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Differential Topology

Problem Set 2

1. What are the possible degrees of maps from T 2 to itself? Are homotopy classes of such maps
classified by their degree?

2. De Rham cohomology of a manifold M is defined for any k ≥ 0 as

Hk
dR(M) :=

ker d : Ωk(M) → Ωk+1(M)

Im d : Ωk−1(M) → Ωk(M)
.

Here Ωk(M) denotes the real vector space of smooth differential k-forms on M . The aim of this
exercise is to prove that integration provides an isomorphism of the top-dimensional de Rham
cohomology group Hn

dR(M) of a closed, connected and oriented n-dimensional manifold with
R. This fact was used in Problem 15 on the first problem set.

a) Prove by induction on n that if f : Rn → R is a function with compact support and∫
Rn f(x) dx1 . . . dxn = 0, then there exist functions ui : Rn → R, i ∈ {1, . . . , n} with

compact support such that f =
∑

i
∂ui

∂xi
.

Hint: The case n = 1 is an easy consequence of the fundamental theorem of calculus. For
the induction step consider the auxiliary function

g(x2, . . . , xn) :=

∫
R

f(x1, x2, . . . , xn) dx1,

and observe that by Fubini’s theorem one can apply the induction hypothesis to obtain
u2 . . . , un. To get the remaining function u1, adjust

w1(x1, . . . , xn) :=

∫ x1

−∞
f(t, x2, . . . , xn) dt

by subtracting a suitably cut off version of g.

b) Deduce from this that every compactly supported form ω ∈ Ωn(Rn) with vanishing integral
is the differential of a compactly supported form η ∈ Ωn−1(Rn).

c) Prove that for a closed connected oriented manifold M there are finitely many open sets
U0, U1, . . . , Ur diffeomorphic to balls and covering M and diffeomorphisms φi : M → M
isotopic to the identity with φi(U0) = Ui.

d) Prove that for any closed form α ∈ Ωn(M) with compact support in some Ui, φ∗
iα and α

are cohomologous.
Hint: Consider an isotopy Φt : M → M , t ∈ [0, 1] with Φ0 = idM and Φ1 = φi. Now argue
that for t, t′ ∈ [0, 1] sufficiently close, Φ∗

tα and Φ∗
t′α will both have support in Φ−1

t (Ui)
and have the same integral, and so by part b) they must be cohomologous. Finish with a
standard open-and-closed argument.

Bitte wenden!



e) Now complete the proof of the original claim by using a partition of unity subordinate
to the cover {Ui}i=0,...,r of M from part c) to break up a given form ω ∈ Ωn(M) whose
integral over M vanishes into components ωi with support in Ui and applying the result
of part b) to the form

ω̃ =

n∑
i=0

φ∗
iωi

with support in U0, which by part d) is cohomologous to ω.

3. Suppose p : E → B is a vector bundle over a compact base B.

a) Prove that for N ∈ N sufficiently large there exists a surjective bundle morphism RN → E.

b) Prove that for K ∈ N sufficiently large there exists an injective bundle morphism E → R
K .

4. Prove the collar neighborhood theorem: If M is a smooth manifold with compact boundary B =
∂M , then B has a neighborhood N ⊆ M in M diffeomorphic to B× [0, 1) via a diffeomorphism
sending p ∈ B to (p, 0) ∈ B × [0, 1).

5. Prove that for any vector bundle E → B the vector bundle E ⊕ E → B is orientable. Deduce
as a consequence that the total space TM of the tangent bundle of any smooth manifold M is
orientable, regardless of the orientability of M itself.

6. Let f : M → M ′ be a smooth map between smooth manifolds which is transverse to the
submanifold Z ′ ⊆ M ′. We already know that in this case the inverse image Z := f−1(Z ′) ⊆ M
is a smooth submanifold of the same codimension as Z ′. Prove that the normal bundle of
Z ⊆ M is the pullback of the normal bundle of Z ′ ⊆ M ′.
Note that for Z = {q} a regular value this implies that f−1(q) ⊆ M has trivial normal bundle.
So while many interesting submanifolds arise as preimages of regular values under a smooth
map, “most” submanifolds cannot be obtained in this way, simply because normal bundles are
typically not trivial.

7. a) Prove that Sn admits a nonvanishing vector field if and only if n is odd.
Hint: For the “only if” part, use such a vector field to construct a homotopy from the
identity to the antipodal map.

b) Suppose M and N are manifolds of positive dimension such that TM ⊕ R and TN ⊕
R are trivial, and assume that TM has a nonvanishing section. Prove that under these
assumptions T (M ×N) is a trivial bundle.

c) Deduce that a product of two or more spheres with positive dimensions has trivial tangent
bundle if and only if at least one of them has odd dimension.

d) Illustrate your proof by constructing explciti trivializations of T (S1×S2) and T (S2×S5).

8. The aim of this exercise is to complete the proof of the proposition formulated in class that
the connected sum of connected manifolds of the same dimension n > 0 is well-defined up to
diffeomorphism.

Siehe nächstes Blatt!



a) Use the isotopy extension trick (suitably applied to β−1 ◦ α) to prove that for any two
orientation-reversing diffeomorphisms α : (0, 1) → (0, 1) and β : (0, 1) → (0, 1) there exists
a diffeomorphism g : (0, 1) → (0, 1) with compact support such that α and β ◦ g agree on
the interval ( 14 ,

3
4 ).

b) Now use this together with the fact proved in class that the identifications in performing
the connected sum can be done on a smaller closed annulus inside B(0, 1)\{0} to prove that
for ball embeddings h1 : B(0, 1) → M1 and h2 : B(0, 1) → M2 there is a diffeomorphism

M1#(h1,h2,α)M2
∼= M1#(h1,h2,β)M2

9. Prove that if M is any closed oriented manifold, then M#(−M) bounds a compact oriented
manifold of one dimension higher.

10. a) Use van Kampen’s theorem to prove that for connected manifolds M1 and M2 of dimension
n ≥ 3 we have

π1(M1#M2) = π1(M1) ⋆ π1(M2),

where ⋆ denotes free product of groups.

b) Use this to prove that for n ≥ 3 the k-fold connected sums

#k(S1 × Sn−1)

for different values of k are pairwise non-diffeomorphic.

c) (Assuming you know how to compute homology or cohomology.) Prove more generally that
for n ≥ 2 and integers 0 < ℓi < n and ki ∈ N there is a diffeomorphism

#k1(Sℓ1 × Sn−ℓ1) ∼= #k2(Sℓ2 × Sn−ℓ2)

if and only if k1 = k2 and either ℓ1 = ℓ2 or ℓ1 = n− ℓ2.


