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1 Introduction

A quaternionic structure on a vector space V4" is a 3-dimensional linear
Lie algebra q C End(V) with a basis Ji, Jy, Js satisfying the quaternionic
relations

JP=—1, JuJsg=—Jgdo=1J,.

«

Here (a, f3,7) is a cyclic permutation of (1,2,3). The basis (J,), is called
a standard basis of q. A quaternionic Kahler manifold is a Riemannian
manifold (M*", g) together with a field of quaternionic structures q : =
4. C s0(T, M) such that:

1) q is parallel with respect to the Levi-Civita connection.

2) The curvature tensor R,, x € M, of the metric ¢ is invariant under the
natural action of q,.

It is known that 1) implies 2) if n > 1 and that any quaternionic K&hler
manifold is Einstein.
The main result of the paper is the following theorem.
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Theorem 1.1 Let M be a quaternionic Kahler manifold admitting a tran-
sitive unimodular group G of isometries. Then either M is flat and hence is
the Riemannian product of a torus and an FEuclidean space or it is a quater-
nionic Kihler symmetric space G/H, where G is a simple Lie group and H
1s the normalizer of a reqular 3-dimensional subgroup G, associated with a
long root «.

The proof of the theorem reduces to the case of negative scalar curvature
s < 0 and semisimple Lie group G . Indeed, if s > 0 the manifold M is
compact and in this case the theorem was proved in [A]. In the case s = 0,
the Ricci curvature Ric = 0 and the result follows from the fact that any
Ricci-flat homogeneous Riemannian manifold is flat [A-K]. Hence, we may
assume that s < 0 and hence Ric < 0.

The following result of I. Dotti Miatello shows that the group G is semisim-
ple.

Theorem 1.2 [Do] Let M be a Riemannian manifold admitting a transitive
unimodular group G of isometries. If Ric < 0 then the group G is semisimple.

To prove the main theorem we need some basic facts concerning homo-
geneous quaternionic Kahler manifolds.

2 Basic facts about homogeneous quaternionic
Kahler manifolds

2.1. Let M be a quaternionic Kahler manifold which admits a transitive
group G of isometries. Then we identify M = G/H, where H is the stabilizer
of a point. We will say that M = G/H is a homogeneous quaternionic Kéhler
manifold. Let g = h @& m be a reductive decomposition, where g = Lie G,
h = Lie H, [h,m] C m. We identify m = Ty M and denote by < -,- > the
Adpg-invariant scalar product on m induced by the Riemannian metric on
M. For any a € g we define a skew-symmetric endomorphism L, (Nomizu
operator) on m by the formula

2< Lyx,y >=<mla,z],y > — < x,7la,y] > — < wa,w[x,y] >,

x,y € m, where 7 : g — m is the natural projection.
Remark that for a € h the Nomizu operator L, = ad,|m is exactly the
isotropy operator. The following proposition is known.

Proposition 2.1 [A] A homogeneous Riemannian manifold M = G/H
(n > 1) is quaternionic Kdhler iff the Nomizu operators belong to the nor-
malizer n(q) = sp(1) @ sp(n) in so(m) of some quaternionic structure q =
span{Jy, Ja, J3} on m.



2.2. Structure equations. Let M = G/H be a homogeneous quater-
nionic Kéahler manifold. We will always assume that the group G is connected
and semisimple. Then the Cartan-Killing form B of g is non degenerate on
g and b and we fix the reductive decomposition g = h & m, where m is the
B-orthogonal complement to b in g. Let J,, a« = 1,2, 3, be a standard basis
of the corresponding quaternionic structure on m. Then for any a € g we
can write

3
L, = Z wela)Jo + Lq,
a=1

where L, belongs to the centralizer 3(q) = sp(n) of q in s0(m) and the 1-forms
w,, satisfy the following structure equations

VT po = dwe + 2w A wsy . (1)

Here p, = < -, J,- > is the Hermitian form associated with the complex
structure J,; (o, B,7) is a cyclic permutation of (1,2,3) and v = s/4n(n+2)
is the reduced scalar curvature, see [A].

We denote by (2 the Kraines 4-form on m, given by

3
Q:Zpa/\pa.
a=1

It is Lg-invariant and defines a parallel 4-form on M (the Kraines form of
M). The 4-form 7*(2 on g is exact:

Q= dy,

3
V= wo Adwy + 4w Aws Aws.

a=1

Denote by b the kernel of the homomorphism

3
(ZSZ[)—>C|, hHLh—Zh:ZU)a(h)Ja

a=1

and by a the orthogonal complement of f in b with respect to the Cartan-
Killing form B. Since ¢ : a < q = sp(1) is an embedding, d = dima = 0, 1
or 3. We will say that the homogeneous quaternionic Kahler manifold M =
G/H isof type 1, 2 or 3, if d = 0, 1 or 3 respectively. Passing to the universal
covering, if needed, we may assume that M is simply connected and hence
that H is connected.



3 Proof of the theorem for manifolds of type
1 and 2

3.1. Type 1 We assume now that a = 0. Then w,(h) = 0, a = 1,2,3,
and the structure equations show that the 1-forms w, are invariant under
the isotropy representation of the Lie algebra b and hence of the Lie group
H, since H is connected. This implies that ¢ defines some invariant form
on M whose differential is the Kraines form 2 on M. In particular, the
volume form Q" is the differential of some invariant form. This contradicts
the following result of Koszul [Ko], [Ha].

Theorem 3.1 Let M = G/H be an orientable Riemannian homogeneous
space of a connected unimodular Lie group G. Then the Riemannian volume
form is mot cohomological to zero in the complex of invariant differential
forms.

3.2. Totally geodesic Kahler and quaternionic Kahler submani-
folds

Definition 3.1 Let (M, g,q) be a quaternionic Kdihler manifold.

1) A submanifold N of M is called a Kahler submanifold if there ex-
ists a section J of the quaternionic structure q along N such that
(N, g|N,J) is a Kdihler manifold, i.e. J is a parallel complex struc-
ture on N.

2) A submanifold N of M is called a quaternionic Kahler submanifold
if . T, N C T, N for any x € N.

Recall that any quaternionic Kahler submanifold N of a quaternionic
Kahler manifold (M, g, q) is totally geodesic with the same reduced scalar
curvature, in particular, (N, g|N, q|N) is a quaternionic K&ahler manifold.

Let M = G/H be a homogeneous quaternionic Kahler manifold and

g=h+m=a+bh+m

be the corresponding reductive decomposition as before. Denote by Z2(b)
the connected component of the centralizer of an element b € b in G.

Proposition 3.2 Let M = G/H be a homogeneous quaternionic Kdhler
manifold of type k.

1) For anyb € h C b = a+ b the orbit N = Z%(b)o of the point o = eH
1s a quaternionic Kahler submanifold of the same type k or a point.
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2) For any a € a — {0} the orbit N = Z2(a)o is a totally geodesic Kahler
submanifold or a point.

3) Assume k = 2. Then for any b € h\ b the orbit N = Z%(b)o is a totally
geodesic Kdhler submanifold or a point.

Proof. It is known (see e.g. [A], Assertion 4) that the orbit N = Z2(b)o
of the centralizer of any element b € b in a homogeneous Riemannian man-
ifold M = G/H is totally geodesic. In the case 1), the reductive decom-
position of the Lie algebra go = 34(b) corresponding to N can be written
as

g0 = a+33(0) +n, n = 3m(b).

Since Ly, € 3(q) = sp(n), the subspace n is quaternionic, i.e. qn C n. Now it
is immediate to check that N is a homogeneous quaternionic Kéhler manifold
of type k, using the trivial fact that the image of b € hNgy under the isotropy
representation on n = T, N equals ady|n = Ly|n = 32 _; wa (b)Jo|n + Ly|n.

In the case 3), the reductive decomposition of gy reads:

go = Ra +33(b) +n, n=3m(b),

where b = a ® b € a ® h. Without restriction of generality we can choose a
standard base (J,)q of q such that Ly, = J; + Ly, Ly, € 3(q). Since [Ly, J;] = 0,
n is a Ji-invariant subspace of m. The structure equations (1) show that
waln = wsln =0, e.g.

0=ws([b,z]) =0+2(0 —ws(x) - 1) = —2ws(x), =z €n.

This shows that [L,, J;] = 0 for all z € go. Since the Lie algebra generated
by the Nomizu operators contains the holonomy algebra, this implies that J;
defines an invariant parallel complex structure on N and hence N is a Kahler
submanifold.

In the case 2), go = 34(a) has the reductive decomposition

go=Ra+bh+n, n=j3u(a)

and the proof is the same as for the case 3). O

Remark that in the cases 2) and 3) the N is a totally complex manifold
in the sense of Tsukada [T].

3.3. Invariant symplectic structure on quaternionic Kiahler man-
ifolds of type 2 Now we consider the case when dima = 1. Choosing an
appropriate standard basis (J,), we may assume a = Ra, B(a,a) = —1 and



L, = J, + L,. The reductive decomposition g = h @ m of g induces a decom-
position g* = h* @ m* of the dual space. For any k-form o € A*g* we denote
by o??, (p + ¢ = k) the natural projection onto

API = APH* @ Am* .

If o is Adg-invariant, o?? is also Adg-invariant and, in particular, ¢% is an
Adg-invariant k-form on m and hence defines an invariant form on M. The
1-forms w,, associated to the basis (.J,), have the following properties:

wy = wi’ + W is Ady-invariant and  wy’ = —B(a,-) # 0,
wy =wy and ws=wd.

Lemma 3.3 1) The 2-form dwi’(z,y) = Bla,|x,y]) belongs to A2, is
Adg-invariant and hence defines an invariant 2-form o on M.

2) The forms wy A w3, wa A dws + ws A dws and ¢ are Ady-invariant.
3) The Kraines form Q on M is cohomological to o N o.

Proof. The form dw{® is Ady-invariant, since w; is Ady-invariant. Let
h € b, x € m, then dwi’(h,z) = —w{’([h,z]) = 0, since [h,m] C m. Hence
(dwi®)t = 0. The component (dwi®)®* = 0, because [h,h] C h = kerw;.
This proves 1).

2) The structure equations (1) imply

adpwy = 2wq(h)ws,

adpws = —2wi(h)wsy

for h € h. From this 2) immmediately follows.
3) From the structure equations we obtain the following equalities:

dw, = dw(lm =7"p; — 2we AWy,
dwy = dwy® + dwy',
dws = dwy® + dws',

dws® = 7 py — 2wz AW,

dwy? = mp3 — 2w Aws,

dwy' = —2wsAwi?,

dwy' = —2w° Awsy.

Using this we obtain

q/):,l/)OS_'_,(/)lQ.
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Moreover we compute

P2 = Wi Adw 4wy A dwyt + w3 A dwit + 4wl A wy Aws
= W' Adw; = w° A dw® + wi® Adwlt
PP = WO Adwy + wy A dwd? + w3 A dwd? + 4wt A wy A ws

= w?l Adwy +we AT py + w3 AT ps .
Using these formulas we have

O = dd} — d¢12 + dl/)03
= d(w® Adwi® + ) Adwtt) + dyp®
= dwi® A dwi® + d(dw® A W)t + %)

According to 1), 2) dwi® Aw?! + 9% € A% is Ady-invariant and hence defines
an invariant 3-form 7 on M. Hence, on the manifold M

Q=cANo+dr. O

As a corollary we obtain

Proposition 3.4 o is an invariant symplectic form on M and M = G/H
is identified with the universal covering G/Z%(a) of the adjoint orbit Adga =
G/Zs(a). Moreover, the group G is simple.

Proof. It is clear that the form o is closed and invariant. Moreover, the form
02" is cohomological to 2. Since Q" is not cohomological to zero by Koszul’s
theorem, the invariant form 02" # 0. Hence, o is non-degenerate, that is o
is a symplectic form. The second statement follows now from the Kirillov-
Kostant description of homogeneous symplectic manifolds. Suppose now that
the semisimple group G is not simple. Without restriction of generality we
may assume that G = G; X Go. Then the homogeneous manifold G/H is G-
isomorphic to the direct product G1/H; x G2/ Hj of homogeneous manifolds,
where H = Z(a) = Hy x Hy. Any invariant metric on such a manifold is
reducible. On the other hand, it is known that a quaternionic Kahler metric
of non zero scalar curvature is irreducible. This contradiction shows that the
group G is simple. O

3.4. Type 2 The proof of the theorem for type 2 manifolds is based on
the following two lemmas.

Lemma 3.5 Assume that G/H is a quaternionic Kahler manifold of type 2
and tk g > 2. Then there exists h € by such that 34(h) is non-compact.



Proof. Consider the root system R of (gC, tC), where t =Ra+t, t C b, isa
compact Cartan subalgebra of h and hence of g. Any root @ € R generates a
3-dimensional subalgebra g(a) = spanci{ha, €a, €—a } Mg, which is isomorphic
to su(2) or to sl(2,R). The root « is called compact respectively non-
compact, if g(a) = su(2) respectively g(a) = sl(2,R). If g is non-compact,
then there exists a non-compact root 3, s. [He]. Choose 0 # h € t N kerp.
Then 34(h) D g(8) = sl(2,R). O

Lemma 3.6 Let M = G/H be a homogeneous manifold, where G is a real
simple Lie group of rank 2 and H a compact subgroup of the form H =
Z2(a), a € h. Assume that the isotropy representation of H preserves a
quaternionic structure on m = Ty M. Then G/H = SU(3)/U(2) = CP? or
= SU(1,2)/U(2) = CH?>.

Proof. According to the theory of semisimple Lie algebras g is of type As,
B, or Gy and b is isomorphic to t? or to t! @ su(2), where t"* denotes the Lie
algebra of the n-dimensional torus. Assume that the isotropy representation
of M preserves some quaternionic structure. Then dimG/H = 0 (4) and
(g,b) can only be of type (As, t' @ su(2)), (B, t?) or (Gy,t?). Checking the
real Lie algebras of Type Ay, we conclude that the first pair gives exactly the
two manifolds G/H described in Lemma 3.6. Let now g be a real simple Lie
algebra of type By or Gy with a compact Cartan subalgebra t = t2. To prove
the lemma, it is sufficient to check that the isotropy representation ad¢|m of
t on m = [t, g] does not preserve any quaternionic structure g. Suppose that
such a quaternionic structure q exists. Then

adglm C n50(m)(q) =sp(1) @ gl(n, H),

where n = 2 (resp. 3) if g has type Bs (resp. (G3). There exists an element
0 # b € t such that A = aby|m € gl(n,H). Since for any A € gl(n,H) the
multiplicity of an eigenvalue of A is even, the root system R of (gC, tC) must
satisfy the following condition for any o € R:

#{6 € R| B(b) = a(b)} =0 (2).

From the picture of the root systems of type By and G5 one sees that this is
impossible. O

Now we prove that there is no homogeneous quaternonic Kéhler manifold
M = G/H of type 2 with an unimodular group G. By Prop. 3.4 we may
assume that G is simple. We will use induction on the rank of GG. First
we remark that there is no quaternionic Kéhler manifold M = G/H of type
2 and tkG < 2. Indeed, if tkG = 1, then dimG = 3. If tkG = 2, the
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only quaternionic Ké&hler manifolds are the symmetric manifold SU(3)/U(2)
and its non-compact dual, which are not of type 2. Applying induction,
we assume that there is no quaternionic Kéhler manifold G/H of type 2
and tkG < k. Let now M = G/H be a quaternionic Kéhler manifold of
type 2 with an unimodular and hence simple group G of tkG = k. Let
g = (Ra + bh) + m be the corresponding reductive decomposition. We may
assume that rkg > 2 and hence h # 0. By Lemma 3.5 there exists b € b
with non-compact centralizer go = 34(b). Remark that go is a reductive
and hence unimodular Lie algebra and g # go ¢ bh. According to Prop.
3.2 1) the orbit N of the corresponding connected Lie group Z2(b) is a
quaternionic Kahler submanifold of type 2. The corresponding reductive
and hence unimodular isometry group Gy of (N,g|N) is the quotient of
Z2(b) by the kernel of non-effectivity, which contains {exp tb| t € R}. Hence,
tk Gy < rk Z%(b) = 1k G = k. This contradicts the inductive assumption. O

4 Proof of the theorem for type 3 manifolds

Now we consider a homogeneous quaternionic Kéhler manifold M = G/H
of type 3 with semisimple Lie group G. We will consider the reductive de-
composition g = h + m, where m is the orthogonal complement to h with
respect to the Cartan-Killing form B. Moreover, h = a + b, where b is the
kernel of the homomorphism ¢ : h — q = sp(1) and a is the B-orthogonal
complementary ideal to b in b, s. 2.2. With respect to a standard basis (J4)a
of g the isomorphism ¢la : a = q = sp(1) is given by ¢(h) = 32 _, wa(h)Ja,
in particular, the forms w,|a are linearly independent.

Proposition 4.1 For any a € a — {0}, go = 34(a) C b.

Proof. Without restriction of generality we may assume that w;(a) = 1,
wa(a) = ws(a) = 0. According to Prop. 3.2 2)

gozgg(a):ho+n:Ra+5+n

defines a totally geodesic Kéahler submanifold and ws|go = ws|go = 0. Remark
that go (and any quotient of go) is reductive and hence unimodular. By the
structure equations (1) dw; = v7*p; on go. Consider the decomposition of
wi|go

wy = w? +wi' € hh+n*

as before. Since wy is ady,-invariant, the 1-form w?' is invariant, vanishes

on hy and hence defines some invariant form on the homogeneous Kéahler
manifold N = Gy/Hy, where Gy and Hy are the connected Lie subgroups
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of G with Lie algebra gg and by respectively. p; defines the Kahler form

o on N and dwi® = dw; — dw¥ defines an invariant form on N, which is

cohomological to o (up to the factor v # 0). Since 0%, k = dimg N, is a

volume form, the cohomological form (dwi®)?® is not zero on N by Koszul’s

theorem. In other words, dwi® defines an invariant symplectic form on N.
Remark now that the 1-form w{® equals

w”=AB(a,") €g;, NER™,

since wi®(h+n) = 0 and wi’(a) = 1 and b +n is the orthogonal complement
of Ra in gg with respect to the Cartan-Killing form B of g. This implies
dwi® =0 on go:

dw,’ (2, y) = —w*([z,y]) = =AB(a, [z,y]) = AB([z,a],y) =0

for z,y € go. On the other hand we proved that dwi® defines a non-degenerate
form on N, hence N =pt and go C h. O

Corollary 4.2 1) For all a € a we have 34(a) = Ra +b.

2) h=a+bh=ng(a).

3) Any Cartan subalgebra of b is a Cartan subalgebra of g and has the
form t = Ra + t, where t is a Cartan subalgebra of b.

Proposition 4.3 1) a is a compact reqular 3-dimensional subalgebra as-
sociated to a long root o of (g, t).

2) g is simple.

Proof. By Cor. 4.2 3) there exists a Cartan subalgebra t of g of the form
C

subalgebra associated with some root « of (gC, t(c). Since any 3-dimensional
regular subalgebra is contained in some simple ideal and its normalizer con-
tains all other simple ideals, from Cor. 4.2 2) and from the effectivity of G
statement 2) follows. It remains only to prove that « is long. It was proved
in [A] (s. Lemma 5 2)) that under our assumptions « is long, if g is not of
type Go. In the latter case the normalizer n, of the regular 3-dimensional

C_,C C

subalgebra associated to (any root) « is of the form n;” = a;,  +a5,.;, where
Ulong (resp. Ggport) is a regular 3-dimensional subalgebra associated to a long

(resp. short) root. Moreover, (g2/ na)C ~ C* ® C?, where o (resp. agng

short
acts irreducibly on C* (resp. C*) and trivially on C? (resp. C*). This shows
that a = agpere is impossible, hence a = a;5,4. O
The proof of the main theorem follows immediately from the following

proposition.

t = Ra+t C . Obviously it normalizes a, hence a* is a regular 3-dimensional
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Proposition 4.4 Let a, be a compact regular 3-dimensional subalgebra as-
sociated with a long root o of a simple non-compact real Lie algebra g. If its
normalizer ng(a,) is compact, then it is mazimal compact and hence the
corresponding homogeneous space G/Ng(a,) is a non-compact symmetric
quaternionic Kdhler manifold (dual to a Wolf space).

The proof of Prop. 4.4 is based on the following lemma.

Lemma 4.5 Let o, o be two involutive automorphisms of a simple complex
Lie algebra g, with fix point sets g°, g°°. Assume g°° C g°, then o = oy.

Proof. Let g = g?°+g?° and g = g° + g° denote the corresponding symmet-
ric decompositions. They are orthogonal with respect to the Cartan-Killing
form. Moreover, since o preserves g°°, it preserves also the orthogonal com-

g0

plement g”° =a, +a_,a; =g°Ng? a_ = g’. Then
[ay,a ] Clg7,97] Cg? Cg”.

On the other hand
[ap,a ] C[g?, 97 Cg™.
Hence [a;,a_] = [ay,g7] = 0. Therefore the kernel ¢ of the isotropy repre-

sentation of g7 on g7, which is an ideal of g, contains a,. Since g is simple,
0O=¢t=a,and 0 =0¢. O

Corollary 4.6 Let [ be a simple complex Lie algebra. There is no inclusion

between mazimal compact subalgebras of different real forms g, g C | of

Proof. It is sufficient to consider the Cartan involutions of the real forms
and apply the lemma to their complex linear extensions. O
Proof (of Prop. 4.4). Let € D n, = ng(a,) be a maximal compact subalgebra

of g. There exists some real form g of [ = gC such that n, is maximally
compact in g'. This real form corresponds to the non-compact dual of the
Wolf space G./Ng,(a,), where Lie G, is the compact real form of [. Cor. 4.6
implies ¢ =n,. O
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