.
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4. OTHER CARDINALS BELOW AND BEYOND 4,

There are much more cardinals between &3 and 8. than the ones we
managed to reach with the three Kleinberg sequences. There is nothing
known about large cardinal properties of these cardinals. E.g., nothing
is known about N,.5 4+ 2 which, incidentally, is the first infinite cardinal
of which which don’t know that it has any large cardinal properties
under AD. The results in this paper might shed some light on the limit
cardinals, though: N, .3, the first limit cardinal without known large
cardinal properties, is the ultrapower of a Rowbottom cardinal with
a normal ultrafilter according to the remark after Theorem 3.2. This
fact might prove to be useful for a more thorough investigation of X3
and comparable cardinals.

Even more interesting seems the glance beyond .. Jackson in
his [Ja99] lists the seven measurable cardinals between 85 and J1 as:

'17 - Nww“’+2, NUJ“’W+UJ+17 NUJ“}W+UJ“}+17 Nwww.2+1, Nww“’+1 +17 Nww“"2+17 aIld
Nwwww +1°
mal ultrafilters on d;, hence they are the second cardinals in the seven
Kleinberg sequences derived from these filters. To apply Lemma 2.6
to these sequences and compute the Jénsson cardinals between d; and
87 only one piece of information is missing: the analysis of cofinalities
corresponding to Theorem 3.1.

These cardinals are the ultrapowers of 8 with the seven nor-
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