Wichtige Sätze und Definitionen zu §5: Polynomalgebren und Ideale

aus der Vorlesung:

LV-NR 150 239

Veranstaltung Diskrete Mathematik II, 4.0 std

Dozent Holtkamp, R.

5.1

(i) Ist V ablesche Gruppe (bzgl. +), K Körper, so heißt V zusammen mit

$$: K \times V \to V$$

$$(\lambda, v) \mapsto \lambda \cdot v$$

K-Vektorraum genau dann, wenn

$$\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w,$$

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v,$$

$$\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v,$$

$$und 1_K \cdot v = v$$

 $f\ddot{u}r$ alle $\lambda \in K$, $v, w \in V$ gilt.

(Homomorphismen: lineare Abbildungen)

(ii) Ein K-Vektorraum V zusammen mit Verknüpfung $\circ: V \times V \to V$ heißt K-Algebra genau dann, wenn \circ assoziativ ist und außerdem K-bilinear, d.h.

$$(v_1 + v_2) \circ w = v_1 \circ w + v_2 \circ w,$$

$$(\lambda \cdot v) \circ w = \lambda \cdot (v \circ w),$$

$$v \circ (w_1 + w_2) = v \circ w_1 + v \circ w_2,$$

$$v \circ (\lambda \cdot w) = \lambda \cdot (v \circ w)$$

Bemerkung: Also ist V versehen mit einer Ringstruktur (bezüglich der Multiplikation \circ , die in jedem Argument linear ist). Meist schreibt man \cdot statt \circ .

(Von K-Algebrahomomorphismen verlangt man, dass sie lineare Abbildungen und Ringhomomorphismen sind.)

5.2

Ist V K-Vektorraum, $\emptyset \neq B \subseteq V$, so heißt B eine K-Vektorraumbasis (kurz K-Basis) von V \iff B ist Erzeugendensystem ($\forall v \in V \exists Dartstellung v = \sum_{i=1}^{r} \lambda_i w_i, \lambda_i \in K, w_i \in B$) und linear unabhängig ($\sum_{i=1}^{r} \lambda_i w_i = 0 \Longrightarrow \lambda_i = 0 \forall i$).

Bemerkung: Es gilt der Satz: B, B' Basen von $V \Longrightarrow \#B = \#B'$. Man setzt $\dim_K(V) := \#B$.

Beispiel

 K^n ist K-Vektorraum mit K-Basis

$$e_1 = (1, 0, \dots, 0)$$

 \vdots
 $e_n = (0, 0, \dots, 1)$

Satz 1 (Polynomalgebra K[x])

Sei K Körper.

- (i) Es existiert ein K-Vektorraum A mit K-Basis $\{x^i : i \in \mathbb{N}_0\}$.
- (ii) \exists ! K-bilineare Abbildung \cdot : $A \times A \rightarrow A$ mit $x^i \cdot x^j = x^{i+j}$.
- (iii) Azusammen mit \cdot ist K-Algebra mit Eins $1=x^0.$ $(K\cong K\cdot x^0\subset A)$

5.3

Die K-Algebra aus (iii) in Satz 1 heißt K-Algebra der Polynome in einer Variablen x über K und wird mit K[x] bezeichnet.

Beispiel

Ist $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j$, so ist $f = g \iff a_i = b_i \forall i \text{ (wobei } a_i, b_j \text{ für } i > n, j > m \text{ Null gesetzt seien)}.$

5.4

- a) Sei $f = \sum_{i=0}^r a_i x^i \in K[x], \ a_r \neq 0$, so heißt r auch der Grad $\operatorname{grad}(f)$ von f. $\operatorname{grad}(0) := -\infty, \ d.h. \ \operatorname{grad}: \ K[x] \to \mathbb{N}_0 \cup \{-\infty\}.$
- b) $f = \sum_{i=0}^{r} a_i x^i$ mit Grad r heißt normiert $\iff a_r = 1$.
- c) $f \in K$ -Algebra A heißt Einheit $\iff f$ invertierbar $bzgl \cdot ;$ man bezeichnet die Gruppe der Einheiten $mit \ A^*$.

Satz 2 (Grad)

Es seien $f, g \in K[x]$.

- (i) $\operatorname{grad}(f+g) \leq \max(\operatorname{grad}(f), \operatorname{grad}(g))$
- (ii) $\operatorname{grad}(f \cdot g) = \operatorname{grad}(f) + \operatorname{grad}(g)$
- (iii) $(K[x])^* = K^*$

Zu (ii):
$$(1+x^2) \cdot (1+x^3) = 1 + x^2 + x^3 + x^5$$
.

5.5

 $f \in K[x]$ mit grad $(f) \ge 1$ heißt **irreduzibel** in K[x] : \iff wenn $g, h \in K[x]$ und $f = g \cdot h$, so ist stets $g \in K^*$ oder $h \in K^*$.

Übung 1

 $f = x - \lambda \in K[x], \ \lambda \in K, \ ist \ irreduzibel \ f\"ur \ alle \ \lambda.$ $x^2 + 1, \ x^2 + x \ sind \ nicht \ irreduzibel \ in \ \mathbb{Z}_2[x].$ $x^2 + x + 1 \ ist \ irreduzibel \ in \ \mathbb{Z}_2[x].$

Satz 3 (Division mit Rest und ggT)

 $f,g \in K[x].$

- (i) Ist $g \neq 0$ so existieren $q, r \in K[x]$ mit $f = q \cdot g + r$, grad (r) < grad (g).
- (ii) zu $f \neq 0, g \neq 0$ existiert genau ein normiertes Polynom $h \in K[x]$ mit: h teilt sowohl f als auch g (h|f, h|g), und existiert ein weiteres $\tilde{h} \in K[x]$ mit $\tilde{h}|f$ und $\tilde{h}|g$, so gilt $\tilde{h}|h$.

(iii) Bezeichnet ggT(f,g) := h, dann gilt

$$ggT(f, g) = ggT(f, g - q \cdot f) \quad \forall \ q \in K[x]$$

(iv) Es gibt $\tilde{f}, \tilde{g} \in K[x]$ mit

$$\tilde{f} \cdot f + \tilde{g} \cdot g = \operatorname{ggT}(f, g)$$

5.6

ggT(f,g) = h wie in (ii) von Satz 3 nennt man größten gemeinsamen Teiler von f und g.

Übung 2

Division mit Rest für $K = \mathbb{Z}/2\mathbb{Z}$, $f = x^5 + 1$, $g = x^3 + x$, ggT(f,g) = x + 1, $\tilde{g} = x^2 + 1$.

Satz 4 (Zerlegung in Irreduzible)

Sei $f \in K[x]$, grad $(f) \ge 1$.

- (i) f ist Produkt von irreduziblen Polynomen p_1, \ldots, p_r in K[x].
- (ii) Diese Darstellung ist eindeutig bis auf die Reihenfolge und bis auf Multiplikation von p_i mit $c_i \in K^*$.
- (iii) Ist f normiert, so ist f Produkt von normierten irreduziblen Polynomen p_1, \ldots, p_r .

Übung 3

 $\begin{array}{l} p \ irreduzibel \ in \ K\left[x\right], \ 0 \neq g \in K\left[x\right] \ mit \ \mathrm{grad} \ (g) < \mathrm{grad} \ (p) \\ \Longrightarrow \quad \mathrm{ggT} \ (p,g) = 1 \end{array}$

Beispiel

$$K = \mathbb{Z}/2\mathbb{Z}, \ p = x^2 + x + 1, \ ggT(p, x^3 + x) = 1$$

Übung 4

K[x] ist nullteilerfrei

Satz 5 (Einsetzungshomomorphismus)

A sei K-Algebra mit Eins 1_A und $a \in A \implies \exists ! K$ -Algebrahomomorphismus $\varphi_a : K[x] \to A$ mit

$$\varphi_a(1) = 1_A \text{ und } \varphi_a(x) = a.$$

Man nennet φ_a den **Einsetzungshomomorphismus** und schreibt $f(a) := \varphi_a(f)$.

Beispiel:
$$\varphi_a\left(\sum_{i=0}^n c_i x^i\right) = \sum_{i=0}^n c_i a^i$$

Speziell: Ist $\lambda \in K$, so ist φ_{λ} Homomorophismus $K[x] \to K$. Man nennt $\lambda \in K$ Nullstelle von f, wenn $f(\lambda) = 0$ ist.

Beispiel

$$f = x^3 - x$$
, $K = \mathbb{Z}/3\mathbb{Z}$. $f(\lambda) = 0 \ \forall \ \lambda \in K$, aber $f \neq Nullpolynom$.

Ubung 5

$$0 \neq f \in K[x], \ \lambda \in K. \ Dann: (x - \lambda) | f \iff f(\lambda) = 0.$$

Nur für grad $(f) \leq 3$ gilt:

$$f \ irreduzibel \iff f(\lambda) \neq 0 \quad \forall \ \lambda \in K$$

5.7

Sei $I \subseteq K[x]$ nichtleere Teilmenge. I heißt **Ideal** in K[x] genau dann, wenn

- (i) wenn $f_1, f_2 \in I$, so ist $f_1 + f_2 \in I$
- (ii) wenn $f \in I$, $r \in K[x]$, so ist $f \cdot r \in I$
- (iii) Ist I Ideal in K[x], $f_1, f_2 \in K[x]$, so schreibt man auch $f_1 \equiv f_2 \mod I$, falls $f_1 f_2 \in I$.

Beispiel: xK[x]. Allgemeiner: für $g \in K[x]$, $I = g \cdot K[x] = \{g \cdot r : r \in K[x]\}$ ist ein Ideal in K[x].

Satz 6 (Hauptidealring)

K Körper, K[x] Polynomalgebra in x über K, I Ideal in K[x], $I \neq \{0\}$ $\implies \exists !$ normiertes Polynom $g \in K[x]$ mit $I = g \cdot K[x]$

Übung 6

$$K = \mathbb{Z}/3\mathbb{Z}, I = \{f \in K[x] : f(1) = f(-1) = 0\}.$$
 Es ist I Ideal in $K[x]$. Gesucht $g \in I$ mit $I = g \cdot K[x]$. $\Rightarrow g = (x-1)(x+1) = x^2 - 1$

Satz 7 (Quotientenalgebra)

Sei I Ideal in K[x], K Körper, $I = g \cdot K[x]$. Dann gilt:

Es existiert eine K-Algebra A = K[x]/I und ein surjektiver K-Algebrahomomorphismus $\pi(=\pi_q): K[x] \to A$ mit

$$\pi(f_1) = \pi(f_2)$$
 genau dann, wenn $f_1 \equiv f_2 \mod I$

Weiterhin gilt

- (i) $\dim_K A = n$, wenn $g \neq 0$ und $n = \operatorname{grad}(g)$
- (ii) A ist Körper \iff q ist irreduzibel in K[x]
- (iii) Wenn grad $(g) = n \ge 1$ und $a := \pi(x) \in A$, so ist $\{1, a, a^2, \dots, a^{n-1}\}$ K-Basis von A.

Speziell: wenn K endlich mit q = #K, so ist $\#A = q^n$.

Beispiel

 $K = \mathbb{Z}/2\mathbb{Z}$, $g = x^3 + x + 1$ in K[x] irreduzibel, da g(0) = 1 = g(1). $A = K[x]/g \cdot K[x]$ hat K-Basis $1, a, a^2$ mit $a = \pi(x)$. Berechnung von a^3, a^4, \ldots, a^7 .

Satz 8 (Ableitung und mehrfache Faktoren)

Sei $f \in K[x]$, K Körper. Ist ggT(f, f') = 1, so sind alle irreduziblen Faktoren p_1, \ldots, p_r von f einfach (d.h. ist $p \in K[x]$, $grad(p) \ge 1$ Faktor, so ist p^2 kein Teiler von f in K[x]).

Hierbei ist $f' := \frac{d}{dx}$ die Ableitung von f nach x. Es ist $\frac{d}{dx} : K[x] \to K[x]$ lineare Abbildung, eindeutig bestimmt durch:

- (i) $\frac{d}{dx}(x) = 1$
- (ii) $\frac{d}{dx}(f \cdot g) = f \cdot \frac{d}{dx}(g) + \frac{d}{dx}(f) \cdot g \quad \forall f, g \in K[x]$ (Leibniz- oder Produkt-Regel)

Übung 7

Sei
$$K = \mathbb{Z}/p\mathbb{Z}$$
, $f = x^p - x$. $f' = \frac{d}{dx}(f) = px^{p-1} - 1 = -1$.
 $\implies \operatorname{ggT}(f, f') = 1$
 $\implies x^p - x = \prod_{\lambda \in K} (x - \lambda), \quad (x - \lambda)^2 \text{ kein Teiler von } x^p - x.$