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Abstract. Recently Guo, Patton, and Warnke [Prague dimension of random graphs,
Combinatorica, 2023] established a conjecture of Füredi and Kantor by determining the
product dimension of the binomial random graph Gpn, pq with constant edge probability p.
We consider the sparse case when p “ ppnq ÝÑ 0 as n ÝÑ 8.

§1. Introduction

1.1. Graph representations. We consider graph representations that can be traced back
to the work of Szpilrajn-Marczewski [19]. A set representation R “ RpG, T q of a graph
G “ pV, Eq on a set T is a collection of subsets of T labeled by vertices of G such that the
edge set of G is represented by the pairs of sets with nonempty intersection, i.e.,

R “ tSv Ď T : v P V u such that uv P E ðñ u ‰ v and Su X Sv ‰ ∅ .

Moreover, if |T | “ t, then we say G is t-representable.
It is easy to see that every graph G “ pV, Eq is representable on its edge set E by the

collection Sv “ te P E : v P eu for v P V . Consequently, the set representation number

θ1pGq “ mintt P N : G is t-representableu

is well-defined for finite graphs.∗ Erdős, Goodman, and Pósa [7] established the optimal
general upper bound θ1pGq ď tn2{4u for every n-vertex graph G, which is attained by
balanced complete bipartite graphs. Moreover, these authors showed θ1pGq equals the
minimum number of cliques needed to cover the edges of G.

Here it will be more convenient to consider set representations of the graph complement G

of G and we set
sθ1pGq “ θ1pGq .
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In other words, for a graph G “ pV, Eq we have sθ1pGq ď t if there are independent sets
I1, . . . , It Ď V in G such that

E “ V p2q ∖
t
ď

i“1
I

p2q

i , (1)

where for a set X we denote by Xp2q the set of all 2-element subsets of X. Moreover,
we have sθ1pGq “ t, if in addition there is not such a family of independent sets with at
most t ´ 1 members. Alternatively, in this context one may think of set representations,
where edges are given by disjoint pairs of sets and non-edges are represented by pairs of
intersecting sets.

Alon [1] proved a general upper bound for graphs of bounded maximum degree and
showed

sθ1pGq ď Op∆2 logpnqq

for all n-vertex graphs G with bounded maximum degree ∆pGq ď ∆. In [6], it was shown
that this upper bound is sharp up to a Oplog ∆q-factor by providing, for every ∆ ě 1, a
graph G with ∆pGq ď ∆ and

sθ1pGq ě c
∆2 logpnq

logp∆q

for some universal constant c ą 0.†

We study sθ1 for the binomial random graph Gpn, pq on n vertices where each of the
`

n
2

˘

edges occurs, independently, with probability p. For simplicity, we shall assume that Gpn, pq

and all other n-vertex graphs have rns “ t1, . . . , nu as its vertex set. This line of research was
started by Bollobás, Erdős, Spencer, and West [5]. Further work of Frieze and Reed [9] and
of Guo, Patton, and Warnke [12] yields that for every fixed p P p0, 1q, asymptotically almost
surely (a.a.s., with probability tending to 1 as n ÝÑ 8) the random graph G P Gpn, pq

satisfies
sθ1pGq “ Θ

ˆ

n2

log2
pnq

˙

. (2)

We investigate sθ1 for sparse random graph Gpn, pq, i.e., when p “ ppnq ÝÑ 0 as n ÝÑ 8.
Our first result establishes an upper bound for sθ1. We use the asymptotic short-hand
notation apnq ! bpnq for the validity of the statement |apnq| “ opbpnqq.

Theorem 1.1. For every p “ ppnq with log5{4
pnq{

?
n ! ppnq ď 1{ log2

pnq, the random
graph G P Gpn, pq a.a.s. satisfies

sθ1pGq ď 200 p2n2

logpnq
. (3)

†The base of the logarithms in this paper is e.
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The following matching lower bound was obtained by Guo et al. [12, Lemma 20] and,
for completeness, we include the short proof in §2.4.

Proposition 1.2. For every p “ ppnq with 1{n ! ppnq ď 1{ log2
pnq, a.a.s. the random

graph G P Gpn, pq satisfies

sθ1pGpn, pqq ą
´ logppq ¨ p2n2

10 logppnq logpnq
.

Combining Theorem 1.1 with Proposition 1.2 shows that for every δ ą 0 and p “ ppnq

with log5{4
pnq{

?
n ! ppnq ď n´δ, a.a.s. we have

sθ1pGq “ Θ
ˆ

p2n2

logpnq

˙

for G P Gpn, pq. We shall prove Theorem 1.1 and Proposition 1.2 in Section 2.

1.2. Graph dimensions. Representing the edge set of a graph as the complement of
independent sets as defined in (1) is closely related to the product dimension of a graph
G “ pV, Eq. We recall that the product dimension pdimpGq is defined to be the minimum
integer s such that G is an induced subgraph of the product of s cliques. Here the product
F ˆ F 1 of two graphs F “ pV, Eq and F 1 “ pV 1, E 1q is given by

V pF ˆ F 1
q “ V ˆ V 1 and tpu, u1

q, pv, v1
qu P EpF ˆ F 1

q ðñ uv P E and u1v1
P E 1 .

The product dimension was studied by several authors (see, e.g., [2, 6, 10, 12, 15, 17, 18]
and the references therein). In particular, it was shown in [17] that it is closely related
to the following notion denoted by idimpGq, which is defined as follows: idimpGq is the
smallest integer t such that there are t partitions I1, . . . , Is of V pGq so that EpGq is the
intersection of the edge set of the s complete multipartite graphs defined on the vertex
partitions I1, . . . , Is. In other words, a graph G “ pV, Eq satisfies idimpGq “ s if there
exist s partitions of V

I1 “ pI1,1, . . . , I1,r1q , . . . , Is “ pIs,1, . . . , Is,rsq

such that

E “ V p2q ∖
s
ď

i“1

ri
ď

j“1
I

p2q

i,j (4)

and (4) fails for all integers smaller than s. The aforementioned connection to the product
dimension from [17] states

idimpGq ď pdimpGq ď idimpGq ` 1 (5)

for every graph G.
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The definition of idim yields for every graph G “ pV, Eq the inequality

idimpGq ¨
n

αpGq
¨

ˆ

αpGq

2

˙

ě

ˆ

|V |

2

˙

∖ |E| ,

where αpGq denotes the independence number of G. Owing to the fact that for n´1 ! p ă 1
the random graph G P Gpn, pq a.a.s. satisfies αpGq “ Oplogppnq{pq, we obtain the following
lower bound for random graphs

idimpGq “ Ω
ˆ

pp1 ´ pqn

logppnq

˙

. (6)

Here we show that for a large range of p, this bound is sharp up to a logppnq-factor.

Theorem 1.3. For every p “ ppnq with logpnq4{3{n1{3 ! ppnq ď 1{ log2
pnq, the random

graph G P Gpn, pq a.a.s. satisfies

idimpGq ď 1000 pn . (7)

We also provide a matching lower bound by sharpening the estimate from (6).

Proposition 1.4. For p “ ppnq " n´2, a.a.s. the random graph G P Gpn, pq satisfies

idimpGq ě
´ logppq ¨ pn

5 logpnq
.

Consequently, in view of (5), for allδ ą 0 and p “ ppnq with logpnq4{3{n1{3 ! ppnq ď n´δ,
a.a.s. we have

pdimpGq “ Θppnq

for G P Gpn, pq. The proofs of Theorem 1.3 and Proposition 1.4 are presented Section 3.

§2. Independent covers of random graphs

The proof of Theorem 1.1 relies on a few standard estimates on the distribution of large
independent sets and the distribution of its edges. We state these preparatory results in
§2.1 and defer the standard proof to §2.3. The proof of Theorem 1.1 based on these facts
will be given in §2.2, while §2.4 is devoted to the proof of Proposition 1.2.

2.1. Standard facts of random graphs. The independence number of the random
graph is well understood due to the work of Matula [16], Bollobás and Erdős [3], Grimmett
and McDiarmid [11], and Frieze [8] (see, e.g., [4, 13] for more details). For the proof of
Theorem 1.1, it is sufficient to recall that a.a.s. the independence number of G P Gpn, pq

is of order logpnq{p as long as p " logpnq{n. The following observation concerning the
number of large independent sets in random graphs can be obtained by a standard second
moment argument, which we include in §2.3 for completeness.
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Lemma 2.1. Let p “ ppnq ě logpnq{
?

n, let k “ γ logpnq{p for some γ P p0, 1{3q, and
let Xk be the random variable counting the number of independent sets of size k in the
random graph Gpn, pq. Then we have

P
`

|Xk ´ EXk| ě 1
2EXk

˘

ď
4p

1 ´ p
¨

k4

n2 .

The following simple bounds are direct consequences of the binomial distribution and
we omit the proof.

Lemma 2.2. For all 0 ă p “ ppnq ď 1, the random graph G P Gpn, pq a.a.s. satisfies the
following for all subsets X Ď V pGq:

(i ) If |X| ě logpnq{p, then we have eGpXq ď 3p|X|2.
(ii ) If |X| ă logpnq{p, then we have eGpXq ď 3|X| logpnq. □

2.2. Upper bound for independent covers of random graphs. In this section, we
establish the upper bound on sθ1 based on the results from §2.1.

Proof of Theorem 1.1. Let p “ ppnq be given such that log5{4 n
?

n
! ppnq ď 1

log2pnq
. For

arbitrarily fixed δ ą 0, we shall show that (3) holds with probability at least 1 ´ δ for
sufficiently large n. As usual, at first we exclude some undesired events. Set

γ‡ “
10
31 , k “ γ ¨

logpnq

p
, and m “ p1 ´ 2p ´ p3{2

qn . (8)

We say that two distinct vertices x, y P V pGq are well-coverable if the number of independent
sets of size k contained in V pGq ∖ pNpxq Y Npyq Y tx, yuq is at least

1
2p1 ´ pqpk

2q

ˆ

m

k

˙

.

Below we verify some properties to hold for G P Gpn, pq with probability close to 1.

Claim 2.3. For every δ ą 0 and the constants γ, k, and m from (8), the random graph
G P Gpn, pq satisfies the following properties with probability at least 1 ´ δ{2 ´ op1q for
sufficiently large n:

(a ) both assertions of Lemma 2.2 hold,
(b ) the number Xk`2 of independent sets of size k ` 2 in G satisfies

1
2p1 ´ pqpk`2

2 q

ˆ

n

k ` 2

˙

ď Xk`2 ď
3
2p1 ´ pqpk`2

2 q

ˆ

n

k ` 2

˙

,

(c ) and at most 5pk4{δ pairs of vertices x, y are not well-coverable.
‡The choice γ “ 10{31 here is somewhat arbitrary and for an application of Lemma 2.1, we only require

a constant smaller than 1{3. However, a smaller choice comes with the price that the constant 200 in (3)
might need to be adjusted.
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Proof of Claim 2.3. In fact, due to Lemma 2.2 a.a.s. property (a ) is satisfied. Similarly,
Lemma 2.1 implies

P
`
ˇ

ˇXk`2 ´ EXk`2
ˇ

ˇ ě 1
2EXk`2

˘

ď
4p

1 ´ p

pk ` 2q4

n2 “ O

ˆ

log1{4
pnq

?
n

˙

“ op1q.

Concerning (c ), we first consider the set of “non-neighbours” of a given pair of vertices x, y

Npx, yq “ V pGq ∖
`

Npxq Y Npyq Y tx, yuq .

We observe that for a fixed pair x, y of distinct vertices, Chernoff’s inequality implies

P
`

|Npx, yq| ă m
˘

“ P
`

|Npxq Y Npyq Y tx, yu| ą p2p ` p3{2
qn
˘

“ opn´2
q , (9)

since

pp3{2nq2

pn
“ p2n " logpnq and E

“

|Npxq X Npyq|
‰

“ p2
pn ´ 2q " logpnq .

Moreover, Lemma 2.1 bounds the conditional probability

P
`

x, y are not well-coverable
ˇ

ˇ |Npx, yq| ě m
˘

ď
4p

1 ´ p
¨

k4

m2 .

In view of (9), we therefore have

P
`

x, y are not well-coverable
˘

ď
4p

1 ´ p
¨

k4

m2 ` o

ˆ

1
n2

˙

“
4p

1 ´ p
¨

k4

p1 ´ 2p ´ p3{2q2n2 ` o

ˆ

1
n2

˙

ď
5pk4

n2 .

Consequently, Markov’s inequality implies that with probability at least 1´δ{2, the number
of not well-coverable pairs is at most

2
δ

¨
5pk4

n2 ¨

ˆ

n

2

˙

ď
5pk4

δ
,

i.e., property (c ) holds with probability 1 ´ δ{2. Therefore properties (a )–(c ) hold with
probability at least 1 ´ δ{2 ´ op1q and this concludes the proof of Claim 2.3. □

For the rest of the proof of Theorem 1.1, we fix a graph G “ pV, Eq satisfying proper-
ties (a )–(c ) and show that (3) holds. We set

t “ 20 logpnq
n2

k2 (10)

and we consider a random selection of independent sets I1, . . . , It, each of size k ` 2, to
show that there exists such a family of independent sets that covers all pairs of distinct
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vertices tx, yu R EpGq that are well-coverable. In fact, for a fixed well-coverable pair tx, yu

that is not an edge and a randomly selected independent set I of size k ` 2, we have§

PI

`

tx, yu Ď I
˘

ě

1
2p1 ´ pqpk

2q
`

m
k

˘

3
2p1 ´ pqpk`2

2 q
`

n
k`2

˘

“
1
3 ¨

1
p1 ´ pq2k`1 ¨

m ¨ ¨ ¨ pm ´ k ` 1q

n ¨ ¨ ¨ pn ´ k ´ 1q
¨ pk ` 2qpk ` 1q

ě
1
3 ¨

1
p1 ´ pq2k`1 ¨

ˆ

m ´ k

n ´ k

˙k

¨
k2

n2

“
1
3 ¨

1
p1 ´ pq2k`1 ¨

ˆ

1 ´ 2p ´ p3{2
´

2pk ` p3{2k

n ´ k

˙k

¨
k2

n2

ě
1
3 ¨

p1 ´ 2p ´ p3{2 ´ 4pk{nqk

p1 ´ pq2k`1 ¨
k2

n2 ě
1
3 ¨

ˆ

1 ´ 2p ´ p3{2 ´ 4pk{n

1 ´ 2p ` p2

˙k

¨
k2

n2

ě
k2

3n2 ¨

ˆ

1 ´
8pk

n
´ 2p3{2

˙k

ě
k2

3n2 ¨
`

1 ´ 2.01p3{2˘k

ě
k2

3n2 ¨
`

1 ´ 2.01p3{2k
˘

ě p1 ´ 2.01γq
k2

3n2 ě
k2

10n2 , (11)

where we used p ď 1{ log2
pnq to bound p3{2k ď γ in the second to last inequality and the

choice of γ for the last inequality. Consequently, for a well-coverable pair tx, yu, we have

PI

`

tx, yu Ę I1 Y ¨ ¨ ¨ Y It

˘

ď

ˆ

1 ´
k2

10n2

˙t

ď exp
ˆ

´
tk2

10n2

˙

(10)
“

1
n2 .

Hence, we conclude that there exists a family of t independent sets I1, . . . , It (each of
size k ` 2) which cover all well-coverable pairs tx, yu P V p2q ∖ E. It remains to deal with
the pairs that are not well-coverable.

Let B “ pV, EBq be the graph of those pairs, i.e.,

EB “
␣

tx, yu P V p2q ∖ E : x, y are not a well-coverable pair
(

.

Owing to (c ), we have
ÿ

vPV

dBpvq “ 2 |EB| ď
10pk4

δ
. (12)

For a fixed vertex v P V , suppose G induced on the neighbourhood of v in B is s-
colourable and let J1, . . . , Js be independent sets defining such a colouring. Then the sets
J1 Y tvu, . . . Js Y tvu are independent and cover all edges of B incident to v. Applying this
argument to every vertex v implies

sθ1pGq ď t `
ÿ

vPV

χ
`

GrNBpvqs
˘

. (13)

§Here we add the subscript I in PI to stress that we consider the probability space over all independent
sets of size k ` 2 in G.
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We employ property (a ) to bound χpGrNBpvqsq. If dBpvq ă logpnq{p, then part (ii ) of
Lemma 2.2 implies that GrNBpvqs is 6 logpnq-degenerate and, therefore, in this case

χ
`

GrNBpvqs
˘

ď 6 logpnq ` 1 (14)

holds. Similarly, if dBpvq ě logpnq{p, then combining parts (i ) and (ii ) of Lemma 2.2 tells
us that GrNBpvqs is p6pdBpvq ` 1q-colourable, i.e.,

χ
`

GrNBpvqs
˘

ď 6 pdBpvq ` 1 . (15)

Therefore, combining (14) and (15) with (13) yields

sθ1pGq ď t `
ÿ

vPV

`

6 maxtlogpnq , pdBpvqu ` 1
˘ (12)

ď t ` 60p2k4

δ
` 6n logpnq ` n .

Since p " log5{4
pnq{

?
n, our choice of k in (8) yields

60p2k4

δ
` 6n logpnq ` n !

p2n2

logpnq
.

Consequently, our choice of t in (10) leads to

sθ1pGq ď 20 logpnq
n2

k2 ` o

ˆ

p2n2

logpnq

˙

(8)
“

ˆ

312

5 ` op1q

˙

p2n2

logpnq
ď 200 p2n2

logpnq

and this concludes the proof of Theorem 1.1. □

2.3. Independent sets in random graphs. The proof of Lemma 2.1 relies on the second
moment method and follows from standard estimates on the variance of the number of
independent sets in random graphs (see, e.g., Krivelevich et al. [14]).

Proof of Lemma 2.1. Let p “ ppnq ě logpnq{
?

n, let k “ γ logpnq{p for some γ P p0, 1{3q,
and let Xk be the random variable counting the number of independent sets of size k

in Gpn, pq. Since γ ă 1 and p " n´1{2, we have

k logpn{kq ´ pk2
{2 ě Ω

`

log2
pnq

˘

and, consequently,

EXk “ p1 ´ pqpk
2q

ˆ

n

k

˙

ě exp
`

´ pk2
{2 ` k logpn{kq

˘

ě exp
´

Ω
`

log2
pnq

˘

¯

"
n2

pk4 . (16)

Below we shall establish
VarpXkq

pEXkq2 ď
p

1 ´ p
¨

k4

n2 ,
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which yields Lemma 2.1 by Chebyshev’s inequality. Viewing Xk as a sum of
`

n
k

˘

indicator
random variables yields

VarpXkq ď EXk `

k´1
ÿ

j“2

ˆ

n

k

˙ˆ

k

j

˙ˆ

n ´ k

k ´ j

˙

´

p1 ´ pq
2pk

2q´pj
2q ´ p1 ´ pq

2pk
2q
¯

“ EXk ` pEXkq
2

k´1
ÿ

j“2

`

n´k
k´j

˘`

k
j

˘

`

n
k

˘

ˆ

1
p1 ´ pqpj

2q
´ 1

˙

.

Optimising the right hand side of the above inequality, we claim that the following
function

gpjq “

`

k
j

˘`

n´k
k´j

˘

`

n
k

˘ ¨
1 ´ p1 ´ pqpj

2q

p1 ´ pqpj
2q

attains a maximum at j “ 2. In fact, for j “ 2, . . . , k ´ 2, we consider the quotient

gpj ` 1q

gpjq
“

pk ´ jq2

pj ` 1qpn ´ 2k ` j ` 1q
¨

1
p1 ´ pqj

¨
1 ´ p1 ´ pqpj`1

2 q

1 ´ p1 ´ pqpj
2q

First, we note that we can bound the last quotient from above by 3. In fact, this
inequality amounts to verifying

p1 ´ pqpj
2q ¨

`

3 ´ p1 ´ pq
j
˘

ď 2 .

This can be checked for j “ 2. For general j, it can be shown by induction that the
left-hand side is non-increasing with j. Consequently,

gpj ` 1q

gpjq
ď

2k2

n
¨

p1 ´ pq´j

j ` 1 ¨ 3

ď
6k2

n
¨

exppjpp ` p2qq

j ` 1

“
6γ2 log2

pnq

p2n
¨

exppjpp ` p2qq

j ` 1 .

Next, we consider two cases which depend on the value of p to further bound gpj ` 1q{gpjq.
If logpnq{n1{2 ď p ă 1{n1{3, then the first factor is at most 6γ2. Since x ÞÝÑ exppcxq{px`1q

is a convex function on Rą0, the second factor is maximised either for j “ 2 or j “ k ´ 2.
For j “ 2, the second factor is bounded by 1{2 in this range of p. For j “ k´2 ď γ logpnq{p,
the second factor can be bounded by

expppk ´ 2qpp ` p2qq

k ´ 1 ď
2p exppp1 ` pqγ logpnqq

γ logpnq
“

2pnp1`pqγ

γ logpnq
ÝÑ 0

since γ ă 1{3. Consequently, in this range of p, we have
gpj ` 1q

gpjq
ď 6γ2

¨
1
2 ă

1
2 (17)
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for sufficiently large n.
If p ě n´1{3 and j “ 2, then the first factor can be bounded by 6γ2 log2

pnq{n1{3 and the
second factor is at most expp4q{3. For j “ k ´ 2, we arrive at

gpk ´ 1q

gpk ´ 2q
ď

6γ2 log2
pnq

p2n
¨

2pnp1`pqγ

γ logpnq
“

12γ logpnq ¨ np1`pqγ

pn
ÝÑ 0

for n ÝÑ 0. Hence, for p in this range, the bound in (17) remains valid. Therefore, we
have
VarpXkq

pEXkq2 ď
1
EXk

`

k´1
ÿ

j“2
gpjq

(17)
ď

1
EXk

` 2gp2q ď
1
EXk

`
k2pk ´ 1q2

npn ´ 1q
¨

p

1 ´ p

(16)
ď

p

1 ´ p
¨

k4

n2

which concludes the proof of Lemma 2.1 by Chebyshev’s inequality. □

2.4. Lower bound for independent covers of random graphs. In this section, we
provide a lower bound for sθ1 in random graphs and establish Proposition 1.2. In the proof,
we shall use the following simple lemma, which will also be useful in Section 3.

Lemma 2.4. Let p “ ppnq " n´2 and suppose pFnqnPN is a sequence of families of n-vertex
graphs such that for the random graph G P Gpn, pq, we have PpG P Fnq “ 1 ´ op1q. Then
for every sufficiently large n, there exists some integer m “ mpn, pq such that

1
2p

ˆ

n

2

˙

ď m ď
3
2p

ˆ

n

2

˙

and
ˇ

ˇFn,m

ˇ

ˇ “
ˇ

ˇtF P Fn : epF q “ mu
ˇ

ˇ ě
1
2

ˆ

`

n
2

˘

m

˙

.

Proof. We set m´ “ 1
2p
`

n
2

˘

and m` “ 3
2p
`

n
2

˘

. Since p " n´2 a.a.s., the random graph
G P Gpn, pq satisfies m´ ď epGq ď m`. Combined with the assumption on Fn, this tells us

m
ÿ̀

m“m´

P
`

G P Fn | epGq “ m
˘

¨ P
`

epGq “ m
˘

“ P
`

G P Fn and m´ ď epGq ď m`

˘

“ 1 ´ op1q .

Consequently, there is some m P rm´, m`s such that

P
`

G P Fn | epGq “ m
˘

ě
1
2 .

Therefore,

P
`

G P Fn,m

˘

“ P
`

G P Fn and epGq “ m
˘

ě
1
2 ¨ P

`

epGq “ m
˘

“
1
2 ¨

ˆ

`

n
2

˘

m

˙

pm
p1 ´ pqpn

2q´m .

and the desired lower bound |Fn,m| ě 1
2

`

pn
2q
m

˘

follows. □

We conclude this section with the proof of the lower bound on sθ1 for random graphs,
which follows the lines of Guo et al. [12, Lemma 20].
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Proof of Proposition 1.2. For 1{n ! p ď 1{ log2
pnq, Frieze [8] (see, e.g., [13, Theorem 7.4])

showed that a.a.s. for G P Gpn, pq, we have

αpGq “ p2 ` op1qq
logppnq

p
.

Setting

α “ 2.1logppnq

p
and t “

´ logppq ¨ p2n2

10 logppnq logpnq
,

consider the family of n-vertex graphs

Fnpα, tq “ tF : V pF q “ n, αpF q ď α, and sθ1pF q ď tu .

This definition yields the following upper bound on the number of graphs in Fnpα, tq

ˇ

ˇFnpα, tq
ˇ

ˇ ď

ˆ α
ÿ

i“0

ˆ

n

i

˙˙t

ď

ˆ

n

α ` 1

˙t

ď

ˆ

en

α ` 1

˙pα`1qt

ă exp
`

pα ` 1qt logpnq
˘

. (18)

We suppose by contradiction that a.a.s. the random graph G P Gpn, pq satisfies sθ1pGq ď t

and consequently a.a.s. G P Fnpα, tq. Owing to Lemma 2.4, there exists some m ě 1
2p
`

n
2

˘

such that
ˇ

ˇFn,mpα, tq
ˇ

ˇ “
ˇ

ˇtF P Fnpα, tq : epF q “ mu
ˇ

ˇ ě
1
2

ˆ

`

n
2

˘

m

˙

ě
1
2

ˆ

`

n
2

˘

1
2p
`

n
2

˘

˙

ě
1
2

ˆ

2
p

˙
1
2 ppn

2q

ě exp
ˆ

´ logppq

4.5 pn2
˙

. (19)

Since |Fnpα, tq| ě |Fn,mpα, tq|, comparing (19) with (18) yields

t ě
´ logppq ¨ pn2

4.5pα ` 1q logpnq
ą

´ logppq ¨ p2n2

10 logppnq logpnq
,

which contradicts to our choice of t and concludes the proof of the proposition. □

§3. Product dimension of random graphs

In this section, we prove the bounds on the product dimension for sparse random graphs.
In view of (5), it suffices to bound idim and, in this section, we only focus on that parameter.
The proofs are based similar ideas as the proofs in Section 2 concerning the bounds on sθ1.

3.1. Upper bound for the product dimension of random graphs. In this section,
we establish the upper bound on idim for random graphs. This is based on similar ideas
as the proof of Theorem 1.1. However, for finding partitions of independent subsets, the
argument needs some technical adjustments.
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Proof of Theorem 1.3. Let p “ ppnq be given such that log4{3pnq

n1{3 ! ppnq ď 1
log2pnq

. For
arbitrarily fixed δ ą 0, we shall show that (7) holds with probability at least 1 ´ δ for
sufficiently large n. As in the proof of Theorem 1.1, we fix the constants

γ “
10
31 , k “ γ ¨

logpnq

p
and m “ p1 ´ 2p ´ p3{2

qn . (20)

Again, we say that two distinct vertices x, y P V pGq are well-coverable if the number of
independent sets of size k contained in V pGq ∖ pNpxq Y Npyq Y tx, yuq is at least

1
2p1 ´ pqpk

2q

ˆ

m

k

˙

.

Since the choice in (20) is identical with the choice in (8) and since the range of p

in Theorem 1.3 is a subset of the range in Theorem 1.1, we can appeal to Claim 2.3.
Consequently, we know that with probability at least 1 ´ δ{2 ´ op1q, the random graph
G P Gpn, pq satisfies:

(A ) both assertions of Lemma 2.2 hold,
(B ) the number Xk`2 of independent sets of size k ` 2 in G satisfies

1
2p1 ´ pqpk`2

2 q

ˆ

n

k ` 2

˙

ď Xk`2 ď
3
2p1 ´ pqpk`2

2 q

ˆ

n

k ` 2

˙

,

(C ) and at most 5pk4{δ pairs of vertices x, y are not well-coverable.

For the proof here, we will require also the following additional property:

(D ) Every x P V is contained in at most 3
2p1 ´pqpk`1

2 q
`

m1
k`1

˘

independent sets of size k ` 2
for m1 “ p1 ´ pqn ` 2

a

pn logpnq.

Again, it follows from Lemma 2.1 that G P Gpn, pq satisfies (D ) with probability at
least 1 ´ op1q. In fact, Chernoff’s inequality tells us that for a fixed vertex x P V , we have

P
`

|V ∖ pNpxq Y txuq| ą m1
˘

“ opn´1
q .

Applying Lemma 2.1 with k ` 1 to the random graph induced on V ∖ pNpxq Y txuq yields

P
`

(D ) fails for x
ˇ

ˇ |V ∖ pNpxq Y txuq| ď m1
˘

ď
4p

1 ´ p
¨

pk ` 1q4

m2
1

.

Consequently, Pp(D ) fails for xq “ Oppk4{n2q ` op1{nq and Markov’s inequality implies
that property (D ) holds for all x P V since

n ¨
pk4

n2
(20)
“ γ4 log4

pnq

p3n
“ op1q

by the assumption that p " log4{3
pnq{n1{3.
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Summarising the discussion above, we showed that properties (A )–(D ) hold with
probability at least 1 ´ δ{2 ´ op1q ě 1 ´ δ. For the rest of the proof, we fix a graph G

satisfying properties (A )–(D ) and verify (7).
For that, we fix

r “
n

8k
and s “ 320 ¨

n logpnq

k
. (21)

We consider a collection of s ¨ r random independent sets I1,1, . . . , I1,r, I2,1, . . . , Is,r, each of
size k ` 2 and each chosen uniformly at random from the set of all such independent sets
in G “ pV, Eq. In order to define partitions J1, . . . , Js for σ “ 1, . . . , s and ϱ “ 1, . . . , r,
we set

Jσ,ϱ “ Iσ,ϱ ∖
ϱ´1
ď

ϱ1“1
Iσ,ϱ1 and Jσ “ pJσ,1, . . . , Jσ,rq . (22)

Note that we may extend Jσ by adding trivial partition classes of single vertices to
“complete” them to a partition of all of V . However, these trivial classes have no bearing
in the proof and, without loss of generality, we may assume that they are not necessary.

We claim that with positive probability, the collection J1, . . . , Js covers all well-coverable
non-edges of G, i.e., for the graph B “ pV, EBq defined by

EB “
␣

tx, yu P V p2q ∖ E : x, y are not a well-coverable pair
(

,

we have
E Y EB Ě V p2q ∖

s
ď

σ“1

r
ď

ϱ“1
J p2q

σ,ϱ . (23)

Let qxy be the probability that a fixed, well-coverable, non-adjacent pair x, y is contained
in a randomly chosen independent set of size k ` 2. Then the same calculation as in (11)
shows that qxy can be bounded from below by

qxy “ PIptx, yu Ď Iq ě
k2

10n2 .

Similarly, we let qx be the probability that a fixed vertex is contained in a randomly chosen
independent set. Employing properties (B ) and (D ), we can upper bound qx by

qx “ PIpx P Iq ď

3
2p1 ´ pqpk`1

2 q
`

m1
k`1

˘

1
2p1 ´ pqpk`2

2 q
`

n
k`2

˘

“ 3 ¨

`

p1´pqn`2
?

pn logpnq

k`1

˘

p1 ´ pqk`1
`

n
k`2

˘

ď 3 ¨
p1 ´ p ` 2

a

logpnqp{nqk`1` n
k`1

˘

p1 ´ pqk`1
`

n
k`2

˘

ď 3 ¨
p1 ´ pqk`1p1 ` 4

a

logpnqp{nqk`1 ¨ pk ` 2q

p1 ´ pqk`1 ¨ pn ´ k ´ 1q

ď 3 ¨ exp
`

4pk ` 1q
a

logpnqp{nq
˘

¨
k ` 2

n ´ k ´ 1 ď
4k

n
.
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For a fixed σ P rss, we want to bound the probability that a fixed, well-coverable, non-
adjacent pair x, y is covered by a partition Jσ, i.e., tx, yu Ď Jσ,ϱ for some ϱ P rrs. Note
that this event happens if there is some ϱ P rrs such that

tx, yu Ď Iσ,ϱ and tx, yu X Iσ,ϱ1 “ ∅ for all ϱ1
ă ϱ.

Consequently, we have

PI

`

tx, yu Ď Jσ,ϱ

˘

“ qxy ¨ PI

`

x R I and y R I
˘ϱ´1

“ qxy ¨
`

1 ´ qx ´ qy ` qxy

˘ϱ´1

and

PI

`

tx, yu is covered by Jσ

˘

“ qxy ¨

r
ÿ

ϱ“1
PI

`

x R I and y R I
˘ϱ´1

ě
k2

10n2 ¨

r´1
ÿ

ϱ“0

ˆ

1 ´
8k

n

˙ϱ

“
k2

10n2 ¨
1 ´

`

1 ´ 8k{n
˘r

8k{n
ě

k

80n

`

1 ´ expp´8kr{nq
˘

(21)
“

k

80n

`

1 ´ 1{eq ě
k

160n
.

It follows that

P
`

tx, yu is not covered by any Jσ for σ P rss
˘

ď

ˆ

1 ´
k

160n

˙s

ăexp
ˆ

´
sk

160n

˙

(21)
“

1
n2 .

Therefore, it follows that there is a collection of independent sets Iσ,ϱ for σ P rss and ϱ P rrs

such that the corresponding partitions J1, . . . , Js defined in (22) satisfy (23), i.e., they
cover all well-coverable, non-adjacent pairs of vertices.

It remains to deal with the pairs that are not well-coverable. First, we consider the
vertices v P V with dBpvq ě logpnq{p. For those vertices, we again consider colourings
of the induced subgraph GrNBpvqs. In fact, we turn every colour class C of GrNBpvqs

into a partition consisting of the class C Y tvu and trivial classes for every vertex from
V ∖ pC Y tvuq. Following the lines of the proof of Theorem 1.1, by appealing to (A ), we
can cover all edges of B incident to v with

χ
`

GrNBpvqs
˘

ď 6pdBpvq ` 1 ď 7pdBpvq

partitions. Let B1 Ď B be the subgraph of those pairs which are not yet covered. By
definition ∆pB1q ă logpnq{p, and so by Vizing’s theorem, we infer that the edges of B1 can
be covered with 1 ` logpnq{p matchings. Again, we can extend every such matching to a
partition of V by adding trivial classes and conclude

idimpGq ď s `
ÿ

␣

7pdBpvq : dBpvq ą logpnq{p
(

`
logpnq

p
` 1 .
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In view of (C ), we have
ř

vPV dBpvq ď 10pk4{δ, which implies the bound
ÿ

␣

7pdBpvq : dBpvq ą logpnq{p
(

ď
70p2k4

δ
.

Moreover, our assumption that p "
log4{3pnq

n1{3 and our choice of k in (20) guarantee

70p2k4

δ
! pn and logpnq

p
` 1 ! pn

and we arrive at

idimpGq ď s ` oppnq
(21)
“ 320 ¨

n logpnq

k
` oppnq

(20)
ď 1000 pn ,

which concludes the proof of Theorem 1.3. □

3.2. Lower bound for the product dimension of random graphs. The proof of
Proposition 1.4 follows the lines of the proof of Proposition 1.2.

Proof of Proposition 1.4. Let p “ ppnq " n´2 and set

s “
´ logppq ¨ pn

5 logpnq
. (24)

Let Fnpsq be the family of all n-vertex graphs F with idimpF q ď s. Obviously, we can
bound the size of this family by

ˇ

ˇFnpsq
ˇ

ˇ ď nsn
“ exp

`

sn ¨ logpnq
˘

.

On the other hand, assuming by contradiction that a.a.s. idimpGq ď s holds for G P Gpn, pq,
Lemma 2.4 yields

ˇ

ˇFnpsq
ˇ

ˇ ě
1
2

ˆ

`

n
2

˘

1
2p
`

n
2

˘

˙

ě
1
2

ˆ

2
p

˙
1
2 ppn

2q

ą exp
`1

5 logp1{pq ¨ pn2
q .

Comparing the lower and the upper bound on |Fnpsq| implies

sn ¨ logpnq ě log
`

|Fnpsq|
˘

ą
1
5 logp1{pq ¨ pn2 ,

which contradicts the choice of s in (24) and concludes the proof of Proposition 1.4. □
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