
## ELEMENTARE DYNAMISCHE SYSTEME

## Projekt 6

In diesem Projekt geht es um verschiedene in der Vorlesung behandelte Themen.

**1.** Wir betrachten die Abbildung  $f:[0,6] \to [0,6]$  mit dem folgenden Graphen (in schwarz):



- a) Zeigen Sie, dass f eine periodische Bahn mit minimaler Periode 7 besitzt.
- b) Zeigen Sie, dass f keine periodische Bahn mit minimaler Periode 5 besitzt. Hinweis: Was können Sie jeweils über die Bilder der Teilintervalle [n, n + 1] unter der fünften Iteration f<sup>5</sup> sagen? Was wissen Sie über die Monotonie von f<sup>5</sup> auf dem Teilintervall [3, 4]?
- c) Kann f eine anziehende periodische Bahn (egal welcher Periode) haben? Begründen Sie Ihre Aussage!
- **2.** Wir betrachten die Iteration von komplexen quadratischen Funktionen, d.h. Abbildungen  $Q_c$ :  $\mathbb{C} \to \mathbb{C}$  der Form  $Q_c(z) = z^2 + c$ .
  - a) Geben Sie einen vollständigen Beweis der folgenden Aussage: Die Einschränkung der Abbildung  $Q_{-2}(z) = z^2 2$  auf die Teilmenge  $U := \mathbb{C} \setminus [-2,2]$  ist topologisch konjugiert zur Einschränkung der Abbildung  $Q_0(z) = z^2$  auf die Teilmenge  $V := \{z \in \mathbb{C} : |z| > 1\}.$
  - b) Welche Schlussfolgerung lässt sich daraus für die gefüllte Julia-Menge und für die Julia-Menge der Abbildung  $Q_{-2}:\mathbb{C}\to\mathbb{C}$  ziehen? Begründen Sie Ihre Aussage!